Handout for
 Piecemeal-Preferences Seminars At Two Great State Universities

Matthew Rabin
University of California-Berkeley

September, 2003

Highly simplified setting: Life arrives at us as a series of decision opportunities,

$$
\left\{f_{11}, \ldots, f_{G 1} ; f_{12}, \ldots, f_{G 2} ; \ldots ; f_{1 M}, \ldots, f_{G M}\right\}
$$

where each $f_{i j}$ is a probability distribution over possible choice sets the person will face, $L_{i j} \subseteq$ $\triangle\left(R^{K}\right)$, of probability distributions over K-dimensional vectors of consumption, $\left(c_{1 i j}, \ldots, c_{K i j}\right) \in$ R^{K}. Primary and simplest example: $K=1 \Longrightarrow$ so each element of $L_{i j}$ is a lottery over \$.

Realizations of $\left\{f_{i j}\right\}$ and $\left\{L_{i j}\right\}$ all statistically independent of everything else, and $\left\{f_{i j}\right\}_{i=1, \ldots, G}$ and $\left\{L_{i j}\right\}_{i=1, \ldots, G}$ are i.i.d. for all j. [We can allow some non-independence by interpreting some of the dimensions as state-contingent.]

Realizations of $\left\{f_{i j}\right\}$, choices $l_{i j} \in L_{i j}$, and realizations of uncertainty in $l_{i j}$ together determine grand outcome $o \in \triangle\left(R^{K}\right)$ putting weight on all realizations $\left(\sum_{i j} c_{1 i j}, \sum_{i j} c_{2 i j}, \ldots, \sum_{i j} c_{K i j}\right) \in$ R^{K}.

I'll consider preferences $u(o)$ over grand outcomes $o \in \triangle\left(R^{K}\right)$ — very much allowing for non-EU preferences and (notation notwithstanding) non-utility preferences.

Each $L_{i j}$ in the support of each $f_{i j}$ contains a default choice, $l_{i j}^{*} \in L_{i j}$, that is implemented if not over-ridden.

Piecemeal preferences: A mapping $\rho: L_{i j} \rightarrow \triangle\left(L_{i j}\right)$ such that for all $L_{i j}=L_{i^{\prime} j^{\prime}}, \rho\left(L_{i j}\right)=$ $\rho\left(L_{i^{\prime} j^{\prime}}\right)$.

Definition: Piecemeal preferences ρ are constrained optimal (COPP) if there do not exist piecemeal preferences ρ^{\prime} such that (abusing notation) $u\left(\rho^{\prime}\right)>u(\rho)$.

Definition: Piecemeal preferences ρ are myopic (MYPP) if for all $L_{i j}$, person chooses $l_{i j}=\operatorname{argmax}$ $l_{i j} \in L_{i j} u\left(l_{i j}\right)$.

For any two distributions $f, g \in \triangle\left(R^{K}\right)$, let $\mu_{f}, \mu_{g} \in R^{K}$ be their means, and let $f^{n}, g^{n} \in \triangle\left(R^{K}\right)$ be n independent plays of the gambles f and g.

Definition: $u: \triangle\left(R^{K}\right) \rightarrow R$ is limit average complete, quasi-convex, and monotonic (LAC) if for all closed, convex, finte $Q \subseteq R^{K}$ there exists complete, monotonic, quasi-convex (or whatever) $v: Q \rightarrow R$ such that, for all $f, g \in \triangle\left(R^{K}\right)$ with $\mu_{f}, \mu_{g} \in Q$, there exists \bar{n} such that for all $n>\bar{n}$, $u\left(f^{n}\right)>u\left(g^{n}\right)$ iff $v\left(\mu_{f}\right)>v\left(\mu_{g}\right)$.

For all $L \subseteq \triangle\left(R^{K}\right)$, for all $\widehat{\alpha} \in \triangle^{K}$, for all $\epsilon>0$, let $Z(L, \widehat{\alpha}, \epsilon) \subseteq \triangle(L)$ be the set of (possibly stochastic) choices from L that $\operatorname{Max} E\left\{\sum_{k=1}^{K} \alpha_{k} c_{k}\right\}$ for some $\alpha \in \triangle^{K}$. Then say that ρ is $\alpha^{*}, \epsilon-$ $L E V$ (ρ is Linear Expected Value) for $\alpha^{*} \in \triangle\left(R^{K}\right), \epsilon>0$ if for all $L_{i j}$ with positive probability in environment $\rho(L i j) \in Z\left(L, \alpha^{*}, \epsilon\right)$.

For environment $f, M>0$, and preferences u, let $\rho_{C O P P P}^{u, f, M}$ be the corresponding COPP. (I am writing and notating as if this is unique, but I don't think this matters at all for the results.)

First Fundamental Theorem of COPP: For all LAC u, for all f (with bounded support in R^{K}), there exists $\alpha^{*} \in \triangle\left(R^{K}\right)$ such that for all $\epsilon>0$, there exists \bar{M} such that for all $M>\bar{M}, \rho_{C O P P}^{u, f, M}$ is $\alpha^{*}, \epsilon-L E V$.

Second Fundamental Theorem of COPP: I think something like this is truish, but not clear how to formalize in a conceptually clear way: In limit as $M \rightarrow \infty, \rho_{C O P P P}^{u, f, M}$ becomes close to first-best optimal.

