Handout for Piecemeal-Preferences Seminars At Two Great State Universities

Matthew Rabin University of California–Berkeley

September, 2003

Highly simplified setting: Life arrives at us as a series of decision opportunities, $\{f_{11}, ..., f_{G1}; f_{12}, ..., f_{G2}; ...; f_{1M}, ..., f_{GM}\},\$

where each f_{ij} is a probability distribution over possible choice sets the person will face, $L_{ij} \subseteq \triangle(R^K)$, of probability distributions over K-dimensional vectors of consumption, $(c_{1ij}, ..., c_{Kij}) \in R^K$. Primary and simplest example: $K = 1 \Longrightarrow$ so each element of L_{ij} is a lottery over \$.

Realizations of $\{f_{ij}\}\$ and $\{L_{ij}\}\$ all statistically independent of everything else, and $\{f_{ij}\}_{i=1,\dots,G}$ and $\{L_{ij}\}_{i=1,\dots,G}$ are i.i.d. for all *j*. [We can allow some non-independence by interpreting some of the dimensions as state-contingent.]

Realizations of $\{f_{ij}\}$, choices $l_{ij} \in L_{ij}$, and realizations of uncertainty in l_{ij} together determine grand outcome $o \in \triangle(R^K)$ putting weight on all realizations $(\sum_{ij} c_{1ij}, \sum_{ij} c_{2ij}, ..., \sum_{ij} c_{Kij}) \in R^K$.

I'll consider preferences u(o) over grand outcomes $o \in \triangle(R^K)$ — very much allowing for non-EU preferences and (notation notwithstanding) non-utility preferences.

Each L_{ij} in the support of each f_{ij} contains a default choice, $l_{ij}^* \in L_{ij}$, that is implemented if not over-ridden.

Piecemeal preferences: A mapping $\rho : L_{ij} \to \triangle(L_{ij})$ such that for all $L_{ij} = L_{i'j'}, \rho(L_{ij}) = \rho(L_{i'j'})$.

<u>Definition</u>: Piecemeal preferences ρ are *constrained optimal* (COPP) if there do not exist piecemeal preferences ρ' such that (abusing notation) $u(\rho') > u(\rho)$.

<u>Definition</u>: Piecemeal preferences ρ are *myopic* (MYPP) if for all L_{ij} , person chooses l_{ij} = argmax $l_{ij \in L_{ij}} u(l_{ij})$.

For any two distributions $f, g \in \triangle(R^K)$, let $\mu_f, \mu_g \in R^K$ be their means, and let $f^n, g^n \in \triangle(R^K)$ be *n* independent plays of the gambles *f* and *g*.

<u>Definition</u>: $u : \triangle(R^K) \to R$ is *limit average complete*, quasi-convex, and monotonic (*LAC*) if for all closed, convex, finte $Q \subseteq R^K$ there exists complete, monotonic, quasi-convex (or whatever) $v : Q \to R$ such that, for all $f, g \in \triangle(R^K)$ with $\mu_f, \mu_g \in Q$, there exists \overline{n} such that for all $n > \overline{n}$, $u(f^n) > u(g^n)$ if $f v(\mu_f) > v(\mu_g)$.

For all $L \subseteq \triangle(R^K)$, for all $\widehat{\alpha} \in \triangle^K$, for all $\epsilon > 0$, let $Z(L, \widehat{\alpha}, \epsilon) \subseteq \triangle(L)$ be the set of (possibly stochastic) choices from L that Max $E\{\sum_{k=1}^{K} \alpha_k c_k\}$ for some $\alpha \in \triangle^K$. Then say that ρ is $\alpha^*, \epsilon - LEV$ (ρ is *Linear Expected Value*) for $\alpha^* \in \triangle(R^K), \epsilon > 0$ if for all L_{ij} with positive probability in environment $\rho(Lij) \in Z(L, \alpha^*, \epsilon)$.

For environment f, M > 0, and preferences u, let $\rho_{COPP}^{u,f,M}$ be the corresponding COPP. (I am writing and notating as if this is unique, but I don't think this matters at all for the results.)

<u>First Fundamental Theorem of COPP</u>: For all LAC u, for all f (with bounded support in \mathbb{R}^{K}), there exists $\alpha^{*} \in \Delta(\mathbb{R}^{K})$ such that for all $\epsilon > 0$, there exists \overline{M} such that for all $M > \overline{M}$, $\rho_{COPP}^{u,f,M}$ is α^{*}, ϵ -LEV.

<u>Second Fundamental Theorem of COPP</u>: I think something like this is truish, but not clear how to formalize in a conceptually clear way: In limit as $M \to \infty$, $\rho_{COPP}^{u,f,M}$ becomes close to first-best optimal.