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Abstract: We examine a model in which players sometimes prefer to co-
operate in the prisoners’ dilemma, provided their opponents are sufficiently
likely to cooperate. We report the results of an experiment investigating
the predictions of this model for equilibrium behavior in a twice-played
prisoners’ dilemma. We are especially interested in results suggesting that
cooperation may be most effectively fostered by appropriately distributing
the monetary stakes across the two periods of the interaction.
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BUILDING RATIONAL COOPERATION

by Jim Andreoni and Larry Samuelson

1 Introduction

Rational cooperation. A fundamental assumption of economic theory is
that rational people will not choose strictly dominated strategies. However,
experiments consistently find:!

e A significant proportion of players cooperate in the one-shot prisoners’
dilemma.

e Players are heterogeneous, including some who cooperate under any
circumstances, some who defect under any circumstances, and some
who appear to be “conditional cooperators,” being willing to cooperate
if there is sufficient chance that their opponent will do likewise.

e The incidence of cooperation falls over the course of a finitely-repeated
prisoners’ dilemma, but does not fall to zero.

To say a person is rational is to say that we can specify preferences
for which the person’s choices consistently coincide with the most-preferred
available alternative. The experimental evidence makes it clear that we can-
not do so for the prisoners’ dilemma if we retain the common assumption
that people care only about their own monetary payoffs, so that coopera-
tion is a strictly dominated strategy. One response to such seemingly ir-
rational behavior is to argue that this is a situation beyond the purview
of economics. But it is typically more useful to retain the unifying princi-
ple of economics—that people can be usefully modeled as making rational
choices—while seeking a better understanding of how the observed behavior
might be rational. In the case of the prisoners’ dilemma, there is no con-
ceptual reason to assume that people care only about their own monetary
payoffs. The first step in assessing the experimental evidence is then to ask
whether we can rationalize the observed behavior by expanding our notion
of preferences to include additional considerations.

The danger here is that the unbridled freedom to tailor preferences to
particular circumstances allows us to rationalize virtually any behavior. How
do we know when we have uncovered a robust feature of behavior and when

!See Andreoni and Miller [2] and the citations within. See Rabin [15] for a discussion
of psychological evidence.



we have fortuitously constructed exotic preferences that happen to match
some experimental observations?

Our confidence in a specification of preferences invoked to explain a par-
ticular behavior is enhanced to the extent that the model makes additional
predictions that can be tested experimentally. For example, Andreoni and
Miller [3], observing that generosity in the standard dictator game can be
explained as rational behavior on the part of dictators who have preferences
over both their own and the receiver’s monetary payoff, exhibit experimental
evidence consistent with the predictions of these preferences in more general
dictator games with varying exchange rates. These results encourage fur-
ther work with such preferences. Andreoni, Castillo and Petrie [1], Binmore,
McCarthy, Ponti, Samuelson and Shaked [5] and Falk, Fehr and Fischbacher
[11] show that important aspects of play in finite-horizon alternating-offers
bargaining games cannot be explained by preferences involving only the rela-
tive payoff considerations that were initially introduced to explain seemingly
irrational rejections in such games. This suggests that if such rejections are
to be explained as optimizing behavior, alternative preference specifications
should be investigated.

This paper thus proceeds in three steps. Section 2 constructs a model
of individual preferences that yields rational cooperation in the prisoners’
dilemma. Section 3 identifies the model’s predictions. Sections 4 and 5
report the results of an experiment examining these predictions. Section 6
outlines directions for further work.

This paper. We study a model in which (7) players prefer that their oppo-
nents cooperate in the prisoners’ dilemma, (iz) players sometimes prefer to
cooperate themselves, (4ii) players are more likely to cooperate when their
opponent is more likely to cooperate, and (iv) players differ in the strength
of this taste for cooperation. Such preferences are easily formulated to ac-
commodate the experimental observations noted above.

To carry the investigation of these preferences further, we consider two-
period games whose stage games are the prisoners’ dilemmas shown in Figure

1. Let
T2

x1 + xo

We consider a class of such twice-played prisoners’ dilemma games in which
1 + 9 is fixed, but A ranges from zero to one. When A = 0, all of the
payoffs are concentrated in the first of the two prisoners’ dilemmas. As A
increases, the second period becomes relatively more important, with A = }
corresponding to equal payoffs in the two periods and A = 1 corresponding
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Figure 1: Stage games for the twice-played prisoners’ dilemma, where
x1, X2 > 0.

to all payoffs being concentrated in the second period. With the help of some
technical assumptions, designed primarily to ensure that there is sufficient
heterogeneity in players’ preferences, the model predicts:

e Cooperation will be more prevalent in the first than in the second
period of play.

e First-period play for A = 0 will match second-period play for A = 1.
e The incidence of first-period cooperation increases as A does.

e Certain outcomes of the game (identified below) become more likely,
and others less likely, as A grows. As a result, the expected monetary
payoff from the two-period game initially increases in A, achieves an
interior maximum at a value of A\ between zero and one, and then
decreases.

Cooperation in the first period, by enhancing an opponent’s estimate of
one’s unobserved taste for cooperation, leads to more opponent cooperation
in the second period. This enhances the value of first-period cooperation. As
a result, our model shares the common prediction that players are more likely
to cooperate at the beginning than at the end of a sequence of prisoners’
dilemmas. Our model becomes more interesting when we consider the effects
of varying the relative payoffs between the two periods. First, one of the
two periods is trivial whenever A = 0 or A = 1, suggesting that we should
observe identical behavior and payoffs from the nontrivial period in each
case. More importantly, second-period cooperation is more valuable the
higher is A\. As a result, higher values of A induce agents to cooperate more
in the first period as an investment in second-period cooperation. Finally, as
A increases, we trade off increased first-period cooperation for decreased first-
period payoffs, as payoffs are shifted to the second period. The combined



effect makes specific predictions concerning the path of play and causes
monetary payoffs to be minimized when A = 0 or A = 1, and to achieve an
interior maximum.

Building cooperation. We view this work as a small step toward an
understanding of how institutions might be designed to facilitate economic
and social interactions.

It is well recognized that the performance of an economy can depend im-
portantly upon the institutions within which interactions take place. Much
of the literature has concentrated on the more formal of these institutions,
including laws creating property rights and structuring economic activity,
legal systems to enforce these laws, financial systems that facilitate trade,
educational systems that produce information, and so on.

Our work is motivated by the observation that the functioning of a mod-
ern economy depends upon the consistent willingness to forgo opportunistic
behavior in favor of cooperation. As observed by Arrow [4], virtually every
economic exchange requires someone to forsake individual advantage, even
something so mundane as buying a loaf a bread—there is invariably a mo-
ment at which one party has the loaf of bread as well as the money, and has
an opportunity to take both.

One response to the potential for such opportunistic behavior is to write
contracts or pass laws to deter opportunism with legally enforced sanctions,
i.e., to rely on formal institutions. But these remedies are costly and clumsy.
The more a society can rely on voluntary cooperation to sustain economic
interactions the richer the society will be. Indeed, social researchers have re-
cently argued that the ability to harness voluntary cooperation, often called
“social capital” (Putnam [14]), is sometimes more important than physical
or human capital in building modern economies (Knack and Keefer [13],
Whiteley [18]).

We believe that cooperation can be encouraged or attenuated by the en-
vironment surrounding an interaction, much of which lies beyond formal eco-
nomic institutions. But what organizational arrangements encourage people
to cooperate with one another? How do we design social and economic in-
stitutions to build and sustain cooperation? Understanding the preferences
that induce people to cooperate is the first step toward answering these
questions.

The work reported in this paper is especially relevant to the proposition
that cooperation is fostered in relationships whose stakes are appropriately
distributed across periods. An associate who accomplishes one task well



may be given more discretion and responsibility. Wary countries begin with
cultural exchanges, work up to economic ties, and then negotiate military
treaties. Starting a relationship with small stakes allows people an oppor-
tunity to exhibit a willingness to cooperate, and to assess the propensity of
others to cooperate, when the risk of doing so is mitigated by relatively small
payoffs. These investments can pay off in the form of mutual cooperation
for subsequent, larger stakes.

While it seems intuitive that “starting small” can foster cooperation,
the argument involves some subtleties that must be treated with care. The
same low payoffs that mitigate the risk of building cooperation also make it
more attractive to cooperate now in order to tempt others into cooperation
so that they can be exploited at higher stakes, prompting suspicion of ini-
tial cooperators. Identifying circumstances conducive to cooperation thus
requires precise theoretical modeling and experimental work.

Relationship to the literature. The literature contains two models of
relationships that start small that are relevant to our work.? First, consider
an infinitely-repeated prisoners’ dilemma. Equilibria featuring cooperation
exist if discount factors are sufficiently high. Causing the stakes of the game
to increase over time increases the effective discount factor. It may then
be that discount factors are too low to sustain cooperation if the stakes of
the game remain unchanged throughout the horizon, but cooperation can
be sustained if the stakes increase.?

More closely related ideas appear in Watson’s [16, 17] study of the in-
finitely repeated prisoners’ dilemma. In his simplest model, there are L and
H agents, with the former having discount factors that make them more
inclined to defect. In equilibrium, L agents defect immediately, while the
stakes of the game gradually increase to a steady-state level. The rate at
which the stakes increase is fixed by an incentive-compatibility constraint
that the L agents not prefer to delay their defection to a period with larger

*Binmore, Proulx, Samuelson and Swierzbinski [6] present experimental results in
which players are more likely to trust a randomly chosen opponent if they must first
risk relatively small amounts to do so, building up to risking larger amounts, than if the
high-stakes trust opportunities come first.

3Datta [9] examines a version of the repeated prisoners’ dilemma in which players
can abandon their existing partners in favor of new ones. Punishments for defection are
ineffective, since one can always seek a new partner with whom to resume cooperation.
However, if the stakes of the game increase over time, then it is costly to abandon current
high-stakes cooperation in order to start over at low stakes, restoring the possibility of
cooperation. Similar ideas appear in Carmichael and MacLeod [8] and Ghosh and Ray
[12].



payoffs. If the path of increasing stakes is to be designed to maximize H-
player payoffs, a trade-off appears. The smaller are initial payoffs, the less
costly are the initial L defections, but the longer must H agents wait until
achieving cooperation at large stakes.* This is similar to our result that
shifting payoffs to the second period increases first-period cooperation, but
at smaller stakes.

2 The Model

2.1 Preferences

Our analysis begins with the assumption that, given a specification of the
monetary payoffs for a one-shot prisoners’ dilemma, an agent’s utility from
cooperating (C) and defecting (D) is given by

C: w(C,p,a) + b¢c (1)
D : (D, p, o) +6p. (2)

where
7(z,p,a) : {C,D} X [@,a] X [a,a] = R (3)

identifies an agent’s expected utility as a function of the action z € {C, D}
chosen by the agent, the probability p with which the agent’s opponent
cooperates,® and the value a of a parameter characterizing the agent that
we interpret shortly.

The function 7(z, p, ) is an expected utility in two senses. First, the
realized utility depends upon the opponents’ action, which we incorporate
by writing the expected utility as a function of the probability p that the
opponent cooperates. Second, we assume that the utility of cooperating (or
defecting) is perturbed by a random variable ©¢ (or ©p). The random
variables ©¢ and ©p are independent and have zero means, with distrubu-
tions that are differentiable and strictly increasing on the reals, so that the
random variables exhibit full support and no mass points.

The realized values 8 and 6 p of these random variables are drawn before
the agent makes his choice. In contrast, the agent’s choice must be made
without knowing the opponent’s action. As a result, the utilities in (1)—(2)

“Similar ideas appear in Blonski and Probst [7] and Diamond [10].

5Though we interpret p as the probability with which the opponent cooperates, it
simplifies the presentation and notation to define 7(z, p, @) for values of p lying in [a, @],
where a <0< 1 <@



are defined as a function of the realizations of 6o and #p but remain an
expectation over the opponent’s action.

The random variables ©¢ and ©p, reflecting a realization that the func-
tion 7(z, p, ) may not capture every detail of agents’ preferences, will be
important when interpreting the experimental results. However, our working
assumption is that 7(z, p, a) provides a useful approximation of preferences.
We thus focus on results that hold when O¢ and ©p are sufficiently small,
meaning that the distributions of ©¢ and ©p are sufficiently close (in the
topology of weak convergence) to degenerate distributions that put unitary
mass on zero.

The utility function 7(z, p, ) and the distributions of the random vari-
ables ©¢ and ©p will depend upon the monetary payoffs of the prisoners’
dilemma under consideration. We assume that 7(C,p,a) and 7(D,p, a)
are homogeneous of degree one in monetary payoffs and that the random
variables ©¢ and ©p are similarly homogeneous.® Equilibrium play in a
one-shot prisoners’ dilemma would thus be unaffected by the stakes of the
game, in the sense that multiplying monetary payoffs by a common factor
would leave an equilibrium unaffected.” We accordingly suppress notation
for the monetary payoffs of the game.

We assume that a player’s willingness to cooperate depends upon the
behavior of the player’s opponent:

Assumption 1 For all (z,p, ),

dn(z,p, @)

o >0 (4)

and

d[ﬂ'(C, P, Oz) — W(Dv P, O‘)}
dp

> 0. (5)

A player thus prefers that his opponent cooperate, and finds cooperation
relatively more attractive the more likely is the opponent to cooperate. Fig-
ure 2 illustrates preferences that are consistent with this assumption. If
condition (5) fails, then defection becomes more attractive the more likely

Hence, if the random variable ©f pertains to a prisoners’ dilemma whose monetary
payoffs are k (> 0) times those for the prisoners’ dilemma corresponding to ©¢, then
O¢(w) = kB¢ (w), where these random variables are defined on a common state space
with w € Q. As a result, prob{0c € [0,0]} = prob{0 € [k0, k0]}.

"Our experiment involves only nonnegative monetary payoffs, weakening this assump-
tion somewhat by obviating the need to compare gains and losses.
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Figure 2: Possible utilities of cooperation (w(C,p,«)) and defection
(r(D,p,a)) as a function of probability p that an opponent cooperates (cf.
note 5).

is an opponent to cooperate, in which case the agent not only delights in
fleecing others, but also delights in being fleeced.

We assume that the labels represented by a are assigned to players so
that a player characterized by « is indifferent between C' and D, given
0c = 0p = 0, when his opponent plays C' with probability «, i.e.,

7(C,a, ) = (D, a, ).

Equivalently, « is the probability of opponent cooperation above which a
player of characteristic a prefers to cooperate rather than defect. Despite
calling a a probability, we do not restrict a to lie within [0, 1] (cf. Figure 2
and note 5). Instead, a value of a < 0 denotes an agent for whom C' is a
dominant strategy in the one-shot prisoners’ dilemma (given o = 0p = 0).
A value of @ > 1 denotes an agent for whom D is a dominant strategy in
the one-shot prisoners’ dilemma (again, absent perturbations), as in the left
panel of Figure 2. A value o € (0,1) is an agent who sometimes prefers
C' and sometimes D, depending upon the probability that the opponent
cooperates, as in the right panel of Figure 2. We refer to the latter agents
as conditional cooperators.

The possibility that players may have different preferences will be cap-
tured by allowing players to be characterized by different values of a. We
find it convenient to refer to a player characterized by value « as “player



a.” We think of « as being a characteristic of a player that is fixed, while
the perturbations 8¢ and 0p are drawn anew each time the game is played.
We assume:

Assumption 2 If p—a =p —d, then

7(C,p,a) —w(D, p,a) = w(C,p,a') — (D, p,d).

This assumption ensures that the parameter o captures all of the informa-
tion we need about the differing preferences of different agents. Players
with different values of « are characterized by utility differences 7(C, p, a)) —
(D, p,a) (as a function of p) that are horizontal shifts of one another.

We assume that each player’s value of a is drawn independently accord-
ing to the distribution function F : [a, @] — [0, 1]:

Assumption 3 The distribution function F(«) is differentiable on [a,@],
with a <0< 1<a and
dF ()

0< o

< 1. (6)

The differentiability of F', by ruling out mass points of agents of a single
type, plays a key role in ensuring that we have equilibria in pure strategies.
The assumption that F' has a slope less than one ensures uniqueness of
equilibrium in the one-shot game.

We let f denote the density of F. The assumption that F' is strictly
increasing on [a, @] ensures that

F(0)

0
1-F(1) > 0

>
> 7
where F(0) is the proportion of “committed cooperators,” who prefer coop-
eration regardless of their opponent’s action (given 6¢c = 60p =0), 1 — F(1)
is the proportion of “committed defectors” who prefer defection regardless
of their opponent’s action, and F'(1) — F(0) is the proportion of conditional
cooperators. Notice that among the committed cooperators and defectors,
there is a sense in which those with more extreme values of o (lower in the
case of cooperation, higher in the case of defection) are “more committed.”
This is again useful in avoiding mixed strategies.

All of the assumptions we make on F' in this paper are satisfied if F' is
a uniform distribution on [a, @].



2.2 Equilibrium of the One-Shot Game

We assume that players matched to play the game know their own prefer-
ences, including their values of o and the realized values of 8¢ and 6p, but
know only that their opponent’s values of o, 8 and 6p are independently
drawn from the corresponding distributions. The appropriate equilibrium
concept in the one-shot prisoners’ dilemma is Bayesian-Nash equilibrium.

Let 6§ = ¢ — 0p. Then 6 is the realization of a random variable whose
distribution converges weakly to a unitary mass on zero as do the distribu-
tions of O and ©p. Behavior will depend only upon 6 rather than upon
the values of 8¢ and 6 p, and we will refer to a player as being characterized
by a value of a and a realized value of §. We have:®

Proposition 1 Let Assumptions 1-8 hold. Then:

(1.1) There exists a unique Bayesian-Nash equilibrium in the one-shot
game, characterized by an increasing function A(a) such that a player char-
acterized by (6, a) cooperates if 6 > A(a) and defects if § < A(x).

(1.2) In the limit in which ©¢ and Op are zero, the equilibrium is char-
acterized by a value o* € (0,1) satisfying F(a*) = o*, with player a coop-
erating if a < o and defecting if o > .

Hence, players with smaller values of o and larger values of § are more likely
to cooperate.

Proof. It is immediate from (5) and Assumption 2 that the equilibrium
must be characterized by an increasing function A(a) such that a player
characterized by (8, ) cooperates if § > A(a) and defects if § < A(a).

To establish existence, note that any probability p € [0, 1] that a ran-
domly drawn opponent cooperates induces a unique such function that we
can write as A(a, p), defined by

m(C,p,a) — (D, p,a) + A(a, p) = 0,
and that such a function induces a probability of cooperation given by
R(p) = prob{(8,a) : § > Ala, p)}.
An equilibrium exists if we can find a value of p such that

p = R(p).

8Throughout, we characterize equilibria only up to measure-zero sets of agents who are
indifferent.
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Existence then follows from the observation that R(p) is increasing and
continuous, with R(0) > 0 and R(1) < 1, ensuring that p — R(p) = 0 has at
least one solution within the unit interval.

To establish uniqueness, note that

oo rh(b,p)
Ro)= [ [ sa)da g(s)as,

where g is the density of § and h(§, p) identifies that value of o for which
an agent with preference shock ¢ is indifferent between cooperating and
defecting given probability p of opponent cooperation, or

m(C, p, h(8, p)) = m(D, p, h(6, p))-
Hhen dR(p)  [= dn(s, p)
p P
T = | .= g
Assumption (2) implies that dh(d,p)/dp = 1. Assumption 3 ensures that
f(h(8,p)) < 1, which gives dR(p)/dp < 1. This ensures that p — R(p) has a
unique fixed point, and hence that there is a unique equilibrium.

Now consider the limiting case in which ©¢ and ©p are zero. Then
the equilibrium is characterized by a value a* such that larger values of «
defect and smaller ones cooperate, with player a* being indifferent between
C and D. Given the differentiability of F', the equilibrium proportion of
cooperators will then be F(a*). The indifference of a* requires F'(a*) = o*.
The existence of a* is straightforward, while the fact that dF(a)/da < 1
ensures that there is a unique such o*. I

Figure 3 illustrates the equilibrium for the limiting case in which the
perturbations ©¢ and Op are arbitrarily small. The equilibrium value o*
clearly depends on the distribution F' of players’ indifference points, which
reflects the characteristics of the players and the specification of the mone-
tary payoffs of the prisoners’ dilemma.

Consider two populations characterized by distributions F' and F’ over «
with F first-order stochastically dominating F”, so players in population F'
are characterized by higher values of a and hence are less likely to cooperate.
Then for any fixed A(a, p), F will induce a smaller value of R(p) than does
F'. This gives:

Corollary 1 If distribution F' (over «) first-order stochastically dominates
F', then populations characterized by these two distributions induce equilib-
ria with A(a) > A'(a), and hence F' induces more cooperation than does

F.

11
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Figure 3: Equilibrium of one-shot prisoners’ dilemma when O¢ and ©Op are
zero.

2.3 Equilibrium of the Twice-Played Game.

We now consider the perfect Bayesian equilibria of the twice-played pris-
oners’ dilemma. We denote the equilibrium of the single-stage game by
A*(a), or by simply a* when considering the noiseless limit. Unless other-
wise noted, we restrict attention to values of A € (0, 1), so that both periods
have nontrivial payoff implications.

There are potentially multiple equilibria of the two-stage game, some of
which can be counterintuitive:

Example. Let A =1 and hence x; = 22, so that first-period and second-
period payoffs are identical, and (to simplify the example) let ©¢ and ©p
each place unitary mass on a value of zero. We show that there are circum-
stances under which it is a perfect Bayesian equilibrium for all agents to
play the following strategy for the two-period game:

1. Defect in the first period.

2. If first-period play yields (D, D), then play the equilibrium of Propo-
sition 1 in the second period.

12



3. If an opponent plays C in the first period, draw the inference that
the opponent’s value of a exceeds one (and hence that the opponent
will defect in the next period). If the opponent cooperates in the
first period, a player thus chooses C' in the second period if and only
if a < 0. The first-period (out-of-equilibrium) cooperating player,
anticipating this response, cooperates in the second period if and only
if a < F(0).

Given that all agents play D in the first period, (D, D) outcomes are
uninformative, making the continuation strategy of playing the one-shot
equilibrium prescribed by Proposition 1 optimal in the second period. Sim-
ilarly, given that equilibrium first-period play calls for defection, a perfect
Bayesian equilibrium allows the inference that the opponent’s value of «
exceeds one if the opponent cooperates in the first period. Since a player
for whom « > 1 finds defection a dominant strategy in a one-shot game, the
best response to such an inference is to cooperate if and only if one’s own
value of « is less than zero, and hence the second-period behavior conditional
on a first-period choice of C' by either player is again optimal.

It then remains only to verify that defection is optimal in the first period,
given the prescribed continuation behavior. Notice first that D leads to
a higher probability that one’s opponent cooperates in the second period.
Hence, for any agent for whom o« > 0, defection is a strict best response
in the first period and produces a higher continuation value than does C,
making D optimal in the first period. First-period defection is optimal for
agents with a < 0 if

7(C,0,a) — m(D,0,a) < 7(C,a*, a) — n(C, F(0), a),

where the left side is the first-period gain from switching to cooperation and
the right side is the second-period sacrifice from doing so. We can easily find
specifications of the problem for which this inequality holds. For example,
let F' be uniformly distributed on [—2, 2] and let

11
m(Cop,a) = p—a
m(D,p,a) = 3(p—a).
Then a* = 1 and F(0) = %, and the required inequality is, for o < 0,
(o) =(—30) < (3 —a) = (5 — )

or —ia < 1, which holds for all & € [—1,0]. The posited strategies are thus
a perfect Bayesian equilibrium. I

13



This equilibrium has the property that cooperation in the first period
leads players to believe that cooperation is less likely in the second period.
We regard such equilibria as counterintuitive and accordingly restrict atten-
tion to monotonic equilibria:

Definition 1 An equilibrium of the twice-played prisoners’ dilemma is mono-
tonic if the probability that player i’s opponent cooperates in period two is at
least as high when player i cooperates in period one as when player i defects.

We have a convenient characterization of first-period behavior in mono-
tonic equilibria:

Lemma 1 In a monotonic equilibrium, there is an increasing function A1 ()
such that in the first period, an agent characterized by (6,«) cooperates if
and only if 6 > Aq(a).

Proof. Consider an agent o and value § that prompts cooperation in the
first period. Let p; be the probability of opponent cooperation in the first
period. Let V(z, ) be the expected value of the second period of the game
(conditional on the equilibrium) to an agent of type o who takes action
z € {C, D} in the first period, where the expectation is taken over the likely
type (and hence actions) of the opponent. Then the optimality of player a’s
choice requires

7'('(0,,01,0[)—l—V(C,O[)—|—527T(D,p1,a)—|-V(D,Oz). (7>

Letting Aj(a) be the value of § that satisfies this relationship with equality,
player o will cooperate in period one iff § > Aj(a). Now let o/ < a.
Assumption 2 implies that, for a monotonic equilibrium,

V(C,a) =V (D,a) < V(C,a') —V(D,d).
Using this inequality and Assumption 2 again, (7) implies
m(C,py, ) + V(C,d) + 8 > n(D, py, ') + V(D, o),

ensuring that agent o’ cooperates for any value of ¢ that prompts « to
cooperate, and hence that Aj(«a) is increasing. I

We next show that players are more inclined to cooperate in the first
period of a two-period game than in a one-shot game:?

9Players will be strictly more inclined to cooperate in the first period of a two-period
game than in the one-shot game (i.e., A;(a) < A*(a)) if the equilibrium of the former is
strictly monotonic, meaning that first-period cooperation strictly increases the incidence
of second-period cooperation.

14



Lemma 2 In a monotonic equilibrium,

Aq(a) < A% (a).

Proof. These functions satisfy:

A¥(a) = w(D,p* a)—7(C,p*, ) (8)
Ai(a) = w(D,p,a)+V(D,a)—n(C,p,a) —V(C,a), 9)

where p* and p; are the equilibrium first-period probabilities that the op-
ponent cooperates. Define Aj(«, p) to satisfy

7(C, p,a) — (D, p,a) + V(C,a) = V(D,a) + Ay(a, p) = 0,

and
Ri(p) = prob{(6,a) : § > Ai(a,p)}.

These are analogous to the functions A(a,p) and R(p) used in the proof
of Proposition 1. Then consider p; = p*. From (8)—(9) and the fact that,
in a monotonic equilibrium V(C,a) > V(D, «) (since current cooperation
weakly increases the likelihood that the opponent cooperates in the next
period), we then have Ri(p;) > R(p;) = R(p*) = p* = p;, and hence
Ri(p1) > p1. Once again, dR1(p)/dp < 1, and hence the equilibrium value
of p; must satisfy p; > p*. Achieving such a higher incidence of first-period
cooperation requires Aj(a) < A*(a). I

We now turn to the analysis of the equilibrium in the two-period game.
As always, the difficulty in establishing the existence of an equilibrium lies
in showing that second-period behavior is nicely behaved as a function of
first-period strategies. This in turn hinges upon showing that the second
period features a unique equilibrium. Our approach is to offer assumptions
sufficient to ensure that the second-period equilibrium is unique when ©¢
and ©p are zero, and then to verify that such uniqueness continues to hold
when ©¢ and Op are sufficiently small.

The assumptions are:

Assumption 4

F(0) < (a7 (10)
F(1) < 2a*— (a*)? (11)
fla) < @ Va € [o*,a). (12)
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The first two conditions require that there be not too many committed co-
operators, and that there be sufficiently many committed defectors. Our
intuition concerning the twice-played game is based on the presumption
that conditional cooperators may cooperate in the first period to encourage
cooperation on the part of their opponents and may modify their second-
period behavior in response to inferences drawn about their opponent. The
first feature becomes unimportant if there are too many committed cooper-
ators, while the second becomes unimportant if there are too few committed
defectors. The third condition ensures that too much probability mass can-
not become concentrated on a small set of types who are biased toward
defection.

Proposition 2 Let Assumptions 1-4 hold. If |d*F(a)/da?|, ©¢ and ©p
are sufficiently small and A € (0,1), then:

(2.1) Let Aq1() be increasing with Aq(a) < A*(«v) for all o and assume
that, in the first period, player (8,a) cooperates if and only if & > Aq(a).
Then optimal second-period behavior is uniquely determined and is given by:

1. If both players cooperate in the first period, then there exists an increas-
ing function Agy coy(a) < Ai(a) such that a player characterized by
(6,a) cooperates in the second period if and only if 6 > At ooy ().

2. If both players defect in the first period, then there exists an increasing
function Ay ppy(a) > Aq(a) such that a player characterized by (6, @)
cooperates in the second period if and only if & > Ay ppy(a).

3. If player i cooperates and j defects in the first period, then there exist
increasing functions A opy(a) > Ai(a) and Ay pey(a) < Ar(a)
such that player i (j) cooperates in period 2 if and only if 6(i) >
Ap,cpy(al@) (8(5) > Ap pey(al))))-

(2.2) A monotonic equilibrium of the twice-played game exists.

Remark. If ©¢ and ©p are zero, then the first period is characterized by
a value a1 > a* such that in the first period, player a cooperates if and only
if & < a1. Second-period behavior is then given by:

1. Let ag be the unique solution to

F(az)
F(ar)

= Q9 (13)
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if a7 > 1, and let as = 1 if oy < 1. If both players cooperate in the
first period, then player a cooperates in the second period if and only
if a < ao.

2. If both players defect in the first period, then player a cooperates in
the second period if and only if a < 0.

3. If player i cooperates and j defects in the first period, then player @
(7), characterized by a(i) (a(j)) cooperates in the second period if and
only if a(i) < 0 (a(j) < F(0)/F(av)).

Notice that Proposition 2 does not establish the uniqueness of a mono-
tonic equilibrium in the two-period game. Instead, there may be multiple
monotonic equilibria corresponding to different values of Aj(«), the first
period cooperation cut-off, with a unique equilibrium conditional on each
value of Aj(«). Notice, however, that if there are two such equilibrium func-
tions, one of them must exceed the other for every value of a. If there are
multiple equilibria, we refer to the equilibrium characterized by the small-
est Aq(a) (largest propensity for first-period cooperation) as the maximally
cooperative equilibrium.

Proof. (2.1) If a player cooperates (defects) in period 1, then beliefs about
that player’s value of « are given by a full-support distribution on [a, @] that
is first-order stochastically dominated by (first-order stochastically domi-
nates) the prior distribution F. Corollary 1 thus ensures that the second-
period equilibrium following a first-period outcome of either CC or DD
must take the form described in the proposition. It is also immediate that
following an outcome of C'D, second period behavior is described by a pair
of increasing functions Ay cpy(a) and Agy pey(a). It remains to estab-
lish that the latter bear the claimed relationship to Aj(«) and to establish
uniqueness.

We present the argument for the case in which ©¢ and ©p are zero,
verifying as we proceed that it can be extended to cases in which ©¢ and
Op are nonzero but small. We first note that second-period posterior beliefs
about an opponent’s type (given O¢ = ©p = 0) are given by

P
F(on) on [a, o] if C observed
1 on [ay, @]
(14)
0 ;
F{a)—F(ay) on la a_ﬂ if D observed
Cran - oo,
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Figure 4 illustrates these posteriors. If ©¢ and ©p are nonzero, then the
posterior beliefs after an observation of C' or D in the first period each have
full support on [a, @], converging to those given in (14) as O¢ and Op get
small.

We now verify that the second-period strategies yield an equilibrium. If
both agents cooperate in the first period, then the optimality and uniqueness
of the second-period equilibrium is established by Proposition 1, with the
following modification. The proof of Proposition 1 uses the assumption that
f(1) < 1 to establish the uniqueness of an equilibrium in the one-shot game.
When examining the second period of the two-period game, we need to
establish the existence of a unique aq for which

F(az)
F(a1)

= o. (15)

It suffices for uniqueness that, for any as,

<1. (16)

This ensures that the function F(a)/F(«y) can intersect the diagonal at
most once. (The bottom panel of Figure 4 shows an example where there
is no such intersection. Figure 5 shows a case, requiring a; > 1, in which
there is such an intersection.) Using the first equality in (16) to eliminate
a; from the second, (16) is implied by (12).

Extending this result to the case in which ©¢ and ©p are nonzero re-
quires establishing the uniqueness of the function A {Q,CC}(a), which in turn
requires showing that the second-period counterpart of R(p) (see the proof
of Proposition 1) has a slope less than one. This clearly holds if O¢ and ©p
are small, with the slope of R(p) converging to the slope of F(«)/F(c) as
O¢ and Op converge to zero.

If both agents defect in the first period, then both expect defection in
the second period, making it optimal to cooperate only if @ < 0. The proof
of Proposition 1 can again be mimicked to show that if both players defect
in the first period, then the only possible equilibrium continuation play is
for each to cooperate if and only if o < 0. Again, the extension to small O¢
and ©p follows in a straightforward way from the convergence of posterior
beliefs to those given in (14).

If player i cooperates and player j defects in period one, then i expects
his opponent to certainly defect in the second period, and hence finds it
optimal to cooperate if and only if @ < 0. Agent j expects cooperation
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Figure 4: Posterior beliefs in equilibrium of twice-played prisoners’ dilemma,

for the case of ©¢ and ©p equal to zero, given an observation of D (top)
or C (bottom).
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Figure 5: Possible second-stage equilibrium following (C,C).

with probability F(0)/F (1), making it optimal to defect in the second pe-
riod for all @ > oy if F(0)/F(a1) < ay. It suffices for this inequality that
F(0)/F(a*) < a* which, using F'(a*) = a*, is ensured by (10). To address
the case of nonzero ©¢ and ©p, notice that the functions A opy (o) and
Ag2, pey (@) are completely determined once one identifies the values a(C'D)
and a(DC) at which Ay cpy(a(CD)) = 0= Agy pey(a(DC)). Once again,
the convergence of posterior expectations ensures that there exists an equi-
librium in which a(DC) converges to zero and a(DC') to F(0)/F(ay).

The prescribed second-period behavior thus constitutes an equilibrium.
Uniqueness is established in the appendix.

(2.2) The existence of an equilibrium in the two-period game now follows
from noting that second-period behavior is both unique and a continuous
function of the first-period value of «ay, allowing us to apply a fixed-point
argument analogous to that used to establish existence in the one-shot game.

3 Implications

We now establish some characteristics of equilibrium behavior. When con-
sidering the comparative statics of A = xa/(x1+x2), we keep the total x1+x2
constant throughout. We rely heavily on the presumptions that utilities are
homogeneous of degree one in monetary payoffs and that the perturbations
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Oc¢ and ©p are small.

Let Aj(a, A) and Ay(a, ) be the equilibrium functions Aj () and Ay (a)
(cf. Proposition 2) in the maximally cooperative equilibrium given \. Let
an outcome of the two-period game be written as (for example) (CD, DD),
in which case player 1 cooperated and 2 defected in the first period, with
both players defecting in the second period.

Proposition 3 Let Assumptions 1-4 hold and let X € (0,1) unless other-
wise stated. Then, for sufficiently small ©¢ and Op:

(3.1) In any monotonic equilibrium with A\ € (0,1), the expected inci-
dence with which a player cooperates, where the expectation is taken over
the values of a, ©¢ and Op and over the opponent’s behavior, is higher in
the first period than in the second.

(3.2) Equilibrium play in the first period of a game with A = 0 is identical
to equilibrium play in the second period of a game with A = 1.

(8.3) Mazimally cooperative monotonic equilibria satisfy

N>\ = Al(a, )\,> < A1<Oz,)\)

for X, X € [0,1). Hence, the larger is X\, the more likely is a player to
cooperate in the first period.

(3.4) As the value of A € (0,1) increases, the expected incidence of
outcomes (CD,CD), (DC,DC), and (DD,DD) in a mazimally coopera-
tie monotonic equilibrium decline. The expected incidences of (CC,DD),
(CC,CD) and (CC,DC) are approzimately zero for small values of \ (when
©c = Op = 0, values of A for which oy < 1), with (CC, DD) thereafter
increasing in A and (CC,CD) and CC,DC') thereafter positive but with an
ambiguous comparative static in \. Expected monetary payoffs from a maxi-
mally cooperative monotonic equilibrium first increase in A\, reach an interior
mazximum, and then decrease.

The first result indicates that we expect the incidence of cooperation to
decrease as we reach the end of the finite-horizon of play. The incentive
to cooperate in the first period varies as does A, but is greater than the
incentive to cooperate in the second period for every value A € (0,1).1
Hence, the specter of the future enhances current cooperation. Notice that
this result is not simply part of the definition of a monotonic equilibrium.
Monotonicity indicates that the incidence of second-period cooperation is
increasing in first period cooperation, but says nothing about the relative
magnitudes of first-period and second-period cooperation.

10%When A = 0 or A = 1, one period is irrelevant, in which play is arbitrary.
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The second result indicates that if all monetary payoffs are concentrated
in a single period, then we can expect identical play (and hence expected
payoffs) whether that period is the first or second. When A\ = 0, the ir-
relevance of second-period play ensures that play in the first-period must
match that of the unique equilibrium of the one-stage game. When A = 1,
first-period actions are irrelevant and the equilibrium of the one-stage game
appears in the second period.

Statement (3.3) indicates that first-period cooperation increases as the
second period becomes more important. As the stakes are shifted to the
second period, players are increasingly willing to invest their first-period
behavior in encouraging second-period cooperation.

The final statement provides predictions for those two-period outcomes
for which results are unambiguous and then derives the effects of these be-
havioral shifts on payoffs.!! As A increases, first-period cooperation in-
creases, while payoffs are shifted to the second period, where some de-
fection occurs. The result is that overall payoffs are first increasing and
then decreasing in A, finding their maximum when second-period payoffs
are sufficiently important, but not arbitrarily larger than first-period pay-
offs. Though we cannot make concrete statements without additional in-
formation about the specification of preferences and the distribution F', our
expectation is that expected payoffs will be maximized when A > 1, in
which case the relationship begins with relatively small stakes and works up
to larger stakes. This will be the case, for example, if F' is uniform.

Proof. We first describe monotonic equilibria in the limiting case in which
O¢c =0p =0. To do so, let

H: [Qva}Q - {(21721722725”21721722725 € {C, D}}

be a function with the property that H(«, ') identifies the equilibrium
path of play given that the players’ actual types are a and o'. Hence,
H(a,d') = {DC, DD} indicates that players a and o’ defect and cooperate
(respectively) in the first period and that both defect in the second period.
Let p;(H(a,a’)) be the equilibrium period-i monetary payoff of agent «
when paired with agent o’. Then expected equilibrium payoffs are given by

[, [ a0+ pa(H (o, @) dF ()P (o).

1We establish one more unambiguous finding, that the expected incidence of (CC, CC)
increases if a1 (A\) < 1 and decreases if a1(A) > 1, but the outcome (CC, CC) appears too
seldom in our data to evaluate this result.
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Figure 6 illustrates the function H(«, a') for an equilibrium in which oy < 1
and an equilibrium in which a; > 1.

(3.1) Figure 6 shows that when O¢ = ©p = 0, then for each possible
outcome path in a monontonic equilibrium, there is weakly more cooperation
in the first period than the second, with a strict inequality for some values
of (a, ). Taking an expectation over (o, ), we thus get a higher expected
incidence of cooperation in the first period. The upper hemicontinuity of the
equilibrium correspondence at O = ©p = 0 extends this to small values of
Oc =0Op.

(3.2) The uniqueness of the one-shot equilibrium and the irrelevance of
second-period behavior when A = 0 implies that Al(a,()) is unique and
equals A*(«). Next, letting A = 1, we can construct an equilibrium of the
two-period game in which players choose identical (possibly mixed) actions
in the first stage, which are then uninformative, with the unique one-shot
equilibrium appearing in the second stage after every first-period outcome.
The fact that all players prefer increased cooperation on the part of their
opponents ensures that there are no other equilibria. In particular, if first-
period plays of C' and D gave rise to different probabilities of second-period
cooperation, all agents would choose the first-period action giving the high-
est probability of second-period opponent cooperation, rendering first-period
actions uninformative.

(3.3) To establish the third result, fix A and let ©¢ and ©p be sufficiently
small that the second-period equilibrium is unique. Consider player a1 (0, \),
defined to be the player who is indifferent between C and D in the first
period of a maximally cooperative equilibrium, given A and given § = 0.
Notice that the value ay (0, A) uniquely determines the function Aj(a, \), in
the sense that knowing the value of a1 (0, \) gives us enough information to
calculate the remainder of the function. Lemma 2 implies that

m(Cya1(0,N),a1(0,A)) < 7w(D,a1(0,X),a1(0,N))
V(C,Oq((),)\)) > V(D,Oq((),A)).

Using the assumption that 7 is linearly homogeneous in monetary payoffs,
an increase from A to X' then causes this player to strictly prefer C in the
first period. Hence, there exists a set [a1(0,\),&] C [aq(0,A), @] with the
property that given the second-period strategies prescribed by Proposition
2 for any given value of oy € [a1(A,0),d] and given X, player a; at least
weakly prefers C' in the first period. Now there are two possibilities. First,
if & < @, then & must be indifferent between C' and D in the first period

(otherwise & would not be an upper bound), and then we would have an
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Figure 6: Function H(a,d') corresponding to a monotonic equilibrium,

where oy < 1 (top) and oy > 1 (bottom).
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equilibrium given X' (obtained by letting a1 (N,0) = & > a;(\,0)) featur-
ing more cooperation than the maximally cooperative equilibrium given A,
establishing the result. Second, if & = @, then there is an equilibrium with
a1(N,0) =@ > a1(),0), again establishing the result.

(3.4) We first establish the final result for the case of ©¢ = ©p =
0. Using the top panel in Figure 6 as a guide, consider an increase in A
and hence «; (from Proposition 3.3), beginning with the minimum value of
a1(0) = a* < 1 (the latter because F'(1) < 1). As oy increases, we have the
following possible transitions in behavior, each applicable to some values of
(ar, ):

(CD,CD) — (CC,CC)
(CD,DD) — (CC,CC)
(DC,DC) — (CC,C0)
(DC,DD) — (CC,CC) (17)
(DD,DD) — (CC,CC)
(DD,DD) — (CD,DD)
(DD,DD) — (DC,DD).

Hence, the incidence of (CD,CD), (DC,DC) and (DD, DD) falls, while
(CC,CC) increases.

Next, suppose that aj reaches 1, so that the bottom panel of Figure
6 is relevant. It follows from (15) that as = a3 when a1 = 1, with as
decreasing as a1 increases above 1. We then have the following list of possible
transitions:

(CD,CD) — (CC,CD) (DD,DD) — (CD,DD)
(CD,DD) — (CC,CD) (DD,DD) — (DC,DD)
(CD,DD) — (CC,DD) (cc,cc) — (CC,DD)
(DC,DC) — (CC,DC) (CC,cC) — (CC,CD)  (18)
(DC,DD) — (CC,DC) (cc,cc) — (CC,DC)
(DC,DD) — (CC,DD) (CC,0D) — (CC,DD)
(DD,DD) — (CC,DD) (CC,DC) — (CC,DD).

Again, the conclusion is that the incidence of (CD,CD), (DC,DC) and
(DD, DD) falls. Hence, each of these three outcomes declines as A increases.
However, we now also find that (CC,CC) decreases, leading to the obser-
vation that (CC,CC) increases for A such that a;(0,\) < 1 and decreases
for A such that a;(0,A) > 1. Next, (18) shows that (CC, DD) increases
in A for @1(0,A) > 1, while (CC, DD) does not appear when a;(0,\) < 1.
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Finally, note that (CC, DC) and (CC,CD) appear only for values of A\ with
a1(0,\) > 1, and, from (18), that there are transitions both to and from
these outcomes as A increases when «a1(0,A) > 1, leading to an ambiguous
comparative static.

Now return to the transitions in (17). In each case, the monetary
payoff realized by the pair (a,’) increases in each period, and hence so
must the total monetary payoff increase. Hence, the equilibrium expected
monetary payoff, with the expectation taken over the values of («,a’), in-
creases in A, and will be increasing in A until at least a;(0,\) = 1. At
this point, the transitions in (18) become relevant. Every transition again
enhances the incidence of first-period cooperation, so that further increases
in A and hence a1(0,A\) will increase first-period cooperation. However, a
conflicting force arises, with some transitions now decreasing second-period
cooperation (e.g., (CC,CC) — (CC,DD), (CC,CC) — (CC,CD) and
(CC,CCO) — (CC,DC)).*2 Monetary payoffs are thus shifted away from
the enhanced first-period cooperation to a second period in which the inci-
dence of defection is increasing. Eventually, this latter force will dominate,
causing the expected payoff to fall. In particular, the expected payoff corre-
sponding to A = 1 equals that corresponding to A = 0, with higher payoffs
for intermediate values.

The argument extends to cases in which ©¢ and ©p are nonzero but
small, upon noting that behavior in such equilibria approaches that shown
in Figure 6 as ©¢ and ©p approach zero. I

4 Experimental Procedures

The experiment was conducted at the University of Wisconsin, using under-
graduate subjects, in May and October of 2002, in five sessions involving
22 subjects each. Each session involved 20 “rounds,” in each of which all
subjects in that session were matched with opponents from their session for
a twice-played or “two-period” prisoners’ dilemma. Hence, in each of the
20 rounds the 110 subjects were matched in 55 pairs to play the two-period
game, for a total of 1100 two-period games.

Subjects interacted via an anonymous computer interface. Subjects were
randomly matched with a partner for each round subject to the constraint
that no subject played the same opponent more than once. These details

12This occurs because a first-period observation of (C,C) is now followed by second-
period strategies of cooperating if and only if a < as < ay (cf. (13)).
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A Period-1 Period-2 Frequency

Pull value Push value Pull value Push value

0.0 10 30 0 0 101
0.1 9 27 1 3 110
0.2 8 24 2 6 102
0.3 7 21 3 9 85
0.4 6 18 4 12 90
0.5 ) 15 ) 15 91
0.6 4 12 6 18 115
0.7 3 9 7 21 112
0.8 2 6 8 24 95
0.9 1 3 9 27 94
1.0 0 0 10 30 105

1100

Figure 7: Values of A\, with the corresponding period-1 pull value x1 (cf.
Figure 1), period-1 push value 3x1, period-2 pull value x9 = 10 — x1, and
period-2 push value 3x2, and the number of two-period games (out of 1100)
corresponding to each value.

were known to the subjects.!?

The prisoners’ dilemma was presented to the subjects as the push-pull
game. In each stage game, each subject had the opportunity to either pull
x points toward the subject or push 3x points toward the opponent. Each
subject earned the total of whatever sum they pulled and their opponent
pushed, leading to the payoffs of Figure 1. We regard this as a particularly
simple way of presenting the prisoners’ dilemma.

Let the period-1 and period-2 pull values be denoted by x; and z3. In
each two-period game, x1 + 2 = 10. The value of A = xl“fm
selected every time a pair of subjects was matched to play a two-period
game, independently across pairs of subjects and games, with A drawn from
the set {0,0.1,0.2,...,1}. Table 7 shows the distribution of realized values
of A in the experiment.

Subjects were paid their cumulative earnings, in cash, at the end of the
experiment. The pull and push values x; and 3z; identified points that the
subject earned in each game. In two of the five sessions, each point was

was randomly

13Instructions were provided to the subjects via computer. The instructions are available
at http://www.ssc.wisc.edu/ larrysam/extras.htm.
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worth two cents and subjects were also paid a five-dollar show-up fee, with
earnings ranging from $8.00 to $12.48 for an experiment that lasted less than
an hour. In three of the five sessions, each point was worth six cents (with
no show-up fee), with earnings ranging from $7.02 to $24.00. We found no
significant differences in behavior between the two payment schemes.*

5 Results

This section provides a summary of the experimental outcomes and then
examines each of the four parts of Proposition 3. Our working hypothesis,
which we refer to as the equilibrium hypothesis, is that the play of the exper-
imental subjects is described by an equilibrium of the game. In particular,
we assume that each player is characterized by a realized value of « that
remains fixed throughout the experimental session, where these values are
independently drawn from a distribution F'. We assume that in each period
of each two-period game, each player (independently) draws realizations ¢
and 0p of the random variables ¢ and ©p. Given these realizations, we
assume that the subjects play their part of the equilibrium described in
Propositions 1-3.

5.1 Summary of Outcomes

Each subject had 40 opportunities to either push (cooperate) or pull (de-
fect), one in each of the two periods of twenty games. Figure 8 reports the
distribution across subjects of the overall incidence of cooperation.

Figure 8 shows that only two subjects cooperated more than 30 out of
40 times (cooperating 31 and 40 times). Since a player for whom a < 0
is predicted to cooperate at every opportunity (in the limit as the noise
level gets small), our results are thus consistent with the players having
been drawn from a distribution F' for which F'(0) is small. This in turn
suggests that equation (10) of Assumption 4 is reasonable. Whereas there
is no subject who defects at every opportunity, there are more subjects who
come closer to persistent defection than to persistent cooperation. Hence,
equation (11) of Assumption 4 may also be reasonable.

Figure 9 identifies the outcomes of the 1100 two-period games. Given
that each player has two choices in each of two periods, there are sixteen
possible paths of play. However, we are not interested in distinguishing

4Because no subject participated in more than one session, the individual fixed effects
in our regressions below provide a control for session differences.
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Figure 8: Each subject faced 40 cooperate/defect decisions. The histogram
identifies the number of subjects (vertical axis) exhibiting each of these pos-
sible frequencies of cooperation (0 to 40, on the horizontal axis).

outcomes that are identical except for which player is labeled “player 17
and which “player 2,” allowing us to collapse these outcomes to ten cases.
Hence, the last line of Figure 9 corresponds to a case in which one player
defected in period 1 (whom we have designated player 1) and one cooperated,
while both cooperated in period 2.'5 Figure 9 presents data for all games
as well as for those games in which A € (0, 1), so that payoffs are relevant
in both periods. These are the games relevant to many of the comparative
static predictions in Proposition 3.16

Figure 9 indicates that an agent’s opponent is more likely to cooperate in
the second period when the agent cooperates in the first period. Restricting

'5To construct Figure 9, we chose one player in each pair to be player 1 and then list
player 1’s action first in both periods. If only one player defected in period one, that
player was chosen to be player 1. If the players chose the same action in period 1 and
only one defected in period 2, that player was chosen to be player 1. The outcomes that
could be coded as (DC, DC) and (CD,CD) are thus effectively identical, differing only
in the identify of the player chosen to be named player 1, and both are represented as
(DC,DC). The outcomes (DC,CD) and (DC,DC) are different, since the two players
simply repeated the first-period actions in the second period of the second case, but switch
actions in the second period of the first case.

"6Lines 5, 6, 9, and 10 of Figure 9 correspond to outcomes not predicted by a noiseless
version of the model.
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Period one Period two Frequency Frequency, A € (0,1)

cc DD 191 127
cc DC 90 79
cc cc 30 26
DD DD 242 234
DD DC 121 90
DD cc 60 19
DC DD 263 239
DC DC 42 36
DC CD 43 33
DC cc 18 11

1100 894

Figure 9: Frequency of each possible outcome for the two-period game. “DC
CD,” for example, indicates that one player defected and one cooperated in
the first period, and then the two players switched actions for the second
period.

attention to cases in which A € (0,1), we have:

Cooperative opponent play in period 2,

given agent cooperation in period 1:  22% (175 of 783)

Cooperative opponent play in period 2,
given agent defection in period 1 : 17% (175 of 1005).

These data are consistent with the presumption that the equilibrium is
monotonic.
5.2 Proposition 3.1: Cooperation by Period

Figure 9 allows us to assess Proposition 3.1, asserting that cooperation will
be more prevalent in the first period when A € (0,1). We have:

Cooperative plays in period 1:  44% (783 of 1788)
Cooperative plays in period 2 : 20% (350 of 1788).
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Figure 10: Incidence of first-period (dashed line) cooperation and second-
period (solid line) cooperation, each as a function of the proportion of the
total stakes in that period. This groups together first-period choices and
second-period choices made with the same stakes in the choice period. Propo-
sition 3.1 predicts there will be more first-period cooperation when A € (0,1).

Figure 10 illustrates this result, showing the incidence of first-period cooper-
ation and the incidence of second-period cooperation, each as a function of
the proportion of the total stakes in that period. Thus at .4, we compare the
first-period play for A = .6 (forty percent of the stakes in the first period)
with second-period play for A = .4 (forty percent of the stakes in the second
period).

Figure 10 shows the predicted result that cooperation is more prevalent
in the first than in the second period, especially when the first-period stakes
are small.1” It is intuitive that the difference between first and second-period
cooperation would be greatest when first-period stakes are small, since it is

'"To obtain a more formal assessment of the significance of this difference, let 7;; be the
number of times subject i cooperated in period j. Under the equilibrium hypothesis, we
can view each 7;; as the result of 20 independent Bernoulli trials whose mean is unknown
and idiosyncratic to player ¢ (depending upon ¢’s draw of the parameter o). However,
72 is not independent of 7;1. Let 1; = n;1 — ns2 be the difference in the number of times
subject 7 cooperated in the first period and the second period. Let 77 and s, be the mean
and standard deviation of the sample values 7;, ¢ = 1,...,110. Given our sample size of
110, we can assume that the distribution of 77/(s,/+/110) is approximately Normal with
zero mean and unitary variance (given the hypothesis that there is no difference in the
incidence of first-period and second-period cooperation). We find:
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Period one, Period two,

A=0 A=1
Number of cooperators: 27 22
Percentage: 13.4% 10.5%
Number of defectors: 175 188
Percentage: 86.6% 89.5%

Figure 11: Comparison of play in first period of games with irrelevant
second-period payoffs (A = 0) and second period of games with irrelevant
first-period payoffs (A = 1). Proposition 3.2 predicts the same behavior in
these two games.

here that the cost of investing in second-period cooperation is especially low.

5.3 Proposition 3.2: Effectively Single-Shot Games

Proposition 3.2 indicates that we should expect play in the first period of
games with A = 0 to be identical to play in the second period of games
with A = 1. In each case, the two-period game includes one stage game
played for zero payoffs, with all of the payoffs concentrated in the other
game. They differ in whether the zero-payoff period comes first (A = 1) or
second (A = 0).

Figure 11 presents play in the first period of games with A = 0 and in the
second period of games with A = 1. Play in these two games is similar. To
obtain a more precise estimate of this similarity, let 7,1 be the percentage of
the time that player ¢ cooperated when playing in period 1 of a game with
A = 0 and let n;2 be the percentage of the time that player ¢ cooperated
when playing in period 2 of a game with A = 1. Under our hypotheses and
experimental design, these percentages represent the outcomes of draws from
independent Bernoulli trials (with different numbers of draws for different
subjects, since the value of \ is drawn randomly in each game). Our model
predicts that the two random variables pertaining to any particular subject
will have the same mean, though these means can differ across subjects. Let

n Sn ﬁ/(sn/\/ 110) p-value
4.33 4.18 10.9 0.000 ’

where the p-value gives the (approximate) probability of generating a test statistic whose
value exceeds 10.9 under the null hypothesis of no difference in play across periods.

32



M = M1 — Mi2, for those 80 subjects who faced games with both A = 0 and
A = 1. Letting 7 and s;, be the mean and standard deviation of the observed
values of 7;, the distribution of 7j/(s,/+/80) is approximately Normal with
zero mean and unitary variance. Then we calculate:

7 s 7/ 50/ V30) pvalue
2.3 28.3 0.71 0.48

where the p-value is the probability of obtaining a coefficient on the variable
“period two” whose absolute value exceeds 0.71, given the null hypothesis
of no difference between periods.'®

The second period thus has an effect on cooperation that is statistically
small. Section 5.5 shows that the induced difference in payoffs is also small.
Though the behavior does not match exactly, the subjects in our experiments
appear to recognize circumstances under which only one period of the game
is relevant and to treat that period similarly, whether it occurs as the first
or second stage of the two-period prisoners’ dilemma.

5.4 Proposition 3.3: First-Period Cooperation

Proposition 3.3 predicts that the incidence of first-period cooperation should
be increasing in A when A € [0, 1). The higher is A\, the more important are
second-period payoffs, and hence the more valuable it is to invest in second-
period cooperation by cooperating in the first period. Figure 12 shows
first-period cooperation as a function of A. The incidence of cooperation
increases from 13% when A = 0 to 78% when A = .9.

To confirm this link between the concentration of payoffs in the second
period and first-period cooperation, we examine a logit regression in which
the dependent variable equals one if a player cooperated in period 1 and 0
otherwise. There are 1990 observations, one for each choice by one of the
110 agents in the first period of each game played by the agent in which
A € [0,1). Independent variables include A, a constant, and nineteen dum-

'8This calculation ignores data from the 16 subjects who participated only in games
with A = 1 (who cooperated 11.4% of the time in the second period such games) and from
the 13 subjects who participated only in games with A = 0 (who cooperated 16.2% of the
time in the first period of such games). (One subject participated in no games with A =0
or A = 1.) These data can be included, at the cost of making an assumption concerning
homogeneneous behavior across players that we prefer to avoid, yielding an estimate of
the difference between the first-period A = 0 case and the second-period A = 1 case that
is again not significant.
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Figure 12: First-period cooperation as a function of the importance of
second-period payoffs, ranging from games in which second-period payoffs
are irrelevant (A = 0) to games in which only second-period payoffs mat-
ter (\ = 1). Proposition 3.3 predicts that the incidence of cooperation will
increase in X for X € [0,1).

mies identifying the round (from 1 to 20) of the observation.® Our model,
in conjunction with the equilibrium hypothesis, indicates that first-period
behavior in each game can be viewed as a draw from an independent random
variable with a mean that is potentially idiosyncratic to the subject in ques-
tion. To incorporate the correlations introduced by the dependence between
multiple observations on the part of a single player, we include fixed effects
for the players in the regression.?’ Our interest centers on the estimated

19This allows the possibility that increased subject familiarity with the game may cause
behavior to differ across rounds, though our equilibruim hypothesis is that such consid-
erations are of secondary importance. Subjects tend to be somewhat less cooperative in
later rounds, but respond to A consistently throughout the experiment.

20Under our equilibrium hypothesis, the fixed effects appropriately incorporate the cor-
relations between the multiple observations of play on the part of a single player. If the
equilibrium hypothesis fails, a player’s actions in round ¢ of the experiment may depend
upon her experience in rounds 1,...,t — 1. It would still be appropriate to omit this his-
tory from the regression, and the fixed effects would adequately capture the dependence
between different observations from a single player, as long as the history observed by a
player is not correlated with the fixed-effects player-specific error term. Such a correlation
could appear, as player ¢’s play could affect the subsequent behavior of the current oppo-
nent j, who might meet and effect the subsequent behavior of a player k who subsequently
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coefficient for A. Suppressing the other estimates, we find:

Variable Estimated coefficient Standard error p-value

A 6.1 31 0.000

The p-value is the probability of generating a coefficient estimate whose
value exceeds 6.1 given that the null hypothesis of a zero coefficient. As
expected, A is significantly positive: higher period-two payoffs yield higher
first-period cooperation.

5.5 Proposition 3.4: Expected Payoffs

Proposition 3.4 begins with predictions concerning equilibrium outcomes.
First, the outcomes (CC, DD) and (CC, DC) are predicted to be rare (i.e.,
to not occur when the random payoff perturbations 6. and 6, are zero) for
relatively small values of A, with (CC, DD) increasing for larger values of A
and with (CC, DC) positive but with an ambiguous comparative static for
these larger values.?! Figure 13 plots the incidence of these outcomes as a
function of A. The predicted trends are clearly visible. The common value
of A above which these outcomes appear more frequently, corresponding to
a1 = 1, is predicted to be below the value of A that maximizes the sum
of the two-players’ expected payoffs, which is consistent with the findings
reported below.

The incidences of (DC,DC') and (DD, DD) are predicted to decrease
in A for A € (0,1). Figure 14 shows the relevant results. Small sample
sizes obscure a hint of a downward trend in the incidence of (DC, DC) as
A rises (note the difference in vertical scales in Figures 13 and 14). Once
we eliminate the value corresponding to the incidence of (DD, DD) when
A = 0, for which the model makes no prediction, it is clear that (DD, DD)
appears less often for higher values of A, though the realizations are not
perfectly monotonic. Each of the three “naked eye” relationships for which
sample sizes are adequate can be confirmed by regressions, but we omit the
details.

Proposition 3.4 next suggests that total payoffs from the two-period game
should be first increasing in A and then decreasing in A, attaining an inte-
rior maximum. The cases of A = 0 and A = 1 should give equal payoffs,

encounters ¢. (Recall that no two players ever meet more than once.)

2Note that the outcomes (CC,CD) and (CC, DC) that appear in Proposition 3.4 are
observationally equivalent (cf. Figure 9), as are the outcomes (CD,CD) and (DC,DC),
discussed below.
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Figure 13: Frequency of outcomes (CC,DD), and (CC,DC) as a function
of . Proposition 3.4 predicts the incidence of (CC,DD) and (CC, DC) will
be approximately zero over a common range of relatively small values of A,
above which (CC,DD) is increasing and (CC,DC) is positive but with an

ambiguous comparative static.
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Figure 14: Frequency of outcomes (DD, DD) and (DC,DC) as a function
of X. Proposition 3.4 makes no prediction for A =0, and predicts that both
will fall as X\ increases for those valu?fés of A€ (0,1).



Value of A Average payoff

0.0 25.4
0.1 27.5
0.2 274
0.3 27.1
0.4 29.2
0.5 31.2
0.6 32.7
0.7 31.6
0.8 30.6
0.9 26.0
1.0 24.2

Figure 15: Average value of total payoffs for each value of A. “Total payoff”
is the sum of the period-one and period-two payoffs earned by both players
in a two-period game, measured in points. The number of observations for
each value of X\ is given in Figure 7.

reflecting the equivalent behavior for A = 0 and A = 1. Figure 15 shows
the average earnings, summed over players and periods, for each value of \.
The minimum possible payoff is 20 (experimental points) and the maximum
is 60, with every even number between these two values being possible and
with every such value occurring in the data. The maximum observed payoff
occurs at A = 0.6, with a payoff 35% higher than the minimum payoff. The
payoffs attached to A = 0 and A = 1 are quite similar.

To assess the relationship between A and total payoffs , we turn to a
regression in which the dependent variable is the total (over players and
periods) of the number of experimental points earned in the two-period
prisoner’ dilemma. Independent variables include X\, A?, and A3 as well
as a constant, individual fixed effects and dummy variables identifying the
round of the experiment in which the game is played.?? There were 1100
observations, one for each of the 11 two-period games played in each of 20

220ur model tells us that we require at least a cubic equation to examine this relation-
ship. The model predicts that the relationship should be nonmonotonic, that the values
A =0 and A =1 give equal total payoffs, and that total payoffs should achieve an interior
maximum that we suspect will occur at a value A > % A quadratic equation would suffice
to allow nonmonotonicity, but can equate the total payoffs at A = 0 and A = 1 only if it
forces the maximum to occur at A = % Investigating the value of the A that maximizes
total payoffs thus requires a cubic equation.
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rounds in each of 5 experimental sessions. We are interested in the estimated
coefficients on A\, A\? and A3, for which we find:

Variable Estimated coefficient Standard error p-value
A -4.5 6.7 0.50
A2 51 16 0.001
A3 -49 10 0.000

The coefficient on A is negative, relatively small, and insignificant. The
coefficients on A? and A? are much larger in absolute value, of opposite
signs, and both significant. They combine for an estimated relationship that
is initially increasing, reaches a maximum at A = .65, and then decreases.
Expected payoffs are thus nonmonotonic in A. If one’s goal is to maximize
the expected total payoff generated by a two-period prisoners’ dilemma, then
one should neither pack all of the payoffs into the first period nor into the
second period. Instead, doing so would minimize the expected payoff, with
very little depending upon which period contained the relevant payoffs and
which was irrelevant. Payoffs are maximized by making the stakes in period
two between one-and-one-half and two times as large as those in period one.

6 Discussion

Summary. The point of departure for our research is the experimental ev-
idence that individuals have tastes for cooperation in the prisoners’ dilemma
that, at times, override economic incentives to the contrary. We view our
research as a first step toward understanding how formal or informal insti-
tutions might be designed to utilize these private tastes in order to facilitate
more efficient economic and social interactions.

The keys to our model of behavior in the prisoners’ dilemma are the
hypotheses that people prefer that their opponents cooperate, sometimes
prefer to cooperate themselves, may differ in the strength of this preference,
and value cooperation relatively more when their opponents are likely to
cooperate. The first three hypotheses appear to be essential elements of any
model of prisoners’ dilemma behavior. Our analysis becomes nontrivial when
adding the final hypothesis and identifying implications for how behavior
should be affected by changing the relative magnitudes of payoffs across
the periods of a twice-played prisoners’ dilemma. Here, we obtain some
predictions that are not immediately obvious, including the increase in first-
period cooperation as second period payoffs become relatively important and
especially the interior maximum of expected total payoffs as a function of
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the relative importance of second-period payoffs. These predictions appear
clearly in the data, leading us to believe that our model captures some robust
features of behavior.

Extensions. There are many more avenues to explore when asking how
to construct social and economic interactions to take advantage of natural
inclinations to cooperate, whether arising out of feelings of altruism, fairness
or trust. In particular, we think it important to extend our analysis beyond
the two-period prisoners’ dilemma game considered here.?3 For example, we
would be interested in whether starting small has more of an effect in longer
games. The length of the game as well as the distribution of stakes could
become a feature of the institutional design.

We are also interested in applying similar ideas to the “trust game.”
Player 1 in the trust game is endowed with a sum of money that she can
divide between herself and player 2. Any money given to player 2 is tripled,
with player 2 then dividing the resulting sum between player 1 and himself.
The subgame perfect equilibrium calls for player 1 to donate none of the
money to player 2, while the efficient outcome calls for player 1 to donate all
of the money to player 2. Experimental results show that player 1 typically
donates some (but not all) of the money to player 2, who on average offers
a return that does not fully compensate player 1 for the donation.

Again, we suspect that trust can be nurtured in repeated play of this
game by appropriately choosing the size of the stakes. Examining this and
similar games will contribute to a better understanding of the interaction
between interperiod payoff variation and cooperation or trust. Combined,
these studies will help develop an understanding of how simple institutions
can be designed to foster and exploit natural tastes for cooperation.

7 Appendix

Proof of Proposition 2.1: Uniqueness. To establish uniqueness, we
must consider continuation play when one agent has cooperated and one
has defected in period one. Assumption 1 ensures that there exist o’ and
o, with

0<d <a;<a’<1,

with the player o who cooperated in period one (in the probability-one event
that « € [a, a1]) cooperating in the second period if and only if o < o/; and

2This paper focuses on two-period games because comparative static results are much
more difficult to extract from longer games.
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the first-period defector a (in the probability-one event that a € [a1,@])
cooperating in period two if and only if & < o”. This is simply the statement
that, conditional on first-period behavior, players with relatively low values
of a will cooperate and those with high values of o will defect (coupled with
the observation that agents with dominant second-period strategies will play
them).

Now consider the possibilities for the value of o’. The penultimate para-
graph of the proof of Proposition 2.1 in the text showed, with the help of
condition (10), that o' = 0 implies that o” = «;3. This combination of o/
and a” reproduces the equilibrium of Proposition 2. It thus suffices to show
that o/ = 0 is the only possibility for o’.

Suppose that o’ = a;. Then the second-period probability of coopera-
tion on the part of the first-period defector, given on the left in the following
inequality, must satisfy

F(a") = F(a1)

>
1- Flay) ~ P

in order to ensure the optimality of cooperation for all a € [a,ai]. It
is a sufficient condition for this inequality to fail for all possible values of
o € [ag, 1] that

F(1)—a* .

1—a* ’
or F(1) < 2a* — (a*)?, as stipulated in (11). Hence, (11) ensures that we
cannot have o = a;.
Could we have o/ € (0,1)? Such an equilibrium requires

F(a)/F(a1) = o” (19)

in order to sustain cooperation on [y, @], and requires (using (19) for the
first equality)

F(a")— F(ay)  FESEH-Fla)
1-Fla1)  1-F(a) (20)

in order to sustain cooperation on [a,@’]. We have established that (20)
cannot hold for « = 0 or o = aq:

F(F}?gz?—)> — F() F@&;) — F(a1)
<0 < o (21)
1—F(aq) 1— F(ay)
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If F' is linear, then the middle term in (20) is linear in /. The inequalities
in (21) then preclude the satisfaction of (20) for any o/ € (0,a’). Condition
(20) will thus fail, and hence the equilibrium characterized in Proposition 2
will be unique, as long as F' is not too nonlinear, i.e., as long as |F"| is not
too large.

This uniqueness continues to hold for small ©®¢ and ©p. In particular,
the heart of the argument given is that zero is the only possible value for o’
because the posterior beliefs following an observation of cooperation and an
observation of defection are too far apart. As long as ©¢ and ©p are small
and hence posterior expectations sufficiently close to those of (14), they will
remain too far apart to admit any equilibrium other than the counterpart
of the noiseless equilibrium. I
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