Economics 101A (Lecture 5)

Stefano DellaVigna

February 5, 2008

Outline

- 1. Properties of Preferences
- 2. From Preferences to Utility (and viceversa)
- 3. Common Utility Functions
- 4. Utility maximization

1 Properties of Preferences

- Nicholson, Ch. 3, pp. 87-88 (69-70, 9th)
- Commodity set X (apples vs. strawberries, work vs. leisure, consume today vs. tomorrow)
- Preference relation \succeq over X
- A preference relation

 is rational if
 - 1. It is *complete*: For all x and y in X, either $x \succeq y$, or $y \succeq x$ or both
 - 2. It is *transitive*: For all x, y, and $z, x \succeq y$ and $y \succeq z$ implies $x \succeq z$
- Preference relation \succeq is *continuous* if for all y in X, the sets $\{x:x\succeq y\}$ and $\{x:y\succeq x\}$ are closed sets.

ullet Example: $X=R^2$ with map of indifference curves

• Counterexamples:

1. Incomplete preferences. Dominance rule.

2. Intransitive preferences. Quasi-discernible differences.

3. Discontinuous preferences. Lexicographic order

- $\bullet \ \ \text{Indifference relation} \ \sim: \ x \sim y \ \text{if} \ x \succeq y \ \text{and} \ y \succeq x$
- ullet Strict preference: $x \succ y$ if $x \succeq y$ and not $y \succeq x$
- ullet Exercise. If \succeq is rational,
 - \succ is transitive
 - \sim is transitive
 - Reflexive property of \succeq . For all $x, x \succeq x$.

- Other features of preferences
- Preference relation ≥ is:
 - monotonic if $x \geq y$ implies $x \succeq y$.

- strictly monotonic if $x \geq y$ and $x_j > y_j$ for some j implies $x \succ y$.

- convex if for all x, y, and z in X such that $x \succeq z$ and $y \succeq z$, then $tx + (1-t)y \succeq z$ for all t in [0,1]

2 From preferences to utility

- Nicholson, Ch. 3
- ullet Economists like to use utility functions $u:X\to R$
- u(x) is 'liking' of good x
- u(a) > u(b) means: I prefer a to b.
- **Def.** Utility function u represents preferences \succeq if, for all x and y in X, $x \succeq y$ if and only if $u(x) \ge u(y)$.
- **Theorem.** If preference relation \succeq is rational and continuous, there exists a continuous utility function $u: X \to R$ that represents it.

- [Skip proof]
- Example:

$$(x_1, x_2) \succeq (y_1, y_2)$$
 iff $x_1 + x_2 \geq y_1 + y_2$

• Draw:

- Utility function that represents it: $u(x) = x_1 + x_2$
- ullet But... Utility function representing \succeq is not unique
- Take 3u(x) or exp(u(x))
- $u(a) > u(b) \iff \exp(u(a)) > \exp(u(b))$

• If u(x) represents preferences \succeq and f is a strictly increasing function, then f(u(x)) represents \succeq as well.

- If preferences are represented from a utility function, are they rational?
 - completeness
 - transitivity

- Indifference curves: $u(x_1, x_2) = \bar{u}$
- They are just implicit functions! $u(x_1, x_2) \bar{u} = 0$

$$\frac{dx_2}{dx_1} = -\frac{U'_{x_1}}{U'_{x_2}} = MRS$$

- Indifference curves for:
 - monotonic preferences;
 - strictly monotonic preferences;
 - convex preferences

3 Common utility functions

- Nicholson, Ch. 3, pp. 100-104 (82-86, 9th)
- 1. Cobb-Douglas preferences: $u(x_1, x_2) = x_1^{\alpha} x_2^{1-\alpha}$
 - $MRS = -\alpha x_1^{a-1} x_2^{1-\alpha} / (1-a) x_1^{\alpha} x_2^{-\alpha} = \frac{\alpha}{1-\alpha} \frac{x_2}{x_1}$

- 2. Perfect substitutes: $u(x_1, x_2) = \alpha x_1 + \beta x_2$
 - $MRS = -\alpha/\beta$

- 3. Perfect complements: $u(x_1, x_2) = \min(\alpha x_1, \beta x_2)$
 - MRS discontinuous at $x_2 = \frac{\alpha}{\beta}x_1$

- 4. Constant Elasticity of Substitution: $u\left(x_1,x_2\right)=\left(\alpha x_1^{\rho}+\beta x_2^{\rho}\right)^{1/\rho}$
 - $MRS = -\frac{\alpha}{\beta} \left(\frac{x_1}{x_2}\right)^{\rho-1}$
 - ullet if ho=1, then...
 - if $\rho = 0$, then...
 - if $\rho \to -\infty$, then...

4 Utility Maximization

- Nicholson, Ch. 4, pp. 114–124 (94–105, 9th)
- $X = R_+^2$ (2 goods)
- Consumers: choose bundle $x = (x_1, x_2)$ in X which yields highest utility.
- Constraint: income = M
- Price of good $1 = p_1$, price of good $2 = p_2$
- Bundle x is feasible if $p_1x_1 + p_2x_2 \leq M$
- Consumer maximizes

$$\max_{x_1, x_2} u(x_1, x_2)$$

$$s.t. \ p_1x_1 + p_2x_2 \le M$$

$$x_1 > 0, \ x_2 > 0$$

- Maximization subject to inequality. How do we solve that?
- Trick: u strictly increasing in at least one dimension.
 (≥ strictly monotonic)
- Budget constraint always satisfied with equality

• Ignore temporarily $x_1 \ge 0$, $x_2 \ge 0$ and check afterwards that they are satisfied for x_1^* and x_2^* .

• Problem becomes

$$\max_{x_1, x_2} u(x_1, x_2)$$
s.t. $p_1x_1 + p_2x_2 - M = 0$

5 Next Class

- Utility Maximization (ctd)
- Utility Maximization tricky cases
- Indirect Utility Function