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Abstract: We propose that a simple “dual-self” model gives a unified explanation for 

several empirical regularities, including the apparent time-inconsistency that has 

motivated models of hyperbolic discounting and Rabin’s paradox of risk aversion in the 

large and small. The model also implies that self-control costs imply excess delay, as in 

the O’Donoghue and Rabin models of hyperbolic utility, and it explains experimental 

evidence that increased cognitive load makes temptations harder to resist. Finally, the 

reduced form of the base version of our model is consistent with the Gul-Pesendorfer 

axioms. 
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“The idea of self-control is paradoxical unless it is assumed that the 
psyche contains more than one energy system, and that these energy 

systems have some degree of independence from each other.”  
(McIntosh [1969]) 

 

1. Introduction 

This paper argues that a simple “dual-self” model gives a unified explanation for 

a number of empirical regularities. This includes the apparent time inconsistency that has 

motivated economists’ models of hyperbolic discounting: Faced with a choice between 

consuming some quantity today and a greater quantity tomorrow, some people will 

choose to consume the lesser quantity today. However, when these same individuals are 

faced with the choice between the same relative quantities a year from now and a year 

and a day from now, they choose to consume the greater quantity a year and a day from 

now.3 The second regularity is Rabin’s [2000] paradox of risk aversion in the large and 

small. The paradox is that the risk aversion experimental subjects show to very small 

gambles implies hugely unrealistic willingness to reject large but favorable gambles. In 

addition, the model explains the effect of cognitive load on self-control that is noted by 

Shiv and Fedorkin, and it predicts that increased costs of self-control lead to increased 

delay in stationary stopping-time problems, as in O’Donoghue and Rabin [2001].  

Our theory proposes that many sorts of decision problems should be viewed as a 

game between a sequence of short-run impulsive selves and a long-run patient self. This 

is consistent with recent evidence from MRI studies such as McClure, Laibson, 

Loewenstein, and Cohen [2004] that suggest that short-term impulsive behavior is 

associated with different areas of the brain than long-term planned behavior.4 The 

                                                 
3 The economics literature on hyperbolic discounting, following Strotz [1955] and Laibson [1997], uses the 
now-familiar � � �� �  form. This is called “quasi-hyperbolic discounting” in the psychology literature to 

distinguish it from the discounting function �� � �� �� � � � ��� � , which actually is hyperbolic. See Prelec 
[2004] for a characterization of these functions in terms of “deceasing impatience.” 
4 They say “Parts of the limbic system associated with the midbrain dopamine system… are preferentially 
activated by decisions involving immediately available rewards. In contrast, regions of the lateral prefrontal 
cortex and posterior parietal cortex are engaged uniformly by intertemporal choices irrespective of delay. 
Furthermore, the relative engagement of the two systems is directly associated with subjects’ choices, with 
greater relative fronto-parietal activity when subjects choose longer term options.” 
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findings of this research are reinforced also by introspection – we are all aware of the 

internal conflict when our “rational self” is faced with short-term indulgences that lead to 

bad long-term consequences.  We argue that our theory explains a broad range of 

behavioral anomalies, and that it is a better fit for the modular structure of the brain than 

the hyperbolic model, which posits a game between multiple “selves,” one in each 

period.5  Moreover, the dual-selves model is analytically simpler than the hyperbolic 

discounting model: it always yields a unique equilibrium that can be calculated as the 

solution to a decision problem. The only model of hyperbolic preferences we know of 

that has similar properties is the Harris and Laibson [2004] model of instantaneous 

gratification in a consumption-savings problem. That model seems to us to be more 

complicated and specialized than our own.  

In our model, the patient long-run self and a sequence of myopic short-run selves 

share the same preferences over stage-game outcomes; they differ only in how they 

regard the future. Specifically, we imagine that the short-run myopic self has “base-

preferences” in the stage game that depend only on the outcome in the current stage. That 

is, the short-run players are completely myopic.6   

The stage game is played in two phases. In the first phase, the long-run self 

chooses the utility function of the myopic self. At some reduction in utility (for both 

selves – who share the same stage game utility function) the long-run self can choose 

preferences other than the “base preferences. In the second phase of the stage game, after 

the short-run player preferences have been chosen, the short-run player takes the final 

decision. It is important that we do not allow the long-run self to precommit for the entire 

dynamic game. Instead, she begins each stage game facing the choice of which 

preferences to give the myopic self – or equivalently, how much self-control to exert.  

Note also that while the hyperbolic discounting model emphasizes the conflict between 

present and future selves, we emphasize that the long-run self has the same stage game 

                                                 
5 At the same time, we recognize that our model is only a very loose approximation of the brain’s structure, 
as recent studies suggest both that reward-related information may be processed in many different brain 
regions,  and that the links between these region are more complex than the top-down control assumed in 
our model.  See for example O’Doherty [2004] and Platt and Glimcher [1999]. 
 
6 This is a very stark assumption, but it leads to a much simpler model, and may be a reasonable 
approximation in some cases of interest. The conclusion discusses the complications introduced by 
forward-looking “short run selves.”    
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preferences as the short-run self, and so wishes to serve the interests of future short-term 

selves. 

Games with long run versus short run players are relatively simple to analyze. 

This particular class is especially simple. Imposing a minimal perfection requirement that 

the short-run self must always play a best response, the long-run self implicitly controls 

the short-run self, albeit at some cost. Equilibria of this game are equivalent to the 

solution to an optimization problem. In this respect, the long-run versus short-run player 

model is more conservative than hyperbolic discounting, preserving many of the methods 

and insights of existing theory, as well as delivering strong predictions about behavior. 

Our model is similar in spirit to that of Thaler and Shefrin [1981] (from whom we 

have taken the McIntosh quotation at the start of the paper.) Like them, we view our 

model as “providing a simple extension of orthodox models that permits [self-control 

behavior] to be viewed as rational.” One difference is that their model is defined only for 

the consumption-savings problem we study in section 3, while we develop a more general 

model that can be applied to other situations. Also, we work with more precise 

specifications of the costs of self-control, and show how to reduce the game between the 

selves to a single decision problem. This makes the model analytically tractable, and 

enables us to make more precise predictions. Independent work by O'Donoghue and 

Lowenstein [2004] describes a similar but more general model, with less focus on 

tractability and applications. Benabou and Pycia [2002] analyze a one-period model 

where the long-run self and the short-run self compete for control by expending 

resources, with the probability that a given self takes control equal to its share of the total 

expenditure.  Bernheim and Rangel [2004], and Benahib and Bisin [2004] consider multi-

period models where a long-run self is only sometimes in control, either because it is 

unable to take control (Bernheim and Rangel) or chooses not to do so (Benahib and 

Bisin.) We discuss these papers further in the conclusion. Section 5 discusses Miao 

[2004], who applies the dual-self model to a variant of the waiting-time problem we 

analyze in that section.   

Although our point of departure is different, the reduced form of the dual self 

model is closely connected to the dynamic model of Gul and Pesendorfer [2002]. They 

consider a single player who has preferences over choice sets that includes the desire to 

limit the available alternatives. Under a particular set of axioms, they show that the 
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decision process can be represented by a utility function with a cost of self-control that is 

closely connected to ours. Although the reduced form of the model leads to the similar 

decision problem, we have a concrete interpretation of preferences in terms of those of a 

myopic self, and as a result are able to bring both introspective and physiological 

evidence to bear on what those preferences might be. 

The dual self model predicts the same behavioral anomalies that motivated the 

hyperbolic discounting model, albeit through a different mechanism. When dealing with 

decisions that effect only future options, the short-run self is indifferent, hence can be 

manipulated by the long run self at minimal cost. The long-run self, then, has two 

different sorts of mechanisms through which to change the behavior of future short-run 

selves. She can intervene directly in a future stage game by choosing an appropriate 

utility function, but to do so requires a substantial utility cost. Alternatively, in some 

settings it may be possible for the current short-run self to limit the alternatives available 

to the future short-run selves; manipulating these decisions has negligible cost. For 

example, in the classical choice problem that gave rise to the theory of hyperbolic 

discounting, faced with a decision between consuming something today or more 

tomorrow, the long-run decision maker may prefer to consume more tomorrow. But to 

manipulate the current short-run self into making that decision may be more costly than it 

is worth. On the other hand, when faced with making a commitment to the same decision 

involving future dates, the cost of manipulating the decision of the current short run self 

is negligible, since the current short-run self does not care about the future.7  

For a less trivial application, we examine a simple one-person savings problem. 

We show that if the short-run self has access to all available wealth, the savings rate is 

reduced to keep the cost of self-control low. On the other hand, when wealth is kept in a 

bank account, and the short-run self that withdraws the money is different from the short-

run self who (at a later time) spends the money, savings are exactly those predicted in the 

                                                 
7 We should point out that this discussion implicitly supposes that the short-run self is directly motivated by 
money, even though the only real consequence of earning money is the future consumption that it brings.  
This is consistent with evidence (such as Pavlov’s bell) that the impulsive short-run self responds to learned 
behavioral cues in addition to direct stimulus. Modern physiological research is making progress in 
identifying some of the brain chemistry that reflects the response to these stimuli, see, for example, Haruno 
et al [2004]. Camerer, Lowenstein and Prelec [2000] say that “roughly speaking, it appears that similar 
brain circuitry—dopaminergic neurons in the midbrain—is active for a wide variety of rewarding 
experiences (including) money rewards.” The conclusion speculates about some possible extensions of our 
model to learned cues.  
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absence of self-control costs. However, the dual self model predicts that the propensity to 

spend out of unanticipated cash receipts is greater than out of unanticipated bank-account 

receipts. In particular, a sufficiently small unanticipated cash receipt will be spent in its 

entirety, and so winnings from sufficiently small cash gambles are evaluated by the short-

run self’s preferences, which are over consumption.  These preferences are more risk- 

averse than the preferences over long-term consumption that are used to evaluate large 

gambles, so this  “cash effect” provides an explanation of  Rabin’s [2000] paradox of risk 

aversion in the small and in the large.8 

We also apply the dual-self model to the study of procrastination and delay in a 

stationary stopping-time environment that is very similar to that of O’Donoghue and 

Rabin [2001]. Like them, we find that self-control costs lead to longer delays, but our 

model yields a unique prediction, in contrast to their finding of multiple equilibria. Our 

model also suggests some qualifications to the interpretations that DellaVigna and 

Malmendier [2003] give to their data on health-club memberships.   

2. The Model 

 Time is discrete and potentially unbounded, ����� � � . There is a fixed, time-

and history invariant set of actions �  for the short-run selves; this is assumed to be a 

compact subset of Euclidean space.9 There is also a measure space �  of states, and a set 

�  of self-control actions for the long-run self; R is a compact convex subset of Euclidean 

space. The point � ��  is taken to mean that no self-control is used. A finite history of 

play � ��  consists of the past states and actions, � � �� � � � � � � �� � �� � 	 
 � 	 
� �  or the null 

history 0. The length of the history is denoted by � �� � , the final state in �  by � �� � . There 

is an initial state �� . The probability distribution over states at time �� � depends on the 

time-t state and action �� �� 	  according to the exogenous probability measure � � �� 	� ; the 

long-run self’s action 
  has no effect on the future state.10 The game is between the long-

run self, whose pure strategies are maps from histories and the current game to self-

                                                 
8As we explain below, the cash effect has the same impact in the hyperbolic discounting mode. Note also 
that this result is in the opposite direction from those of Gul and Pesendorfer [2002, 2004], who do not 
consider environments with mechanisms such as banks that substitute for self-control. 
9 This assumption is a modeling convenience, but it can be relaxed to allow for history-dependent action 
sets. 
10 This is another simplifying assumption; when it is dropped the long-run player’s maximization problem 
becomes more complicated. 
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control actions �
��
� � �� � � , and the sequence of short-run selves. Each short-run 

self plays in only one period, and observes the self-control action chosen by the long-run 

self prior to moving. Denote by ��  the set of � -length histories �� . A strategy from the 

time-�  short-run self is a map �� �� � � �� � � � ; we denote the collection of all of 

these strategies by 
��
� . The strategies together with the measure �  give rise to a 

measure ��  over histories of length � .  

The utility of the short-run self is given by � � � � � 
 	 : the long-run player’s current 

self-control action influences the short-run player’s payoff. The utility of the long-run 

self is given by 

 �
�

� � � � � � ���
��

�  � 
 	 � � �� �
� �
�

�� 	 . 

 

Because r has no impact om the evolution of the state variable y, the model 

supposes that all  interactions with the outside world are handled by the short-run self. 11  

The long-term self can influence these interactions by changes in r; this will be 

particularly easy when the actions available have no immediate consequences so that the 

short-term self is indifferent. Physiologically, we imagine that self-control corresponds to 

the release of chemicals that determine “mood” and other variables relevant to the 

preferences of the impulsive myopic self. 

In this formulation, the self-control cost (that is, the difference between � � � � � 
 	  

and � � �� � � 	 ) is borne by both selves. However, since the short-run self cannot influence 

that cost, all that matters is the influence of self-control on the marginal incentives of the 

short-run self and thus on its decisions. 

Since each move begins a proper subgame, the strategies are a subgame perfect 

equilibrium if each self’s strategy is optimal following every history, and the short-run 

self’s strategy is also optimal following the move of the long-run self.  

Assumption 1 (Costly Self-Control): If �
 
  then � � � � � � �� � � 
 	  � 	� . 

                                                 
11 Thus the short-term self in our model represents a combination of a short-term reward assessor  and a 
“doer.”  
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Assumption 2 (Unlimited Self-Control): For all �� 	  there exists 
 such that for all 		 , 

� � � � � � � 	� � 
 	  � 
 	� . 

Under the assumptions that self-control is costly and unlimited, we may define the cost of 

self-control 

 

�� � � � � � � ��

� � � � ��� � �� � � � �

  � 
 	  � 


� � 	  � 	  � 
 	� � �  

Assumption 3 (Continuity): � � � � � 
 	  is continuous in �
 	 . 

This assures that the supremum in the definition of �  can be replaced with a maximum. 

Assumption 4 (Limited Indifference): for all 		 	
 , if � � � � � � � 	� � 
 	  � 
 	�  then 

there exists a sequence �
 
�  such that � � � � � � � 	�� � � 
 	  � 
 	� .  

This means that when the short-run self is indifferent, the long-run self can break the tie 

for negligible cost. 

 Notice that from Assumptions 1 and 2, if 	������� � � �� 	��		  � 	�  then 

� � � �� � 	 � , and � � 	� �� � 	 �  for 		 	
 .  In addition by Assumption 3, � � �� � 	  is 

continuous in 	 . Conversely, if we have given functions � � �� � � 	  and � � �� � 	  satisfying 

these properties, then we can take � ��  and construct 

 
� � �� � � � � �� ��� � � � �� �

� � � �
� � �� � � � � �� ��� � � � �� �

 � 
 � � 
 
 	 	  � 	  � 

 � 
 	

 � 	 � � 
 
 	 	  � 	  � 


� � � � ����� �� � � � ����
 

which gives rise to the target cost of self-control function, while satisfying Assumptions 

1-4. 

 By way of contrast, we consider also the following reduced form optimization 

problem, of choosing a strategy from histories and states to actions �
��
� � �� � �  to 

maximize the objective function 

 � ��
�

� � �� � � � � � � ���
��

 � 	 � � 	 � � �� �
� �
�

�� 	 . 

Theorem 1 (Equivalence of Subgame Perfection to the Reduced Form): A subgame 

perfect equilibrium exists if and only if a solution to the reduced form problem exists; if a 
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solution exists then for every optimal 
��
�  there are equilibrium strategies �

�� ��
� �  such 

that 
�� �� ��
� � �� �  and vice versa. 

Remark: We have not imposed sufficient assumptions on �  and �  to guarantee the 

existence of a solution to the optimization problem. If �  is finite, it is well known that 

this problem has a solution; however we wish to examine cases where �  is infinite, and 

although in our examples existence of a solution is unproblematic, it is complicated to 

give general conditions guaranteeing the existence of an optimum in the infinite case. 

 

 Finally, we wish to consider a tightly parameterized functional form for the cost 

of self-control, namely that it is proportional to the difference in utility between the best 

available action and that actually taken. 

Assumption 5 (Linear Self-Control Cost): � �	� � � ��� � ��� 	� � � �� �
	

� � 	  � 	  � 	�� � , 

so that 

 
� �

� �

�
�

�
	�

� � �� � � � � � � ��

�� � � � �� � ��� � ��� 	�� � � ��

�
��

�
	 ��

�  � 	 � � 	 � � �

 � 	  � 	 � � �

� �

� � � �

� �
�

� �
�

� �

� � �

� 	
� 	

 

Notice that the introduction of self-control costs into the optimization problem means that 

introducing more options can make the agent worse off. However, under Assumption 5,  

although improving the best available alternative can lower utility, it does not change the 

marginal cost of self-control. In this sense, Assumption 5 is conservative, maintaining as 

much of the standard model as is consistent with an interesting theory of self-control. It is 

also important to note that self-control costs that satisfy Assumption 5 are shown by Gul 

and Pesendorfer [2001, 2002] to satisfy their axioms.12  Assumption 5 is also analytically 

convenient. On the other hand, Section 6 argues that some evidence is more consistent 

with strictly convex costs of control. 

3. A Simple Savings Model 

To start, consider the simple case of an infinite-lived consumer making a savings 

decision. The state � �� �  represents wealth, which may be divided between 

                                                 
12 Benabou and Pycia [2002] make the same point about the one-period version of this model.  
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consumption and savings according to the action �����	 �  representing the savings rate. 

Borrowing is not allowed. Savings are invested in an asset that returns wealth 

�� � �� �	 �� �  next period, there is no other source of income.13 

In each period of time, the base preference of the short-run self has logarithmic 

utility,14 

 � � �� � ������ � � � 	 	 �� �  

where we define ������� �� .  

The short-run self wishes to spend all available wealth on consumption.  We 

assume a separable cost of self-control, so  

� � � �� �	� � � ��� � � �� 	� � � �� � ��� � ����� �

����� ��

	� � 	  � 	  � 	 � 	 �

	

� �

�

� � � � �

� � �
 

 

 The reduced form for the long-run self   has preferences 

 
� �

� �

�
�

�
�

� � �� � � � � � � ��

�� ������� � � ���� �

�
� � � � ��

�
� � ��

�  � 	 � � 	 � � �

	 � �

� �

� � �

� �
�
� �
�

� �

� � � �

� 	
�

  

The long-run self’s problem is thus to maximize this function subject to the 

wealth equation � �� � �� �	 �� �� .  It is shown in the Appendix that there is a solution, and 

that the solution has a constant savings rate strictly between zero and one.15  Thus we 

compute present value utility for constant savings rates, and maximize 

                                                 
13 Because we take the short-run self’s action to be the savings rate and not total savings, the feasible 
actions A are independent  of the long-run self’s actions.  Note also that since the short-run self makes all 
consumption/savings decisions, the model satisfies our requirement that the evolution of the state depends 
only on the actions of the short-run self. 
14 The Appendix presents the extension to CRRA form of which logarithmic utility is a special case. We 
show that the problem has a solution, and that the solution is characterized by a first-order condition. We 
also solve the banking model of the next section with CRRA preferences. Because these preferences have 
an extra parameter of flexibility, they seem likely to better fit field data; we present the logarithmic case in 
the text to get across the main ideas. 
15  As we have written the problem, with the savings rate as the control, the state evolution equation is not 
concave; if we change variables so that the control is the absolute level of consumption �� , the state 
evolution equation is linear but the per-period payoff becomes �� ����� � ���� �� �� �� �� � , which is not 
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� �
� �

�
� ��

�
��

�� � ����� � � ����� �� � ������ � ���� �

�� � ����� � � ������ � ���� � �

�

�

�

�

� 	 � �	 � � �	 �

	 � �	 �

� � � �

� �

� �
�
� �
�

� �� � � � � � � � �� �� �
� �� � � � � �� �� �

�
�

using   �
� � �
�

�

�
�

�
�

�

�
�
� �� , this simplifies to   

 

� �

� �

�

�

�

�

�� � ����� � ���� � ���� � ���� �

�� � �� ��� �

�� � ����� � ���� � ���� �
�

�� � �� �

	 � �	 �	
�

	 � �	

�

� ��

� �

� �

� �� � �� �� �� � �
� ��

� �� � �� �� �� �
� �

 (1) 

To find the constant savings rate that maximizes � , we differentiate (1) to find 

 
�

�� � � �
�

�� ��� � �� � �� �
�� �	

	 	 	

�

� � �

� �
� � �

� � � �
, 

so  
�

	
�

� ��
�
� �

 (2) 

Since the solution must be interior, it must satisfy the first-order condition, and since 

there is a unique solution to the first order condition, this is the optimum   

The comparative statics are immediate and intuitive: As �  increases, so self-

control becomes more costly, the savings rate is reduced, to avoid the cost of self-control. 

As the long-run player becomes more patient, (as �  increases) this cost of future self 

control becomes more important, so the effect of �  increases, which tends to increase the 

difference between the savings rate at a fixed �  and that at �� � .  (In particular, �  is 

irrelevant when �� � , as the savings rate is 0 with or without costs of self-control.)  

However, increasing �  also increases the savings rate for any fixed � , as is the case 

                                                                                                                                                 
concave in the state if �� � . For this reason our proof technique does  not rely on concavity.    We can 

extend the conclusion that savings are a constant fraction of wealth to the case where asset returns �� are 
stochastic and i.i.d. provided that there is probability 0 of 0 gross return.  In the more general CRRA case 
studied in the Appendix, the solution given there remains unchanged provided we define 

� �� �� � �� �� �� � . 
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when �� �  and there is no self-control problem. This latter effect dominates, as total 

saving increases.  

Note that when �� � , so there are no self-control costs, the optimum savings 

rate is �	 �� .  In this case the agent’s lifetime utility as a function of initial wealth ��  is  

 
�

�

����� � ���� � ���� �

�� � �� �

� �� � �

� �

� �� �� �� ��
� �

 (3)   

we use this fact in the following section. 

 To summarize, our model has a constant savings rate for both logarithmic and 

CRRA utility, and the savings rate is the solution to a first-order condition; the solution is 

particularly simply in the case of logarithmic utility. In contrast, as Harris and Laibson 

[2004] emphasize, consumption need not be monotone in wealth in the usual discrete-

time hyperbolic model, even in a stationary infinite-horizon environment.  Moreover, the 

hyperbolic model typically has multiple equilibria (Krusell and Smith [2000]), which 

complicates both its analysis and its empirical application.  

 In response, Harris and Laibson [2004] propose a continuous-time model of the 

consumption-savings problem, where the return on savings is a diffusion process. They 

show that the equilibrium is unique in the limit where individuals prefer gratification in 

the present discretely more than consumption in the only slightly delayed future.16  

Moreover, in our case of constant return on assets, their results show that consumption is 

a constant fraction of wealth if the discount factor is sufficiently close to 1.  Thus the 

limit form of their model makes qualitatively similar predictions to ours; we feel that our 

approach is more general and more direct. 

4. Simple Banking Model 

 In practice there are many ways of restraining the sort-run self besides the use of 

self-control: the obvious thing to do is make sure that the short-run self does not have 

access to resources that would represent a temptation. Here we consider the consequences 

                                                 
16 To do this, they show that equilibrium is characterized by the solution of a single-agent problem, where 
the agent’s utility function is derived from the shadow values in the original problem. When base 
preferences are CRRA, the only difference between the derived utility function and that of a “fully rational” 
agent (an exponential discounter) is that the agent gets a utility boost at zero wealth,  
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of a simple model in which basic savings decisions are made in a context (the bank) 

where consumption temptations are not present. In the bank, the decision is made how 

much “pocket cash” to make available for spending when a consumption opportunity 

arises in the following period. Since savings decisions are made in the bank, with perfect 

foresight, the optimum without self-control can be implemented simply by rationing the 

short-run self.  Thus the baseline, deterministic version of the model has an equilibrium 

equivalent to a model without a self-control problem. However, consumer’s response to  

unanticipated cash receipts is quite different than that to anticipated receipts, or to 

unanticipated bank account receipts: the propensity to consume out of a small 

unanticipated cash receipt is 100%, while the propensity to consume out of a similar 

amount of money received in the bank account (for example, a small capital gain on a 

stock) is small. 

This wedge between the propensity to consume out of pocket cash and to 

consume out of bank cash has significant implications for “risk aversion in the large and 

small.”  Winnings from sufficiently small cash gambles are spent in their entirety, and so 

are evaluated by the short-run self’s preferences, which are over consumption. When the 

stakes are large, self-restraint kicks in, part of the winnings will be saved and spread over 

the lifetime. This leads to less risk-averse preferences, so the model explains the paradox 

proposed by Rabin [2000]. Note that these results are in the opposite direction of Gul and 

Pesendorfer [2002, 2004], who do not consider environments with mechanisms such as 

banks that substitute for self-control.  

The implication of the pocket versus bank cash model are very important in the 

interpretation of experimental results: in experiments the stakes are low, but individuals 

demonstrate substantial curvature in the utility function. Besides exhibiting risk aversion, 

when given the opportunity, for example, to engage in altruistic behavior, they generally 

do not make the minimum or maximum donation, but some amount in between. (Similar 

behavior is observed on the street: many people will make a positive donation to a 

homeless person, but few will empty their pockets of all cash.) If utility is viewed in 

terms of wealth, this type of behavior makes little sense, since the effect of a small 

donation on the marginal utility of wealth to either the donor or recipient is miniscule. 

Viewed in terms of pocket cash, which is the relevant point of comparison when there is 
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a wedge due to the rationing of cash to the short-run self, this behavior makes perfect 

sense. 

  Formally, we augment the simple saving model by supposing that each period 

consists of two subperiods, the “bank” subperiod and the “nightclub” subperiod. During 

the “bank” subperiod, consumption is not possible, and wealth ��  is divided between 

savings �� , which remains in the bank, and cash �� which is carried to the nightclub. In 

the nightclub consumption � � �� �� �  is determined, with � �� ��  returned to the bank 

at the end of the period. Wealth next period is just � � �� � � �� � � � �� � � � . The discount 

factor between the two consecutive nightclub periods (which is where consumption 

occurs) is  � ; preferences continue to have the logarithmic form.17 First, consider the 

perfect foresight problem in which savings are the only source of income. Since no 

consumption is possible at the bank, the long-run self gets to call the shots; and the long-

run self can implement �	 �� , the optimum of the problem without self-control, simply 

by choosing pocket cash ��� �� �� 	 �� �  to be the desired consumption. The short-run 

self will then spend all the pocket cash; because the optimum can be obtained without 

incurring self-control costs, the long-run self does not in fact wish to exert self-control at 

the nightclub. 

 Now we turn to the problem of stochastic cash receipts (or losses). That is, we 

suppose that at the nightclub in the first period there is a small probability the agent will 

be offered a choice between several lotteries. If the lotteries are themselves drawn in an 

i.i.d. fashion, this will also result in a stationary savings rate that is slightly different from 

the �	  computed above, but if the probability that a non-trivial choice is drawn is small, 

the savings rate will be very close to �	 . We find it easier to consider the limit where the 

probability of drawing the gamble is zero. 

 For the agent to evaluate a lottery choice ��� , he needs to consider how he would 

behave conditional on each of its possible realizations �� .  The short-run self is 

constrained to consume � � �� � �� � . Next period wealth is given by  

 � � � � � � � �� � � �� � � � � � � � � �� � � � � � �  . 

                                                 
17 The appendix provide the parallel computations for the CRRA case. 
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The utility of the long-run self starting in period 2 is given by the solution of the problem 

without self control, as in equation (3): 

 � �� � �
�

� � ����� � ���� � ���� �
�� � �

� � � �
�

� �
� �

� � � �
� �

 

The utility of both selves in the first period is � � ��� ���� � ��� �� � �� �� � � , and so the 

overall objective of the long-run self is to maximize 

 � �
� � �

� � �

�� ����� � ���� �

����� � ���� � �� ���� �
�� � �

� � �

� � � � �

� �

� �
� �

� �

� � �

� � � � � �
� �

 (4) 

The first order condition for optimal consumption is  
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�

�� �� �� � � �

� �

�

�
�

� � �
 

so 

 � � � � � � ��� �� � �� �� �� � � � � � �� � � �� � � � � � � �  

and  

 
� �

� � �

� �

�� ��� �� �
� � �

�� ��� � �� ��� �

�� �� �

� �
� � �

� � �

� � �

� � � � � �

 !� � � "# "� � � �# "# "#� � � � � �$ %

� � �

      (5)  

Note that when �� � , (5) simplifies to � � ��� �� �� � ��� � � , as it should. If the 

solution ��  satisfies the constraint � � �� � �� �  it represents the optimum; otherwise the 

optimum is to consume all pocket cash, � � �� � �� � .   Because ��  is the solution for 

�� � , we know that � ��� �� ��� � . Thus � � �� � �� �  if �
� �� �� , where the critical 

value of �
��  is derived from  

  �
� � � �� � � �� � �

�� ��� �
� � � �

�
�

� � �

 !"# "� � � � �# "# "# � � �$ %
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This yields 
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Since � ��  when �� �  we see that for a range of positive ��  it is in fact optimal to 

spend the entire amount of pocket cash �� .  Note also that when �� � , so there is no 

self-control problem, so �
� �� � : it is never optimal to spend all of the increment to 

wealth. 

The above establishes 

 

Theorem 2: If �
� �� �� , overall utility is  

 � �� � � ����� � ����� � ���� � �� ���� �
�� � �

� � � � � �
� �

� �
� �

� � � � � �
� �

 (6) 

If �
�� ��  utility is 
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� � � �

� �
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� �

 !"#� � � � � "# "#$ %� � � �

  (7) 

To analyze risk aversion, imagine that � �� � �	� �� , where �	  has zero mean 

and unit variance, and suppose that �  is very small.  Now consider the usual conceptual 

experiment of comparing a lottery with it certainty equivalent.  For �� �� overall payoff 

is given by (6). Thus relative risk aversion is constant and equal to � , where wealth is 

� �� � �� �  so risk is measured relative to pocket cash. On the other hand, for �� �� , 

the utility function (7) is the difference between two others, one of which exhibits 

constant relative risk aversion relative to wealth �� �� , the other of which exhibits 

constant risk aversion relative to pocket cash �� �� . When �  is small, the former 
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dominates, and to a good approximation for large gambles risk aversion is relative to 

wealth, while for small gambles it is relative to pocket cash.18 

 We can see this effect graphically in the case of Rabin’s  [2000] paradox of risk 

aversion in the small and in the large: 

 

“Suppose we knew a risk-averse person turns down 50-50 lose $100/gain $105 

bets for any lifetime wealth level less than $350,000, but knew nothing about the 

degree of her risk aversion for wealth levels above $350,000. Then we know that 

from an initial wealth level of $340,000 the person will turn down a 50-50 bet of 

losing $4,000 and gaining $635,670.” 

 

The point being of course that many people will turn down the small bet, but no one 

would turn down the second.  

We can easily explain these facts in our model using  logarithmic utility. The first 

bet is most sensibly interpreted as a pocket cash gamble; the experiments with real 

monetary choices in which subjects exhibit similar degrees of risk aversion certainly are. 

Moreover, if the agent is not carrying $100 in cash, then there may be a transaction cost 

in the loss state reflecting the necessity of finding a cash machine or bank.  

The easiest calculations are for the case where the gain $105 is smaller than the 

threshold �� . In this case, logarithmic utility requires the rejection of the gamble if 

pocket cash ��  is $2100 or less. That is, 

���������� ���� ���������� ���� ���������� � � & . In order for $105  to be smaller 

than the threshold �� , we require ������� � , so if � ����� �  is pocket cash, we need 

a ���� � , while for19 � ���� � , �  must be of at least 0.35.  However, the conclusion 

that the gamble should be rejected also applies in some cases where the favorable state is 

well over the threshold. For example, if pocket cash is $300, ����� � , and wealth is 

$300,000, then the favorable state of $105 will be well over the threshold is $15, but a 

computation shows that the gamble should be rejected, and in fact it is not close to the 

                                                 
18 The former also dominates as �  approaches ���� �� , which is relevant when �� � . 
19 The usual daily limit in the U.S. for ATM withdrawals is $300. 



 17 

margin.20 Indeed, the disutility of the $100 loss relative to pocket cash of $300 is so large  

that even a very flat utility for gains is not enough to offset it. Even if we bound the 

utility of gains by replacing the logarithmic utility with its tangent above $300, not only 

should this gamble be rejected, but even a gamble of lose $100, win $110 should be 

rejected. 

Turning to the large stakes gamble, unless pocket cash is at least $4,000, the 

second gamble must be for bank cash; for bank cash, the relevant parameter is wealth, not 

pocket cash. It is easy to check that if wealth is at least $4,026, then the second gamble 

will always be accepted. So, for example, an individual with pocket cash of $2100, 

����� �  and wealth of more than $4,026 will reject the small gamble and take the large 

one, as will an individual with pocket cash of $300, ����� �  and wealth equal to the 

rather more plausible $300,000. 

We should point out that other models can yield these results. In particular, in this 

specific case, the hyperbolic discounting model yields the identical prediction about bank 

savings in the first period and second periods, and thus about the response to  

unanticipated cash shock.  To see this, note that our model of response to an 

unanticipated shock is to maximize the utility function 

 � � � � � � ��� ���� ���� � � � ��� � � � � � � �� � �� � � � � � . 

Denoting the hyperbolic discount factor by � , the hyperbolic discounting model says that 

the response to an unanticipated shock is to maximize the utility function 

 � � � � ���� � � �� � � � � ���� � � . 

In both cases, the utility function ��  is the utility function derived by solving the 

unconstrained problem, which is the same in the two cases and equal to the utility 

function of an agent without self-control problems ( �� �  or �� � .)  Since � �� ��  is 

not a decision variable at this “nightclub” stage of the problem, we see that if 

                                                 
20  The relationship between pocket cash and wealth depends on �  and hence on the period length; the 
relationship is � �� � � �� �� � � , so for example, if pocket cash is $300 and wealth $300,000, then the 
interest rate corresponding to �  is 1/1000, or if the annual rate is 10%, the period between bank visits is 3-
4 days. 
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���� �� �� �  the two objective functions differ only by a linear transformation, and so 

necessarily yield the same preferences over lotteries at the nightclub stage, 

The analysis so far has supposed that cash is only available at the banking stage.  

If the agent, when banking, anticipates the availability of $300 from an ATM during the 

nightclub stage, it is optimal to reduce pocket cash by this amount. Of course if the goal 

is to have pocket cash less than $300, then self-restraint will be necessary in the presence 

of cash machines. Note that this explains why we find cash machines where impulse 

purchases are possible: where lottery tickets are sold, for example. In equilibrium, few if 

any additional overall sales are induced by the presence of these machines, since their 

presence is anticipated, but of course the competitor who fails to have one will have few 

sales. So one consequence of the dual self-model is that we may see an inefficiently great 

number of cash machines.21 

Credit cards and checks also pose complications in applying the theory, as for 

many people the future consequences of using credit cards and checks can be 

significantly different than the expenditure of cash. That is, it is one thing to withdraw the 

usual amount of money from the bank, spend it all on the nightclub and skip lunch the 

next day. It is something else to use a credit card at the nightclub, which, in addition to 

the reduction of utility from lower future consumption, may result also in angry future 

recriminations with one’s spouse, or in the case of college students, with the parents who 

pay the credit card bills. So for many people it is optimal to exercise a greater degree of 

self-control with respect to non-anonymous expenditures such as checks and credit cards, 

than it is with anonymous expenditures such as cash.  This conclusion is consistent with 

the finding of Wertenbroch, Soman, and Nunes [2002] that individuals who are 

purchasing a good for immediate enjoyment have a greater propensity to pay by cash, 

check or debit card than by credit card.  

The implications of the theory for experiments are ambiguous and complicated. 

On the one hand the theory explains why we see substantial risk aversion in the 

laboratory. On the other hand the theory also predicts a high degree of idiosyncrasy in 

                                                 
21 Of course businesses engage in a variety of methods to induce impulse purchasing, for example 

a car salesman’s offer to let the purchaser drive away in the car right now. 
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that risk aversion. It will depend, for example, on such factors as how much cash the 

subjects are carrying with them, the convenience of nearby cash machines and the like. 

Finally, we should point out that even without a self-control problem, fear of theft 

can also lead agents to impose binding constraints on their ability to draw against wealth 

in nightclub periods, and so predicts that unanticipated losses must be absorbed from 

consumption. This fear-of-theft model predicts that unanticipated gains will be treated the 

same regardless of whether they are received in cash or in the bank, while the self-control 

model does not. It is true that the treatment of losses that is relatively more important for 

resolving the paradox of high risk aversion for small stakes gambles, but for choices 

between gambles that have only gains, (the usual laboratory case) the “fear of theft” 

model predicts little risk aversion, where the dual self and hyperbolic discounting model 

predict that risk aversion will continue to be substantial. 

5. Procrastination and Delay 

 We can also use the dual-self model to study procrastination and delay. Consider 

the following model: Every period �� �� ���� � the short-run self must either take an action 

or wait. Waiting allows the self to enjoy a leisure activity that yields a stochastic amount 

of utility �� , whose value is known at the start of that period; think for example that the 

leisure activity is playing outside and its utility depends on the weather.  We suppose that 

the ��  are i.i.d. with fixed and known cumulative distribution function P and associated 

density p on the interval �� �� � .  Taking the action ends the game, and results in a flow of 

utility �  beginning next period, and so gives a present value of  

 
�

� �
�

�
�
�

�
.  

If the agent waits, the problem repeats in the next period. 

Except for the use of the dual-self model, this model is very similar to that of 

O’Donoghue and Rabin [2001], who consider hyperbolic preferences.  We compare the 

models after deriving our conclusions.   

Because the current value of �  has a monotone effect on the payoff to waiting, 

and no effect on the payoff to doing it now, the optimal solution is a cutoff rule: If 
�� ��  then wait, and if �� ��  take the action.  The maximum utility that the agent can 



 20 

attain in any period is �� , which is the payoff to waiting, while doing it now requires 

foregoing �� .  Hence waiting incurs no self-control cost, and acting has self-control cost 

of ��� .   

If we let � � �� � �  denote the value starting tomorrow when using cut-off x, and let 
� �� � �� �� � � � ��  denote the value when using the optimal cutoff �� �� � , the value of 

waiting today when the leisure activity is worth x is  

 �� ��� ,  

and the value of acting  is  

 � �� �� � . 

The expected present value tomorrow if the action is not taken today and cutoff rule x is 

used in the future is then given by  

 � �� � � � � �� � � � � � � � �� � ��� � � � �� � �� �� � � � �� �� � � �� � � �� � � � � � � � ,  

so that   
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�
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� � �

�� �� � � � �� �� � �
�
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� �

� �

� � � � � �
�

� �
 (8) 

 

 Let ��� � . To avoid uninteresting cases, we assume that present value of acting is 

greater than the present value of waiting now and forever in the future, when today’s 

opportunity cost is the lowest possible:  

�
� �

��
�

�
� �

�
.  
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When the reverse inequality holds, an agent without self-control costs will never act.  We 

also assume that � �� � , so that an agent without no cost of self-control would choose to 

delay when �  is close to � .   

 

Theorem 3  (i) �� � �� � ; if �� ��� �� �� �� � �� � � �  then �� �� . 

                 (ii)When �� � �� � , 
�

�
��

��
� , so expected waiting time is increasing in 

the cost of self control. 

 

 

Proof: (i) Suppose that the optimum is at �� �� , and that �� �� . Then doing it now 

gives payoff of � �� �� , while waiting one period and then conforming to the presumed 

optimal rule gives �� �� ���� � , because the agent is certain to act next period. Thus 

waiting is optimal unless �� � � �� � �� � � ��� � � � , but this contradicts � �� � . Now 

suppose �� ��  and �� �� . Conforming to the strategy yields payoff ��� �� �� �� � , 

while acting yields  

 
�� �
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� � �

�
� � �

�
� � �

�
,  

so acting is better if �� � �� �� � �� �� � � �� � � � �  or �� ��� �� �� � � ��� � � � . 

  

(ii) If the optimal cutoff ��  is in the interior of �� �� � , optimality implies that the 

agent is indifferent between waiting and acting when �� �� . Thus 
� � �� � �� � � � �� � � �� � � � , so 

 � ��� � � � �� � � �� � � �� � �   (9)   

Because ��  maximizes steady state payoff, �� �� � �
�

�
� , Thus 
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Now from (8),  
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So 
�

�
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� . 

� 

  

 Let ��  (for “naïve”) be the cutoff  the agent would use if forced to make a choice 

between stopping now and never stopping.  Then  

 

�� �
�

�� �
��

� �
�
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�

. 

When the optimal rule is interior, the agent eventually does choose to  stop, and so the 

continuation value ��  exceeds 
�

��

��
, and equation (9) shows that �

�� �� . This shows 

that the standard “option value of waiting”  consideration carries over to the dual-self 

model. 
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 In independent work, Miao [2004] applies a dual-self model to a very similar 

problem. He considers the cases of immediate costs and future benefits, as here; 

immediate benefits and future rewards, where the temptation is to act to soon, and 

immediate costs and immediate rewards. His model differs in that the reward is stochastic 

and the cost is fixed.  

O’Donoghue and Rabin [2001] analyze the implications of hyperbolic discounting 

in a very similar (and in particular, stationary) stopping time problem. They say that the 

agent “procrastinates” if he never acts even though there is an action that is worth doing 

given his hyperbolic discounting of future returns. They also show that their model 

typically has multiple equilibria; the equilibria are cyclic, with intervals of length �  

between “action dates.” We view these cyclic equilibria as artificial and unappealing.  

Moreover, they restrict attention to equilibria that are limits of equilibria in the finite 

horizon; this restriction relies on long chains of backwards induction and is not  robust , 

to even small payoff uncertainty as shown by Fudenberg, Kreps, and Levine [1988]..  

Despite the presence of multiple equilibria, O’Donoghue and Rabin can show that 

sophisticated agents (that is those who know their own hyperbolic parameter � ) never 

procrastinate, although they may postpone acting for a few periods. 

DellaVigna and Malmendier [2003] report some calibrations of the O’Donoghue-

Rabin model to data on delay in canceling health club memberships, which they attribute 

to a combination of hyperbolic preferences and “lack of sophistication,” meaning that 

consumers misperceive their own hyperbolic parameter and thus incorrectly forecast their 

health club usage.22  Our model suggests several qualifications to their analysis.  First of 

all, as is standard in models of timing, it is not in general optimal for the agent to act 

whenever he is indifferent between acting now or not at all, as there is an “option value” 

in waiting.23  Second, while there is some evidence that agents do not have perfect 

                                                 
22 Sophisticated, “low � ” agents who have correct perceptions about the costs and benefits of the club 
would correctly forecast that they would rarely attend but take a long time to cancel, while agents who 
misperceive their �  would expect to exercise a lot. DellaVigna and Malmendier also show that agents 
choose monthly or annual plans with no per-visit charge when it would be cheaper to pay per visit. The use 
of prepayment as a commitment device is a consequence of both the hyperbolic and dual-self models.    
23 This factor is also present in the O’Donoghue-Rabin model, but the discussion of cancellation in 
DellaVigna and Malmendier [2003] seems to use a deterministic specification for the costs of cancellation.  
Also, the calibration measures cancellation lag by the number of full months between the last attendance 
and contract termination for users who hold a monthly contract at the time of termination.  This is a 
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knowledge about themselves, we expect them to have more information about things that 

they have had more chances to observe.24 Thus it seems natural to assume that the 

misperceptions about the short-run disutility and long-run benefits of going to the health 

club are larger than misperceptions about their own impulsiveness, and of course these 

former misperceptions can also explain the excessive delay.   

We can also compare the dual-self model to the deterministic, finite horizon 

model of O’Donoghue and Rabin [1999], which allows non-stationary costs.  In their 

Example 1, there are 4 periods to do a report, with costs 3, 5, 8, 13, and value � .  

Applying our model to this problem, we see that in the final period there is no self-

control problem, so the payoff to acting is ��� � . In the next to last period the short-run 

self gets 0 from waiting,  -8 from acting, so the utility if doing now is ��� �� �� � ; in the 

previous periods the payoffs are ��� �� ��� �� �� �� � � �  respectively. Thus the 

solution in our model is: if �� ��� �  do it at the start, else do it at the end, and never do 

in intermediate periods. This is different than their solution, even for the case of a 

sophisticated agent, as the sophisticated agent acts in the second and in the fourth periods. 

Basically this equilibrium corresponds to one of the unappealing cyclic equilibria in their 

infinite horizon model; with an odd number of periods, the equilibrium is for the 

sophisticated agent to act in the first, third and fifth periods.25 

6. Cognitive Load and Self Control 

 Shiv and Fedorikhin [1999] report on the following experiment. Subjects were 

asked to memorize either a two- or a seven-digit number, and then walk to a table with a 

choice of two deserts, namely chocolate cake and fruit salad.  Subjects would then pick a 

                                                                                                                                                 
conservative estimate if the customer knows that she will not attend in the future by the end of the month 
that included the customer’s  last visit, but otherwise may exaggerate the amount of delay. 
24 Bodner and Prelec [2003] and Benabou and Tirole [2004] build on the idea of imperfect self-knowledge 
to develop models of “self-signalling’ that they use to explain the use of  “personal rules.”  These models 
assume that the agent is uncertain of only one thing. In Benabou and Tirole [2004], for example, the agent 
knows the distribution of costs but does not know his hyperbolic parameter � . Both Bodner and Prelec 
[2003] and Benabou and Tirole [2004] analyze Bayesian equilibria of their models, which raises the 
question of whether a plausible non-equilibrium learning process would lead agents to learn the strategy of 
their “other selves” without learning the underlying value of � . Dekel et al [2004] analyze this issue in 
games between multiple agents; their results show that when �  if fixed over time, assumptions that allow 
the agent not to learn �  are typically too weak  to justify restricting attention to equilibrium.   
25 The multiple-selves version of the delay game is continuous at infinity, so from Fudenberg and Levine 
[1983] every limit of finite-horizon subgame-perfect equilibria is a subgame-perfect equilibrium in the 
infinite horizon. 
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ticket for one of the deserts, and go to report both the number and their choice in a second 

room. In one treatment, actual samples of the deserts were on the table, and in a second 

treatment, the deserts were represented by photographs. The authors’ hypothesize that 

subjects will face a self-control problem with respect to the cake, in the sense that it will 

have higher emotional appeal but be less desirable from the “cognitive” viewpoint; that 

the subject’s reaction is more likely to be determined by the emotional (“affective”) 

reaction when cognitive resources are constrained by the need to remember the longer 

number, and that this effect will be greater when faced with the actual deserts than with 

their pictures.26  The experimental results confirm these predictions. Specifically, when 

faced with the real deserts, subjects who were asked to remember the seven-digit number 

chose cake 63% of the time, while subjects given the easier two-digit number chose cake 

41% of the time, and this difference was statistically significant. In contrast, when faced 

with the pictures of the deserts, the choices were 45% and 42% respectively, and the 

difference was not significant.  

 The finding that the increasing the cognitive load increases responsiveness to 

temptation can be easily captured in our model by the assumption that the cost of self-

control is higher when the long-run self – which we identify with cognitive processing – 

has other demands on its resources.  Here are two ways of formalizing this. First, we can 

assume that the cognitive center has a fixed amount �  of cognitive resources, and that 

the resources required for self-control are proportional to the short-run foregone utility.  

Then when other cognitive tasks consume �  resources, the utility of the short-run self 

can be reduced by at most � �� ; greater self-control is simply infeasible. This model 

violates our Assumption 2, and since it corresponds to infinite costs for certain actions it 

also violates the linearity condition assumption 5. and so violates the Gul-Pesendorfer 

axioms.  

Alternatively, we can suppose that the cognitive center does not face a fixed 

resource constraint, but instead has increasing marginal cost, again abandoning 

assumption 5. Let �  be the resources required for cognitive tasks such as short-term 

memory, let �  be the resources required for self control, and let � �� � ��  be the disutility 

of the resources used in the two tasks, with the resources required for self-control 

                                                 
26 They base this last hypothesis on the work of Lowenstein [1996]. 
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proportional to the foregone utility, and thus equal to �� .  This reduces to our base 

model if � �� � ��� , but we now want to assume that cost is convex, that is, 	 �� �  and 

 �� � .27 

Let �  and �  be the short-run utilities of chocolate and fruit respectively, with 
� � � . Then � � � �� �
 �  � � , and the overall utility functions are 

� � � ��� ��!�!"	�#  � �� �  and � � � �� � �� �
 �  � �  � � � � . This implies that 

increases in �  make chocolate comparatively more attractive. 

 In the hyperbolic model, there is a sequence of far-sighted individuals with time-

inconsistent preferences parameterized by � , so the most obvious way to explain the 

Shiv and Fedorikhin result is to assume that �  decreases when the cognitive center has 

other tasks.  This is roughly analogous to our proposal, but to us it seems more natural 

and direct to assume that cognitive load uses up self-control resources. 

 The effect of substituting photographs for the actual deserts shows the importance 

of cues and framing: The evidence supports Lowenstein’s theory that vividness 

influences the effect of temptation. This raises the conjecture that the use of “rules of 

thumb” like “only have sweets at dinner” aids self-control buy reducing the vividness of 

the temptation; confirming this would require comparing brain scans of agents who use 

these rules to other agents who do not. 

7. Conclusion and Discussion 

Our resolution of the Rabin paradox shows how the dual self model captures 

“framing” effects. In our model it makes a difference whether an unanticipated payment 

is received on the floor of a casino or the lobby of a bank.  Cues are obviously the key to 

understanding framing.  The dual self theory implies that it is the attention span of the 

short-run self that is relevant for determining what constitutes a “situation” – the most 

difficult modeling issue in confronting these types of issues. This suggests that one might 

be able to use experimental and physiological data to determine what the relevant frames 

are.  The dual self theory would then enable us to paste information about the motivation 

of the myopic self into the broader context in which real decision making takes place.  

                                                 
27  The model with convex costs does not satisfy assumption 5, so it does not satisfy the Gul-Pesendorfer 
axioms. It would be interesting to know how to relax those axioms to include this specification. 
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Most existing work on cues, such as Laibson [2001] and Bernheim and Rangel 

[2004], abstracts away from self-control costs.  Laibson analyzes a “rational addiction” 

model- that is, a model with a single, fully rational, agent – in a setting where there are 

two cues, namely “green lights ” and “red lights,” and the utility from engaging in the 

addictive utility when a given light is on depends on one’s past behavior under that 

particular light. Because it is based on rational choice, the model has a unique 

equilibrium, but that equilibrium has four steady states: never indulge, always indulge, 

indulge iff green, and indulge iff red.  This shows how the agent’s experience can 

determine the importance of the cues, but does not allow the agent to have a preference 

for self-control. Bernheim and Rangel [2004] consider an addiction model where the 

agent can sometimes enters a “hot mode” in which he consumes the addictive good 

whether or not his “cool self” wants him to. The probability that this occurs depends on 

the observed cues, while which cues trigger the hot mode in turn depends on the agent’s 

past frequency of use and also on whether the cool self chooses to expend resources on 

avoiding the cues. This model, like ours, captures a value for self-control while avoiding 

the multiple equilibria of a multiple-selves model, but it differs in a number of respects. 

Most notably, in their model self control is costless in the cool mode and infinitely costly  

in the hot one. In our model the agent is in a “hot mode” whenever his actions have short-

term consequences, but even in hot mode the long-run self can exert self control. The fact 

the self-control is always possible, albeit costly, is what underlies our finding that the 

agent responds differently to small versus large gambles in our banking model: a  

sufficiently large windfall will trigger self control and the long-term perspective.  

We focus on the case of “sophisticated” agents who are aware of their own self-

control costs.  Many papers on self-control problems consider the case of “naïve” agents, 

who have a current self-control problem but incorrectly forecast that they will not have 

such problems in the future. For example, O'Donoghue and Lowenstein [2004] consider 

an extension similar to allowing agents to misperceive the future value of � . 

O'Donoghue and Lowenstein also point out that that if the current long-run self  has 

correct expectations but does not care about future costs of self control, the decision 
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making process becomes a game between the long-run selves, and the result is equivalent 

to the usual quasi-hyperbolic discounting.28  

A more complicated extension is allowing for the preferences of the short-run 

selves to respond in some way to future consequences.  The related work of Benhabib 

and Bisin [2004] does allow for one form of this responsiveness. They consider a 

consumption-savings model in which exercising self-control is a 0-1 and costly decision,  

made by a “cognitive control center” that corresponds to the long-run self in our model. 

Temptation is stochastic, and its strength is determined by an exogenous i.i.d. sequence 

of cues, so that costly self-control is only used when giving in to temptation is 

sufficiently costly. The equilibrium again corresponds to the solution of an optimization  

problem by the long-run self, who takes the behavior rule of the affective self as given.  

In contrast to our own paper and other related work, the behavior of the “affective self” – 

the mental unit that is susceptible to temptation- is not required to be myopic. Instead,   

the affective self’s strategy can depend on expectations of future play, but it must be 

independent of the distribution of temptations and the cost of self control. As an example, 

they suggest the case where the behavior of the affective self is a Markov-perfect 

equilibrium of the game where self-control is impossible. If the actual outcome is that the 

cognitive center does sometimes exercise self-control, this raises the question of how the 

adaptive selves would come to learn the equilibrium play of the wrong game.29  

Instead of following the expectations-based approach, we would like to model the 

long-run self having “taught” the short-run self to attach positive affective weight to 

certain variables that have long-run consequences, as in the learning of cues. Here the use 

of stimulus-response models of learning may play an important role. The standard forms 

of these models seem to be a poor fit for many aspects of human cognition.30 For 

example, faced with no observations people will respond differently depending on their 

                                                 
28 They also use their  model to explain non-linear probability weighting in the assessment of  
 risks 
29 It is of course possible that either the short-run or long-run self or both may misperceive the future. 
However, learning makes it less likely that these misperceptions will involve frequently experienced 
variables such as � , or more broadly, one’s own ability to exercise self-control. Moreover, when little 
learning occurs, it is not clear why one should expect to see equilibrium play. 
30 By the “standard model” here we mean that reinforcements are applied directly to actions.  Stimulus-
response dynamics can be defined on much larger spaces of sequences of actions, hypothetical 
reinforcements, etc.; at that level of generality they encompass a much larger set of phenomena.   
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prior knowledge of a situation.31 More strikingly, we know that people can learn by 

“figuring things out” without any external stimulus at all. However, these cognitive 

activities can be sensibly regarded as aspects of the long-run self, while it makes sense to 

model the expectations of the short-run self as arising from process of stimulus-response 

learning that depends solely on the past history, and does not involve forward-looking 

expectations. We would then theorize, based on introspection and casual empiricism, that 

the long-run self can train the short-run self by manipulating this stimulus-response 

learning. 

 

                                                 
31 For a particularly striking experiment where learning takes place in the absence of feedback, see Roberto 
Weber [2003]. 
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Appendix 

 

I. We first give a result for general per-period utility functions in the simple savings 

model. Consider the problem of maximizing  

 � ��
�

� � �� � ��� � � � ��
� � ��

� 	  	 �  �� � �
� �
�

� � � ���
  

over all feasible plans 	
�

, i.e. plans that satisfy ������	 �  and the wealth equation 

� �� � �� �	 �� �� . We suppose that   is non-decreasing and continuous on ��� �� ; we do 

not require continuity on ��� ��  because we want to allow for the logarithmic case where 

��� � ��!� � ��  �� ��� .  Let �  be the supremum in this problem. 

Proposition A.1: Suppose �� �  and  

(A.1) �
��
� �� �

�
 � ��

� �
�

� �� . 

Then:  (i) For any feasible plan the sum defining U has a well defined value in the sense 

that either the sum converges absolutely or converges to �� .  

 (ii) The supremum �  of the feasible values satisfies ���� ��  

 (iii) If feasible ��	 	�
� �

in the product topology then �	
�

 is feasible. If in addition 

� ��� 	 ��
�

 then �� �� 	 ��
�

. 

(iv) An optimal plan exists. That is, there is a feasible plan that attains � . 

 

Proof:  (i) For any sequence � � �	 �
� �

 with � �� � �
� �	 �� �� , let  

  
�

� �
� �

� �
�

�

�

����� � ����
 

and � � � �� �
 
� �� � � . We can write any finite sum as the sum of negative and positive 

parts. 
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The positive part of the sum is summable from (A.1), since 

 ��� � ��� � � � � ��� � � � ��� � � � � 	 �  �  	 �  � �� �� � � � � � . 

The negative part is monotone decreasing in T, so it either converges absolutely or 

converges to �� . In the former case the entire sum converges absolutely; in the latter 

case the sum converges to �� .  

 

(ii) Part (i) already shows that � �� . To see that � ��� , note that it is feasible 

to set ���	 ��  for all t, and that for �� �  this plan yields a finite value. 

 

(iii)  Consider a sequence of feasible plans ��	 	�
� �

.  Because the constraints are 

period by period and closed, it is clear that �	
�

 satisfies the constraints, so it is feasible. 

Now suppose in addition that � ��� 	 ��
�

. Choose any �	 �  and pick n large enough 

that � � ���� � 	 	� �
�

.  If we now pick �  such that   

 �
��

� � ��� �

�
 � �

�
� 	

� �
� �

�� ,  

we know that 

  � ��
�

�� � ��� � � � �� � � �
� � ��

�  	 �  �
�
� � � 	�

�
� � � � �� .  

Since  �  is finite, and payoffs in the first �  periods are bounded above by �� �� � � ,  

each term in this summation is bounded below (by �� ��� � � �	� � ). Since per-period 

payoffs are continuous at any � � �	 �  with �	 � ,  ��	 	�
� �

,  and ��

� �� �� , it follows that  

 � � � �
�

�� � ��� � � � ��
� � ��

�  	 �  �
�
� � � 	�

�
� �� � � � �� �� .  
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Since this is true for any �	 �  and we know that �� �� 	 ��
�

, we conclude that 
�� �� 	 �� . 

(iv) Now consider a feasible sequence � � �� �	 �
� �

with � ��� 	 ��
�

. Each savings rate �	  

must lie in the compact interval ����� and each ��  must lie in the compact interval 

���� ��� � , so the sequence � � �� �	 �
� �

 has an accumulation point � �� � �	 �
� �

 in the product 

topology. This accumulation point is a maximum by part (iii). 

� 

II. Now we specialize to the CRRA utility functions   

 
�� � �

� �
�

�
 �

�

�

� �
�

�
  

and � � ��� � � �� , which corresponds to the case �� � . Assuming ���� ��  implies  

 �
��
� �� �

�
 � ��

� �
�

� �� . 

It follows from Proposition A.1 that an optimum �	
�

 exists. 

Proposition A.2: With CRRA utility a stationary optimum with �	 	�  exists. 

Proof: Suppose that �	
�

 is an optimal plan. By homogeneity of the objective function, and 

the fact that plans are defined in terms of savings rates, �	
�

 is also an optimal plan starting 

in period 2 (for any initial condition). Note that the plan � � � � �
� � � �� � � � � �	 	 	 	 	�

�
�  yields 

wealth in period 2 of �
� �	 �� , and let �� �� � denote the maximized utility when starting in 

the second period with wealth �� . Then  

 � � �
� � � � �� � �� � ��� � � � � � �� 	  	 �  � � 	 �� �� � �� � � � � �

�
 

where the first equality follows because �	
�

 is optimal from period 2 on, and the second 

equality because �	
�

 is optimal from the first period. Proceeding in this way we can 

construct sequence of feasible plans � � � � �
� � � � �� � ����� � � � ��	 	 	 	 	 	�

�
�  that play �

�	  for the 

first �  periods such that �� � � ��� 	 � 	 �� �
�

. Clearly �	
�

 converges in the product 

topology to the plan of choosing the fixed savings rate �
�	 . Hence it follow from 

Proposition A.1 (iii) that this limiting plan is feasible and gives utility � ; that is, it is 

optimal. 
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III. We have shown that it is sufficient to compute the present value utility from a 

fixed savings rate 	 , and maximize over savings rates. We have present value utility  
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� � �

� � �
� �
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�
   

Since the optimal savings rate cannot be 0 or 1, we may differentiate with respect to the 

saving rate to find 

 � � � �
� �

�
�
� ��

�

�� ��� � �� � � � �� � � � �
�� �
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�

 

which gives necessary condition for an optimum32 

 ��� � ��� � �� � �	 � 	� � �� � � ��� � � � � .  

When �� �  we get the usual solution � �� �� ��	 � � � ���� .  Thus we can rewrite the first 

order condition as  
�� � � ��� � �� � ���� �	 	 	� �� � �� � � � � . 

 

IV: Turning to the simple banking model, utility starting in the second period is the 

�� �  solution 

                                                 
32 We do not know if the first-order condition has a unique solution, except in the logarithmic case. 
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The utility of both selves in the first period is 
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and so the overall objective of the long-run self is to maximize 
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The first order condition for optimal consumption is 
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If there are one or more solutions that satisfy the constraint � � �� � �� �  then one of 

them represents the optimum; otherwise the optimum is to consume all pocket cash, 
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Note that ��  is the solution for �� � , so it satisfies   
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Thus we can write the first order condition as 
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or  
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