
Econ 101A — Problem Set 6 Solutions
Due on Monday Dec. 9. No late Problem Sets accepted, sorry!

This Problem set tests the knowledge that you accumulated mainly in lectures 24 to 26. The problem
set is focused on dynamic games and general equilibrium. General rules for problem sets: show your work,
write down the steps that you use to get a solution (no credit for right solutions without explanation), write
legibly. If you cannot solve a problem fully, write down a partial solution. We give partial credit for partial
solutions that are correct. Do not forget to write your name on the problem set!

Problem 1. Dynamic Games (48 points) Two companies produce the same good. In the first period,
firm1 seels its product as a monopolist on the West Coast. In the second period, firm 1 competes with
firm 2 on the East Coast as a Cournot duopolist. There is no discounting between the two periods. Firm
1 produces quantity xW ≤ c/α at the West at cost cxW . On the East Coast, and that’s what makes this
problem interesting, firm 1 produces quantity xE at cost (c− αxW )xE , where 0 < α < c < 1/2. The
parameter α captures a form of learning by doing. The more firm 1 produces on the West Coast, the lower
the marginal costs are going to be on the East Coast. As for firm 2, it produces in the East market with
cost cx2. The inverse demand functions are pW (xW ) = 1 − xW and pE (xE , x2) = 1 − xE − x2. Each firm
maximizes profit. In particular, firm 1 maximizes the total profits from its West and East coast operations.

1. Consider first the case of simultaneous choice. Assume that firm 2 does not observe xW before
making its production decision. This means that, although formally firm 1 chooses output xW first,
that you should analyze the game as a symultaneous game between firm 1 and firm 2. Use Nash
Equilibrium. Write down the profit function that firm 1 maximizes (careful here) and the profit
function that firm 2 maximizes (5 points)

2. Write down the first order conditions of firm 1 with respect to xW and xE , and the first order condition
of firm 2 with respect to x2. Solve for x∗W , x

∗
E , and x∗2. (4 points)

3. Check the second order conditions for firm 1 and for firm 2. (3 points)

4. What is the comparative statics of x∗W and x∗E with respect to α? Does it make sense? How about the
comparative statics of x∗2 with respect to α? (4 points)

5. Compute the profits of firm 2 in equilibrium. How do they vary as α varies? (compute the comparative
statics) Why are firm 2’s profits affected by α even though the parameter α does not directly affect
the costs of firm 2? (5 points)

6. Now consider the case of sequential choice. Assume that firm 2 observes xW before making its
production decision x2. This means that you should analyze the game as a dynamic game between
firm 1 and firm 2, and use the concept of subgame-perfect equilibrium. Remember, we start from the
last period. Write down the profit functions that firm 1 and firm 2 maximize on the East Coast (4
points)

7. Write down the first order conditions of firm 1 with respect to xE , and the first order condition of firm
2 with respect to x2. Solve for x∗E and x∗2 as a function of x

∗
W (4 points)

8. Compute the comparative statics of x∗E and x∗2 with respect to x
∗
W . Do these results make sense? (3

points)

9. Compute the profits of firm 1 on the East Coast as a function of x∗W . (2 points)

10. Using the answer to point 9, write down the maximization problem of firm 1 in the first period, that
it, when it decides the production on the West Coast. (3 points)

11. Write down the first order conditions of firm 1 with respect to xW . Solve for x∗W and then, using the
solution for x∗W , find the solution for x∗E and x∗2. (5 points)
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12. Compare the solutions for x∗W under simultaneous and under sequential choice. What can you conclude?
Under which conditions the firm does more preemption, that is, produces more on the West Coast in
order to reduce the production in equilibrium of firm 2? (6 points)

Solution to Problem 1.

1. Firm 1 maximizes the sum of the profits on the East and West coast, that is, the maximization program
is

max
xW ,xE

xW (1− xW )− cxW + xE (1− xE − x2)− (c− αxW )xE .

Firm 2 simply maximizes the profits on the East Coast:

maxx2 (1− xE − x2)− cx2.

2. The first order conditions of firm 1 with respect to xW and xE are

1− 2xW − c+ αxE = 0 (1)

and
1− 2xE − x2 − (c− αxW ) = 0. (2)

The first order condition of firm 2 with respect to x2 is

1− xE − 2x2 − c = 0 (3)

From equation (1) we obtain x∗W = (1− c+ αx∗E) /2 which we can substitute into (2) to obtain 1 −
2x∗E − x∗2 − c+ α (1− c+ αx∗E) /2 = 0 or¡

2− α2/2
¢
x∗E = 1− x∗2 − c+ α (1− c) /2. (4)

From (3) we obtain
x∗E = 1− 2x∗2 − c

which we can substitue into (4) to get¡
2− α2/2

¢
(1− 2x∗2 − c) = 1− x∗2 − c+ α (1− c) /2

or
x∗2
¡
3− α2

¢
= − ¡−1 + α2/2 + α/2

¢
(1− c)

or

x∗2 =

¡
2− α2 − α

¢
(1− c)

6− 2α2 . (5)

We can use (3) to obtain

x∗E = (1− c)− 2x∗2 =
£¡
6− 2α2¢− 2 ¡2− α2 − α

¢¤
(1− c)

6− 2α2 =
(2 + 2α) (1− c)

6− 2α2 . (6)

Finally, from (1) we get

x∗W = (1− c) /2 + αxE/2 =

£¡
3− α2

¢
+ α (1 + α)

¤
(1− c)

6− 2α2 =
(3 + α) (1− c)

6− 2α2 (7)

3. The Hessian matrix for firm 1 is

H =

∙ −2 α
α −2

¸
where the first minor is -1 and the determinant is 4− α2 which is positive since α < 2. As for firm 2,
the second derivative of the profit function with respect to x2 is −2 < 0. The second order conditions
are satisfied.
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4. From expressions (6) and (7) it is clear that both x∗E and x
∗
W are increasing in α: the higher the degree

of learning by doing, the higher the production by firm 1 on the Eas and West market. The learning by
doing induces the firm to produce more on the West coast, since this will reduce the costs of producion
on the East Coast. Once this high production has taken place, the firm has effecively reduced the
costs of producing on the East coast and therefore produces more. As for firm 2, we can differentiate
expression (5) to get

∂x∗2
∂α

= (1− c)
(−2α− 1) ¡6− 2α2¢− ¡2− α2 − α

¢
(−4α)

(6− 2α2)2 =
1− c

(6− 2α2)2
£−12α− 6 + 4α3 + 2α2 + 8α− 4α3 − 4α2¤ =

=
1− c

(6− 2α2)2
£−4α− 6− 2α2¤ < 0.

Therefore, as the degree of learning-by-doing of firm 1 increases, the production of firm 2 decreases.
Essentially, by learning by doing, firm 1 decreases the own production costs and pushes firm 2 to lower
and lower levels of production.

5. The profits of firm 2 are

π2 =

¡
2− α2 − α

¢
(1− c)

6− 2α2
Ã
1− (2 + 2α) (1− c)

6− 2α2 −
¡
2− α2 − α

¢
(1− c)

6− 2α2
!
− c

¡
2− α2 − α

¢
(1− c)

6− 2α2 =

=

¡
2− α2 − α

¢
(1− c)

6− 2α2
Ã
(1− c)− (1− c)

¡
4 + α− α2

¢
6− 2α2

!
=

"¡
2− α2 − α

¢
(1− c)

6− 2α2
#2

Since the profits of firm 2 π2 equal (x∗2)
2
, it is clear that ∂π2/∂α has the same sign as ∂x∗2/∂α, which

is negative. As the learning by doing of firm 1 increases, the profits of firm 2 decrease. This is since
the increased production of firm 1 induces firm 2 to produce less and reduces its profits. Interestingly,
this occurs despite firm 2 not observing the decisions of firm 1 before it takes its own decisions. It all
happens through equilibrium arguments.

6. In the sequential version, the firms produce on the East Coast after observing production x∗W on the
West Coast. The profit funcion of firm 1 in period 2 is

xE (1− xE − x2)− (c− αx∗W )xE

and the profit function of firm 2 is
x2 (1− xE − x2)− cx2.

7. The first order conditions are
1− 2x∗E − x∗2 − c+ αx∗W = 0

and
1− x∗E − 2x∗2 − c = 0.

Solving for x∗2 in the first equation we get x
∗
2 = 1 − 2x∗E − c + αx∗W which we can substitute in the

second expression to get
1− x∗E − 2 (1− 2x∗E − c+ αx∗W )− c = 0

or

x∗E (x
∗
W ) =

1− c+ 2αx∗W
3

.

We can then obtain

x∗2 (x
∗
W ) =

1− c

2
− 1− c+ 2αx∗W

6
=
(1− c)− αx∗W

3

8. Notice that x∗E is increasing in x∗W since higher past production decreases currect marginal costs for
firm 1. As for firm 2, x∗2 is decreasing in x∗W since higher α implies that firm 1 will produce more on
the East coast.
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9. The profits for firm 1 are

π1 (x
∗
W ) = x∗E (1− x∗E − x∗2 − (c− αx∗W )) =

1− c+ 2αx∗W
3

µ
1− c+ αx∗W −

1− c+ 2αx∗W
3

− (1− c)− αx∗W
3

¶
=

=
1− c+ 2αx∗W

3

µ
1− c+ αx∗W −

2 (1− c) + αx∗W
3

¶
=
(1− c+ 2αx∗W )

2

9

10. The profit function in period 1 for firm 1 is

xW (1− xw)− cxW +
(1− c+ 2αxW )

2

9

11. The first order condition with respect to xW is

1− 2x∗W − c+
2

9
(1− c+ 2αx∗W ) 2α = 0

or

x∗W

µ
2− 8

9
α2
¶
= (1− c)

µ
1 +

4

9
α

¶
or

x∗W = (1− c) (9 + 4α) /
¡
18− 8α2¢

We can then plug x∗W into x∗E (x
∗
W ) to obtain

x∗E (x
∗
W ) =

1− c+ 2α (1− c) (9 + 4α) /
¡
18− 8α2¢

3
.

Similarly, we get

x∗2 (x
∗
W ) =

(1− c)− α (1− c) (9 + 4α) /
¡
18− 8α2¢

3

12. The production on the West coast under simultaneous production is

x∗W =
(3 + α) (1− c)

6− 2α2
whereas in the sequential version we obtain

x∗W = (1− c) (9 + 4α) /
¡
18− 8α2¢ .

The production in the sequential game is higher than in the simultaneous game if

(1− c) (9 + 4α) /
¡
18− 8α2¢ ≥ (3 + α) (1− c)

6− 2α2
or

(9 + 4α)
¡
6− 2α2¢ ≥ (3 + α)

¡
18− 8α2¢

or
54− 18α2 + 24α− 8α3 ≥ 54− 24α2 + 18α− 8α3

or
6α2 + 6α = 6α (1 + α) ≥ 0

or α ≥ 0. That is, as long as there is learning by doing (α > 0), firm 1 produces more on the West
coast if the game is sequential than if it is simultaneous. In other words, if firm 2 can observe x∗W
then, as in a standard Stackelberg duopoly, the leader gets to produce more and earn more profits. I
realize that computing the profits here would be very cumbersone (sorry), but i am ready to bet 10:1
that firm 1 overall makes more profits in the sequential than in the simultaneous case. :)
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Problem 2. General Equilibrium (32 points) Consider the case of pure exchange with two con-
sumers. Both consumers have Cobb-Douglas preferences, but with different parameters. Consumer 1 has
utility function u(x11, x

1
2) = (x11)

α(x12)
1−α. Consumer 2 has utility function u(x21, x

2
2) = (x21)

β(x22)
1−β. The

endowment of good j owned by consumer i is ωij . The price of good 1 is p1, while the price of good 2 is
normalized to 1 without loss of generality.

1. Only for point 1, assume ω11 = 1, ω
2
1 = 3, ω

1
2 = 3, ω

2
2 = 1. (that is, total endowment of each good is 4).

Assume further α = 1/2, β = 1/2. Draw the Pareto set and the contract curve for this economy in an
Edgeworth box. (you do not need to give the exact solutions, only a graphical representation) What
is the set of points that could be the outcome under barter in this economy? (5 points)

2. For each consumer, compute the utility maximization problem. Solve for xi∗j for j = 1, 2 and i = 1, 2
as a function of the price p1 and of the endowments. [This problem to be solved with closed eyes!] (5
points)

3. Assume again ω11 = 1, ω
2
1 = 3, ω

1
2 = 3, ω

2
2 = 1 and α = 1/2, β = 1/2. Do a qualitative plot of the offer

curve for consumer 1. [Trick to do this is to compute the values of x1∗1 and x1∗2 as you increase p1 from
0] What happens to the consumption of good 1 and good 2 as the price p1 increases? Plot also the
offer curve of consumer 2. Graphically, find the intersection, the general equilibrium point. (7 points)

4. We now solve analytically for the general equilibrium. Require that the total sum of the demands for
good 1 equals the total sum of the endowments, that is, that x1∗1 +x2∗1 = ω11+ω21. Solve for the general
equilibrium price p∗1. (6 points)

5. What is the comparative statics of p∗1 with respect to the endowment of good 1, that is, with respect
to ωi1 for i = 1, 2? What about with respect to the endowment of the other good? Does this make
sense? What is the comparative statics of p∗1 with respect to the taste for good 1, that is, with respect
to α and β? Does this make sense? (4 points)

6. Now require the same general equilibrium condition in market 2. Solve for p∗1 again, and check that
this solution is the same as the one you found in the point above. In other words, you found a property
that is called Walras’Law.In an economy with n markets, if n− 1 markets are in equilibrium, the nth
market will be in equilibrium as well. (5 points)

Solution to Problem 2.

1. See Figure.

2. Instead of solving the Lagrangean problem (make sure you know how to do this), i will use a general
feature of Cobb-Douglas utility functions. The consumer consumes share α of income in the first
commodity. This implies

x1∗1 = α

¡
p1ω

1
1 + ω12

¢
p1

and
x1∗2 = (1− α)

¡
p1ω

1
1 + ω12

¢
.

For consumer 2

x2∗1 = β

¡
p1ω

2
1 + ω22

¢
p1

and
x1∗2 = (1− β)

¡
p1ω

2
1 + ω22

¢
.

3. See Figure.
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4. We have already imposed the first part of the definition of Walrasian Equilibrium, that is, that each
consumer chooses the optimal allocation given the price p1. We now impose the second part of the
definition, that is, that each market be in equilibrium. We first impose the condition for the first
market, that is, x1∗1 + x2∗1 = ω11 + ω21. This implies

α

¡
p∗1ω11 + ω12

¢
p∗1

+ β

¡
p∗1ω21 + ω22

¢
p∗1

= ω11 + ω21

or

αω11 + βω21 +

¡
αω12 + βω22

¢
p∗1

= ω11 + ω21

or ¡
αω12 + βω22

¢
= p∗1

£
(1− α)ω11 + (1− β)ω21

¤
or

p∗1 =
¡
αω12 + βω22

¢
/
£
(1− α)ω11 + (1− β)ω21

¤
.

5. Notice that, as the endowment of good 1 ω11 or ω
2
1 increases, the price of good 1 decreases. this makes

sense. If the quantity available of good 1 increases, while holding constant the quantity of good 2, good
2 becomes relatively scarcer and this induces the relative price of good 1 to decrease. This is like an
increase in supply that decreases the price. Notice that p1 is not the absolute price of good 1, but rather
the relative price of good 1 relative to the price of good 2, which we normalized to 1. Simmetrically,
if the endowment of good 2 increases, good 1 becomes scarcer and the price p∗1 increases. As for the
other comparative statics, as the taste for good 1 increases (increase in α or β) the equilibrium price
of good 1 goes up. Since increase in taste for good 1 means a positive shift in demand, we are not
surprised that this induces an increase in the equilibrium price of good 1. Notice a difference, though,
between the general equilibrium increase in the demand and the partial equilibrium. If both α and β
increase, that is, if both consumers like good 1 more, the price of good 1 will go up, but the quantity
consumed of good 1 will go down (or al least not go up) for one of the consumers. In this seting, the
ttal quantity available of each good is constant.

6. We now impose the condition for the second market, that is, x1∗2 + x2∗2 = ω12 + ω22. This implies

(1− α)
¡
p∗1ω

1
1 + ω12

¢
+ (1− β)

¡
p∗1ω

2
1 + ω22

¢
= ω12 + ω22

or £
(1− α)ω11 + (1− β)ω21

¤
p∗1 =

¡
αω12 + βω22

¢
or

p∗1 =
¡
αω12 + βω22

¢
/
£
(1− α)ω11 + (1− β)ω21

¤
which is the same solution that we found before. If there are n markets, it’s enough to impose
equilibrium conditions in n− 1 of them, and the n-th market will automatically be in equilibrium.
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Problem 3. Moral Hazard (46 points, due to Botond Koszegi). We analyze here a principal-agent
problem with hidden action (moral hazard). The principal is hiring an agent. The agent can put high effort
eH or low effort eL. If the agent puts high effort eH , the output is yH = 18 with probability 3/4 and yL = 1
with probability 1/4. If the agent puts low effort eL, the output is yH = 18 with probability 1/4 and yL = 1
with probability 3/4. The principal decides the pay of the agent w. The utility of the agent is

√
w − c (e) ,

where c (eH) = .1 and c (eL) = 0. The reservation utility of the agent is .1. The principal maximizes expected
profits.

1. Assume first that the principal can observe the effort of the agent (that is, there is no hidden action).
We want to determine the optimal contract. In this case, the principal pays a wage w (e) that can
depend on the effort. The way you solve a problem like this with a discrete number of effort levels is
to study first the case in which the principal wants to implement high effort eH . In this case, the wage
will be w if the agent chooses eH and 0 otherwise. Solve the problem

max
w

3

4
18 +

1

4
1− w

s.t.
√
w − c (eH) ≥ .1

Argue that the constraint is satisfied with equality and solve for w∗. Compute the expected profit in
this case EπH . (5 points)

2. We are still in the case of no hidden action. Assume that the principal wants to implement low effort
eL. Similarly to above, set up the maximization problem and solve for w∗. Compute the expected profit
in this case EπL and compare with EπH . Which profit level is higher? The higher one is the contract
chosen by the principal and hence the action implemented. (5 points)

3. Now consider the case with hidden action. The wages can only be a function of the outcomes: wH

when y = yH and wL when y = yL. We study this case in two steps. Assume first that the principle
wants to implement eH . We study the optimal behavior of the agent after signing the contract. Write
the inequality that indicates under what condition the agent prefers action eH to action eL. (This is a
function of wH and wL and goes under the name of incentive compatibility constraint). (5 points)

4. Now consider the condition under which the agent prefers the contract offered to the reservation utility
.1. (This is the individual rationality constraint) (4 points)

5. Argue that the two inequalities you just derived will be satisfied with equality. Solve the two equations
to derive w∗L and w∗H . Compute the profits for the principal from implementing the high action under
hidden action: EπHA

H . (5 points)

6. Now, assume that the principal wants the agent to take the low action eL. In this case, you do not need
to worry that the agent will deviate to the high action, since that will take more effort. The principal
will pay a flat wage w.Write the individual rationality constraint for the agent if he takes the action eL
and the pay is w. Set this constraint to equality (Why?) and derive w∗. Compute the implied profits
for the principal from implementing the low action under hidden action: EπHA

L .(5 points)

7. Compare the profits in point 6 (profits from low effort) and in point 7 (profits from low effort). Under
hidden action, what contract does the principal choose to implement, the one that guarantees high
effort or the one that guarantees low effort? (4 points)

8. Compare the profits for the principal under perfect observability and under hidden action. Why are
they different despite the fact that the action chosen by the agent in equilibrium will be the same? (6
points)

9. There is a monitoring system that allows the principal to perfectly observe the actions (and hence to
implement the perfect observability contract). How much would the principal be willing to pay for it?
(3 points)

10. Compare the utility of the agent under perfect observability and under hidden action. (4 points)
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Solution to Problem 3.

1. In the problem

max
w

3

4
18 +

1

4
1− w

s.t.
√
w − c (eH) ≥ .1

the principal would be foolish to pay a salary w higher than the one that satisfies the constraint with
equality, since that would lover expected profits. The solution for w hence is

√
w − .1 = .1, which

implies w = 4/100. This implies an expected profit of Eπ = 55/4− 4/100.
2. In this case, we follow the same logic, but the individual rationality constraint is now

√
w−c (eL) = .1, or√

w = .1, which implies w = 1/100. This implies an expected profit of Eπ = 1
418+

3
41−w = 21/4−1/100.

3. In the case of hidden action, the principal cannot enforce a particular action. S/he can only pay as a
function of the observe output yL or yH . The agent prefers the action eH to the action eL if

3

4

√
wH +

1

4

√
wL − c (eH) ≥ 1

4

√
wH +

3

4

√
wL − c (eL) .

If this condition holds, the expected utility of putting high effort eH is higher than the expected utility
of putting low effort eL. Hence, the agent will choose to put high effort.

4. The agent prefers to put high effort to the reservation utility if

3

4

√
wH +

1

4

√
wL − c (eH) ≥ .1.

5. The individual rationality inequality will be satisfied with equlity because otherwise the principal could
lower the pay under wL and increase profits. (Notice that this would make the first constraint more
likely to be satisfied, so the argument is kosher) As for the first constraint, the incentive compatibility
one, if the constraint were not satisfied with equality, the principal could increase the profits by lowering
wH and increasing wL so as to keep the individual rationality constraint satisfied. This would increase
profits because of the risk-aversion. Given that the agents are risk-averse, they value more the increase
in wL than the decrease in wH (since in the contract it will be the case that wH > wL). This is not a
full proof, but it tries to convey the intuition. If this is hard to comprehend, do not worry too much.
The proof of this part is beyond the level required in this class. Moving on, now that we know that
the constraints are satisfied with equality, we can solve for w∗L and w∗H . The system is

3

4

√
wH +

1

4

√
wL − c (eH) =

1

4

√
wH +

3

4

√
wL − c (eL)

3

4

√
wH +

1

4

√
wL − c (eH) = .1

The equations reduce to

1

2

√
wH =

1

2

√
wL + .1

3

4

√
wH +

1

4

√
wL = .2

Substituting
√
wH into the second equation gives

3

4

¡√
wL + .2

¢
+
1

4

√
wL = .2

or
√
wL = 1/20, or w

∗
L = 1/400. It follows that w

∗
H = 25/400. Hence, the expected profits are

Eπ =
55

4
− 3
4

25

400
− 1
4

1

400
=
55

4
− 19

400
.
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6. If the principal wants to implement the low action, she will pay a constant wage for the high and low
output given the risk-aversion of the agents. The individual rationality constraint is

1

4

√
w +

3

4

√
w − c (eL) ≥ .1

The inequality is satisfied with equality because otherwise the principal could lower the wage w and
increase the profits. It follows that

√
w∗ = .1, or w∗ = 1/100. The implied profits are

Eπ =
1

4
18 +

3

4
1− 1

100
=
21

4
− 1

100
.

7. The profits from implementing the high effort ( 554 − 19
400) are substantially higher than the profits from

implementing the low effort ( 214 − 1
100). Hence, the principal chooses to implement the contract with

high effort.

8. It is interesting that both under perfect observability and under hidden action the principal implements
the high action eH . That is, in equilibrium, the agent will choose eH in both cases. However, the profits
are higher in the case of perfect observability. Compare 55

4 − 4
100and

55
4 − 19

400 . The difference is due to
the fact that under hidden action the principal has to introduce different wages in case of high outcome
and low outcome, paying the high outcome more, in order to make sure that the agent puts high effort.
Since the agent is risk-averse, she does not like this, and is less willing to take the contract, which in
turn reduces the profits of the firm.

9. The principal would be willing to pay

55

4
− 4

100
−
µ
55

4
− 19

400

¶
=

3

400
.

10. Notice that in all cases the agent is offered a contract that makes her indifferent relative to the outside
option. Therefore, her utility is always .1. This is because the principal here is a monopolist which can
extract all the surplus.
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