Econ 219B Psychology and Economics: Applications (Lecture 13)

Stefano DellaVigna

April 23, 2008

Outline

- 1. Market Reaction to Biases: Introduction
- 2. Market Reaction to Biases: Pricing
- 3. Intro to Problem Set
- 4. Market Reaction to Biases: Behavioral Finance

1 Market Reaction to Biases: Introduction

- So far, we focused on consumer deviations from standard model
- Who exhibits these deviations?
 - 1. **Self-control and naivete'.** Consumers (health clubs, food, credit cards, smoking), Employees (retirement saving, benefit take-up), Students (homework)
 - 2. **Reference dependence.** Workers (labor supply, increasing wages), (inexperienced) traders (sport cards), Investors, Consumers (insurance), House owners
 - 3. **Social preferences.** Consumers (giving to charities), Employees (effort, strikes)

- 4. **Biased Beliefs.** Individual investors, CEOs, Consumers (purchases, betting)
- 5. Inattention. Individual investors, Consumers (eBay bidding, taxation)
- 6. Menu Effects. Individual investors, Consumers (loans, 410(k) plans)
- 7. Social Pressure and Persuasion. Voters, Employees (productivity), Individual investors (and analysts)
- 8. Emotions. Individual investors, Consumers
- What is missing from picture?

- Experienced agents
- Firms
- Broadly speaking, market interactions with 'rational' agents
- Market interactions
 - Everyone 'born' with biases
 - But: Effect of biases lower if:
 - * learning with plenty of feedback
 - * advice, access to consulting
 - * specialization

* Competition 'drives out of market' (BUT: See last lecture)

- For which agents are these conditions more likely to be satisfied?
- Firms
- In particular, firms more likely to be aware of biases

- Implications? Study biases in the market
- Six major instances:
 - Interaction between firms and consumers (contract design, price choice — today)
 - Interaction between experienced and inexperienced investors (noise traders and behavioral finance — today or next week)
 - Interaction between managers and investors (corporate finance next week)
 - Interaction between employers and employees (labor economics briefly next week)
 - Interaction between politicians and voters (political economy next week)
 - Institutional design (next week)

2 Market Reaction to Biases: Pricing

- Consider now the case in which consumers purchasing products have biases
- Firm maximize profits
- Do consumer biases affect profit-maximizing contract design?
- How is consumer welfare affected by firm response?
- Analyze first the case of consumers with $\left(eta, \hat{eta}, \delta
 ight)$ preferences

2.1 Self-Control

MARKET (I). INVESTMENT GOODS

- Monopoly
- Two-part tariff: L (lump-sum fee), p (per-unit price)
- Cost: set-up cost K, per-unit cost a

Consumption of investment good

Payoffs relative to best alternative activity:

- Cost c at t = 1, stochastic
 - non-monetary cost
 - experience good, distribution F(c)
- Benefit b > 0 at t = 2, deterministic

CONSUMER BEHAVIOR.

• Long-run plans at t = 0:

Consume
$$\iff \beta \delta(-p - c + \delta b) > 0$$

$$\iff c < \delta b - p$$

• Actual consumption decision at t = 1:

Consume $\iff c < \beta \delta b - p$ (Time Inconsistency)

• Forecast at t = 0 of consumption at t = 1:

Consume $\iff c < \hat{\beta}\delta b - p$ (Naiveté)

FIRM BEHAVIOR. Profit-maximization

$$\max_{L,p} \delta \{L - K + F(\beta \delta b - p)(p - a)\}$$

s.t. $\beta \delta \{-L + \int_{-\infty}^{\hat{\beta} \delta b - p} (\delta b - p - c) dF(c)\} \ge \beta \delta \overline{u}$

• Notice the difference between β and $\hat{\beta}$

Solution for the per-unit price p^* :

$$p^{*} = a \qquad [exponentials]$$

$$-\left(1-\hat{\beta}\right)\delta b \frac{f\left(\hat{\beta}\delta b - p^{*}\right)}{f\left(\beta\delta b - p^{*}\right)} \qquad [sophisticates]$$

$$-\frac{F\left(\hat{\beta}\delta b - p^{*}\right) - F\left(\beta\delta b - p^{*}\right)}{f\left(\beta\delta b - p^{*}\right)} \qquad [naives]$$

Features of the equilibrium

1. Exponential agents $(\beta = \hat{\beta} = 1)$. Align incentives of consumers with cost of firm \implies marginal cost pricing: $p^* = a$.

$$p^{*} = a \qquad [exponentials] \\ -\left(1-\hat{\beta}\right)\delta b \frac{f\left(\hat{\beta}\delta b - p^{*}\right)}{f\left(\beta\delta b - p^{*}\right)} \qquad [sophisticates] \\ -\frac{F\left(\hat{\beta}\delta b - p^{*}\right) - F\left(\beta\delta b - p^{*}\right)}{f\left(\beta\delta b - p^{*}\right)} \qquad [naives]$$

- 2. *Hyperbolic agents.* Time inconsistency \implies below-marginal cost pricing: $p^* < a$.
 - (a) Sophisticates ($eta=\hat{eta}<1$): commitment.
 - (b) Naives ($\beta < \hat{\beta} = 1$): overestimation of consumption.

MARKET (II). LEISURE GOODS

Payoffs of consumption at t = 1:

- Benefit at t = 1, stochastic
- Cost at t = 2, deterministic

 \implies Use the previous setting: -c is "current benefit", b < 0 is "future cost." **Results:**

1. Exponential agents.

Marginal cost pricing: $p^* = a$, $L^* = K$ (PC).

2. Hyperbolic agents tend to overconsume. \implies Above-marginal cost pricing: $p^* > a$. Initial bonus $L^* < K$ (PC).

EMPIRICAL PREDICTIONS

Two predictions for time-inconsistent consumers:

- 1. Investment goods (Proposition 1):
 - (a) Below-marginal cost pricing
 - (b) Initial fee (Perfect Competition)
- 2. Leisure goods (Corollary 1)
 - (a) Above-marginal cost pricing
 - (b) Initial bonus or low initial fee (Perfect Competition)

FIELD EVIDENCE ON CONTRACTS

- US Health club industry (\$11.6bn revenue in 2000)
 - monthly and annual contracts
 - Estimated marginal cost: 3-6 + congestion cost
 - Below-marginal cost pricing despite small transaction costs and price discrimination
- Vacation time-sharing industry (\$7.5bn sales in 2000)
 - high initial fee: \$11,000 (RCI)
 - minimal fee per week of holiday: \$140 (RCI)

- Credit card industry (\$500bn outstanding debt in 1998)
 - Resale value of credit card debt: 20% premium (Ausubel, 1991)
 - No initial fee, bonus (car / luggage insurance)
 - Above-marginal-cost pricing of borrowing

- Gambling industry: Las Vegas hotels and restaurants:
 - Price rooms and meals below cost, at bonus
 - High price on gambling

WELFARE EFFECTS

Result 1. Self-control problems + Sophistication \Rightarrow First best

- Consumption if $c \leq \beta \delta b p^*$
- Exponential agent:

$$- p^* = a$$

- consume if $c \leq \delta b p^* = \delta b a$
- Sophisticated time-inconsistent agent:

$$- p^* = a - (1 - \beta)\delta b$$

- consume if $c \leq \beta \delta b p^* = \delta b a$
- Perfect commitment device
- Market interaction maximizes joint surplus of consumer and firm

Result 2. Self-control + Partial naiveté \Rightarrow Real effect of time inconsistency

•
$$p^* = a - [F(\delta b - p^*) - F(\beta \delta b - p^*)] / f(\beta \delta b - p^*)$$

- $\bullet\,$ Firm sets p^* so as to accentuate overconfidence
- Two welfare effects:
 - Inefficiency: $Surplus_{naive} \leq Surplus_{soph.}$
 - Transfer (under monopoly) from consumer to firm
- Profits are increasing in naivete' $\hat{\beta}(monopoly)$
- Welfare_{naive} \leq Welfare_{soph}.
- Large welfare effects of non-rational expectations

2.2 Self-Control 2

- Kfir and Spiegler (2004), Contracting with Diversely Naive Agents.
- Extend DellaVigna and Malmendier (2004):
 - incorporate heterogeneity in naiveté
 - allow more flexible functional form in time inconsistency
 - different formulation of naiveté

• Setup:

- 1. Actions:
 - Action $a \in [0, 1]$ taken at time 2
 - At time 1 utility function is u(a)
 - At time 2 utility function is v(a)
- 2. Beliefs: At time 1 believe:
 - Utility is u(a) with probability θ
 - Utility is $v\left(a
 ight)$ with probability $\mathbf{1}- heta$
 - Heterogeneity: Distribution of types $\boldsymbol{\theta}$
- 3. Transfers:
 - Consumer pays firm t(a)
 - Restrictive assumption: no cost to firm of providing \boldsymbol{a}

- Therefore:
 - Time inconsistency ($\beta < 1$) –> Difference between u and v

- Naiveté (
$$\hat{\beta} > \beta$$
) -> $\theta > 0$

- Partial naiveté here modelled as stochastic rather than deterministic
- Flexibility in capturing time inconsistency (self-control, reference dependence, emotions)

- Main result:
- **Proposition 1.** There are two types of contracts:
 - 1. Perfect commitment device for sufficiently sophisticated agents ($\theta < \underline{\theta}$)
 - 2. Exploitative contracts for sufficiently naive agents ($\theta > \underline{\theta}$)
- Commitment device contract:
 - Implement $a_{\theta} = \max_{a} u(a)$
 - Transfer:
 - * $t(a_{\theta}) = \max_{a} u(a)$
 - * $t(a) = \infty$ for other actions
 - Result here is like in DM: Implement first best

- Exploitative contract:
 - Agent has negative utility:

$$u\left(a_{\theta}^{v}\right) - t\left(a_{\theta}^{v}\right) < \mathbf{0}$$

- Maximize overestimation of agents:

$$a_{\theta}^{u} = \arg \max \left(u\left(a \right) - v\left(a \right) \right)$$

2.3 Bounded Rationality

- Gabaix and Laibson (2003), Competition and Consumer Confusion
- Non-standard feature of consumers:
 - Limited ability to deal with complex products
 - imperfect knowledge of utility from consuming complex goods

Firms are aware of bounded rationality of consumers
 → design products & prices to take advantage of bounded rationality of consumers

Three steps:

- 1. Given product complexity, given number of firms: What is the mark-up? Comparative statics.
- 2. Given product complexity: endogenous market entry. What is the markup? What is the number of firms?
- 3. Endogenous product complexity, endogenous market entry: What are markup, number of firms, and degree of product complexity?

We will go through 1, skip 2, and talk about the intuition of 3.

Example: Checking account. Value depends on

- interest rates
- fees for dozens of financial services (overdrafts, more than x checks per months, low average balance, etc.)
- bank locations
- bank hours
- ATM locations
- web-based banking services
- linked products (e.g. investment services)

Given such complexity, consumers do not know the exact value of products they buy.

Model

- Consumers receive noisy, *unbiased* signals about product value.
 - Agent a chooses from n goods.
 - True utility from good i:

$$Q_i - p_i$$

- Utility signal

$$U_{ia} = Q_i - p_i + \sigma_i \varepsilon_{ia}$$

 σ_i is complexity of product *i*.

 ε_{ia} is zero mean, iid across consumers and goods, with density f and cumulative distribution F.

(Suppress consumer-specific subscript a;

$$U_i \equiv U_{ia}$$
 and $\varepsilon_i \equiv \varepsilon_{ia}$.)

• Consumer decision rule: Picks the one good with highest signal U_i from $(U_i)_{i=1}^n$.

(Assumption! What justifies this assumption?) Demand for good i

$$\begin{split} D_i &= P\left(U_i > \max_{j \neq i} U_j\right) \\ &= E\left[P\left[\text{for all } j \neq i, U_i > U_j | \varepsilon_i\right]\right] \\ &= E\left[\prod_{j \neq i} P\left[U_i > U_j | \varepsilon_i\right]\right] \\ &= E\left[\prod_{j \neq i} P\left[\frac{Q_i - p_i - (Q_j - p_j) + \sigma_i \varepsilon_i}{\sigma_j} > \varepsilon_j | \varepsilon_i\right]\right] \end{split}$$

$$D_{i} = \int f(\varepsilon_{i}) \prod_{j \neq i} F\left(\frac{Q_{i} - p_{i} - (Q_{j} - p_{j}) + \sigma_{i}\varepsilon_{i}}{\sigma_{j}}\right) d\varepsilon_{i}$$

Market equilibrium with exogenous complexity

Bertrand competition with

- Q_i : quality of a good,
 - σ_i : complexity of a good,
 - c_i : production cost
 - p_i : price
- Simplification: Q_i, σ_i, c_i identical across firms. (*Problem: How should consumers choose if all goods are known to be identical?*)
- Firms maximize profit $\pi_i = (p_i c_i) D_i$
- Symmetry reduces demand to

$$D_{i} = \int f(\varepsilon_{i}) F\left(\frac{p_{j} - p_{i} + \sigma \varepsilon_{i}}{\sigma}\right)^{n-1} d\varepsilon_{i}$$

Example of demand curves

Gaussian noise $arepsilon \sim N$ (0,1) , 2 firms

Demand curve faced by firm 1:

$$D_{1} = P(Q - p_{1} + \sigma \varepsilon_{1} > Q - p_{2} + \sigma \varepsilon_{2})$$

= $P(p_{2} - p_{1} > \sigma \sqrt{2}\eta)$ with $\eta = (\varepsilon_{2} - \varepsilon_{1}) / \sqrt{2} N(0,1)$
= $\Phi\left(\frac{p_{2} - p_{1}}{\sigma \sqrt{2}}\right)$

Usual Bertrand case ($\sigma = 0$) : infinitely elastic demand at $p_1 = p_2$

$$D_1 \in \left\{ \begin{array}{ll} 1 & \text{if} \quad p_1 < p_2 \\ [0,1] & \text{if} \quad p_1 = p_2 \\ 0 & \text{if} \quad p_1 > p_2 \end{array} \right\}$$

Complexity case ($\sigma > 0$) : Smooth demand curve, no infinite drop at $p_1 = p_2$. At $p_1 = p_2 = p$ demand is 1/2.

$$\max_{p_1} \Phi\left(\frac{p_2 - p_1}{\sigma\sqrt{2}}\right) \left[p_1 - c_1\right]$$

$$f.o.c.: -\frac{1}{\sigma\sqrt{2}}\phi\left(\frac{p_2-p_1}{\sigma\sqrt{2}}\right)[p_1-c_1] + \Phi\left(\frac{p_2-p_1}{\sigma\sqrt{2}}\right) = 0$$

Intuition for non-zero mark-ups: Lower elasticity increases firm mark-ups and profits. Mark-up proportional to complexity σ .

Endogenous complexity

• Consider Normal case –> For $\sigma \to \infty$

$$\max_{p_1} \Phi\left(\frac{p_2 - p_1}{\sigma\sqrt{2}}\right) [p_1 - c_1] \to \max_{p_1} \frac{1}{2} [p_1 - c_1]$$

Set $\sigma \to \infty$ and obtain infinite profits by letting $p_1 \to \infty$

(Choices are random, Charge as much as possible)

Gabaix and Laibson: Concave returns of complexity Q_i (σ_i)
 Firms increase complexity, unless "clearly superior" products in model with heterogenous products.

In a nutshell: market does not help to overcome bounded rationality. Competition may not help either

- More work on Behavioral IO:
- Heidhus-Koszegi (2006, 2007)
 - Incorporate reference dependence into firm pricing
 - Assume reference point rational exp. equilibrium (Koszegi-Rabin)
 - Results on
 - * Price compression (consumers hate to pay price higher than reference point)
 - * But also: Stochastic sales
- Gabaix-Laibson (1996)
 - Consumers pay attention to certain attributes, but not others (Shrouded attributes)

- Form of limited attention
- Firms charge higher prices on shrouded attributes (add-ons)
- Similar to result in DellaVigna-Malmendier (2004): Charge more on items consumers do not expect to purchase
- Ellison (2006): Early, very concise literature overview
- Future work: Empirical Behavioral IO
 - Document non-standard behavior
 - Estimate structurally
 - Document firm response to non-standard feature

3 Intro to Problem Set

- Problem set focused on financial markets
- Biases of investors and accountants
- Accounting Information on company performance
 - accounting books
 - quarterly earnings announcement
- Two main focuses:
 - Optimal accounting rules
 - Stock price response to profitability information in accounting books

- What is right valuation of company?
 - Crucial to guarantee right allocation of capital
 - Denote $e_{t,k}$ earnings (profits) of company k in year t
 - Stock price = Discounted sum of future cash flows:

$$p_{t,k} = e_{t,k} + \frac{e_{t+1,k}}{1+r} + \frac{e_{t+2,k}}{(1+r)^2} + \dots$$

- Need forecasts of future profitability $e_{t,k}$
- Two main components:
 - Short-run earnings performance
 - Long-run performance
 - Analysts provide forecasts on both

- Analysts. Process information on companies and make it available (for a fee)
 - Sell-side. Work for brokerage firm (investment bank)
 - Buy-side. Work for mutual funds
 - Sell-side analysts:
 - more likely to have conflict of interest (Inv. Bank selling shares of target company)
 - * data widely available (IBES, FirstCall)

- Analysts generate two main outputs:
 - 1. Earning forecasts $\hat{e}_{t,k}$
 - Dollar earning per share of company
 - Quarterly or annual

– Forecast h years into the future: $h\simeq$ 3,4 years

- 2. Long-term "growth rate" of earnings g_e
- Common forecasting model:

$$\hat{p}_{t,k} = e_{t,k} + \frac{\hat{e}_{t+1,k}}{1+r} + \frac{\hat{e}_{t+2,k}}{(1+r)^2} + \dots + \sum_{t=0}^{\infty} \frac{1}{(1+r)^{h+t}} \hat{e}_{t+h,k} * g_e$$

Company releases of information

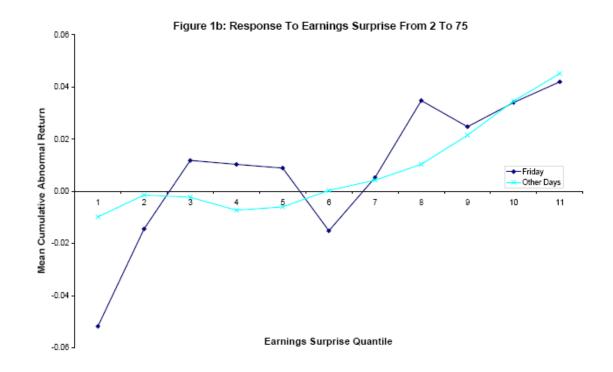
- Each quarter: Announcement of accounting performance
 - Scheduled announcement, conference call
 - Release of accounting indicators
 - Special focus on earnings per share $e_{t,k}$
- Comparison of forecasted and realized earnings
- Measure of new information: earning surprise $e_{t,k} \hat{e}_{t,k}$.
- Renormalize by price of share: $s_{t,k} = \left(e_{t,k} \hat{e}_{t,k}\right) / p_{t,k}$
- Investors react to new information by updating stock price $p_{t,k}$

• Problem set

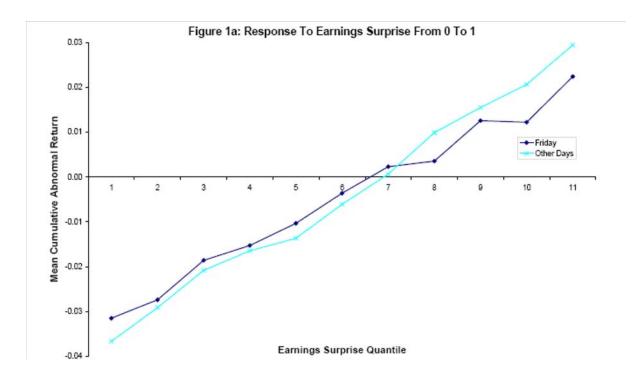
- Focus on response of stock prices to earning surprise
- Economic significance:
 - Processing of new information
 - * Clean measure of information
 - * Clean measure of response
 - Timing of release of information by company

- Identify in the data three anomalies:
- Anomaly 1. Post-Earnings Announcement Drift. (Chan, Jegadeesh, and Lakonishok, 1996; Bernard and Thomas, 1989).
 - Announcements of good news in earnings $e_{t,k}$ are followed by higher returns over next 2-3 quarters
 - Arbitrage should eliminate this
 - Interpretation: Investors inattentive initially, news incorporated slowly over time
- Measure new information using earnings surprise $s_{t,k}$
- Follow standard 'quantile' procedure: Divide into quantiles based on $s_{t,k}$

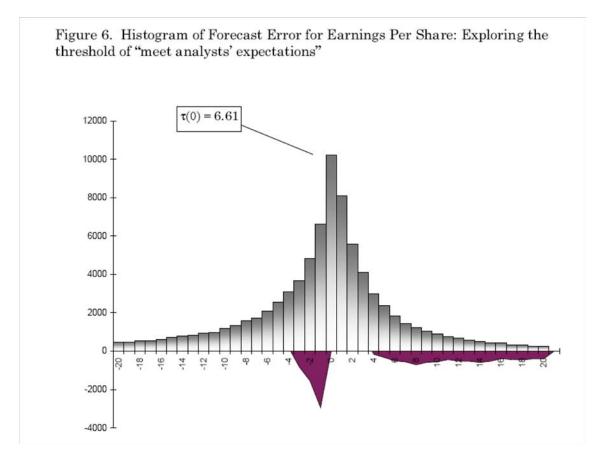
- Plot returns for each quantile
- Focus on light blue line for now (Figure from DellaVigna and Pollet, 2006)



- Anomaly 2. Less Immediate Response and more Drift when More distractions (DellaVigna-Pollet, forthc.; Hirshleifer-Lim-Teoh, 2007)
 - Announcements on Friday (DVP) or with more competing news (HLT):
 - * Drift stronger and Immediate response lower
 - * Inattention: More distracted investors



- Anomaly 3. (Degeorge, Patel, and Zeckhauser, 1999)
 - CEOs shift the earnings so as to meet analyst expectations



- Similar result if earnings compared to earnings 4 quarters ago or compared to zero profits
- Interpretation:
 - Investors have 'bias': They penalize significantly companies that fail to meet thresholds
 - Managers cater to this bias by manipulating earnings

4 Methodology: Clustering Standard Errors

- Common econometric issue: Errors correlated across groups of observations
- Example 1. State-Year panel: Effect of abortion on crime
 - 1. Persistent shock to State over time (Autocorrelation)
 - 2. Correlation in shocks across State within year (Cross-Sectional correlation)
- Example 2. Earnings announcement panel
 - 1. Persistent shock to Company over time (Autocorrelation)
 - 2. Correlation in shocks across companies within date (Cross-Sectional correlation)

- OLS standard errors assume i.i.d. cross-sectionally and over time
- Clustered standard errors can take care of Issue 1 or 2 not both:
 - 1. Cluster by State (Company):
 - Assume independence across States (companies)
 - Allow for any correlation over time within State (company)
 - 2. Cluster by year (date)
 - Assume independence across years (dates)
 - Allow for any correlation within a year (date) across States (companies)
- How does this work?

• Assume simple univariate regression:

$$y_{it} = \alpha + \beta x_{it} + \varepsilon_{it}$$

• OLS estimator:

$$\hat{\beta} = \beta + (x'x)^{-1} x'\varepsilon = \beta + \frac{Cov(x,\varepsilon)}{Var(x)}$$

•
$$Var\left(\hat{eta}
ight)$$
 under i.i.d. assumptions:

$$Var\left(\hat{\beta}\right)_{OLS} = \left(x'x\right)^{-1} \sum_{i,t} \left(x_{it}\hat{\varepsilon}_{it}\right) \left(\hat{\varepsilon}_{it}x_{it}\right) \left(x'x\right)^{-1} \frac{1}{NT} = \frac{\hat{\sigma}^2}{\sum x_{it}^2 NT}$$

• White-heteroskedastic:

$$Var\left(\hat{\beta}\right)_{Het} = \frac{1}{\sum_{it} x_{it}^2} \sum_{it} \frac{x_{it}^2 \hat{\varepsilon}_{it}^2}{\sum x_{it}^2}$$

• White-heteroskedastic:

$$Var\left(\hat{\beta}\right)_{Het} = \frac{1}{\sum_{it} x_{it}^2} \sum_{it} \frac{(x_{it}\hat{\varepsilon}_{it})^2}{\sum x_{it}^2}$$

- Notice: Second sum is weighted average of $\hat{\varepsilon}_{it}^2$, with more weight given to observations with higher x_{it}^2
- If high x_{it}^2 is associated with high $\hat{\varepsilon}_{it}^2$, $Var\left(\hat{\beta}\right)_{Het} > Var\left(\hat{\beta}\right)_{OLS}$
- Standard Errors Clustered by *I* (allow for autocorrelation):

$$Var\left(\hat{\beta}\right)_{Clust} = \frac{1}{\sum_{it} x_{it}^2} \sum_{i} \frac{\left(\sum_{t} x_{it} \hat{\varepsilon}_{it}\right)^2}{\sum_{i} x_{it}^2}$$

- First sum all the covariances $x_{it} \hat{\varepsilon}_{it}$ within a cluster
- Then square up and add across the clusters
- Notice: This is as if one cluster (one i) was one observation

• That is, this form of clustering allows

$$E(u_{it}u_{it'}|X_{it}X_{it'}) \neq 0$$

- Correlation within cluster \boldsymbol{i}
- Requires

$$E(u_{it}u_{i't'}|X_{it}X_{i't'}) = \mathbf{0}$$

for $i \neq i'$

- No correlation across clusters

- When is $Var\left(\hat{\beta}\right)_{Clust} > Var\left(\hat{\beta}\right)_{Het}$?
- Example: Assume I = 2, T = 2

$$Var\left(\hat{\beta}\right)_{Het} = \frac{1}{\sum_{it} x_{it}^2} \frac{(x_{11}\hat{\varepsilon}_{11})^2 + (x_{12}\hat{\varepsilon}_{12})^2 + (x_{21}\hat{\varepsilon}_{21})^2 + (x_{22}\hat{\varepsilon}_{22})^2}{\sum x_{it}^2}$$

• Compare to

$$Var(\hat{\beta})_{Clust} = \frac{1}{\sum_{it} x_{it}^2} \frac{(x_{11}\hat{\varepsilon}_{11} + x_{12}\hat{\varepsilon}_{12})^2 + (x_{21}\hat{\varepsilon}_{21} + x_{22}\hat{\varepsilon}_{22})^2}{\sum x_{it}^2} = = Var(\hat{\beta})_{Het} + \frac{1}{\sum_{it} x_{it}^2} \frac{2x_{11}\hat{\varepsilon}_{11}\hat{\varepsilon}_{12}x_{12} + x_{21}\hat{\varepsilon}_{21}\hat{\varepsilon}_{22}x_{22}}{\sum x_{it}^2}$$

- Hence, $Var(\hat{\beta})_{Clust} > Var(\hat{\beta})_{Het}$ if $Ex_{i1}x_{i2} > 0$ and $E\hat{\varepsilon}_{i1}\hat{\varepsilon}_{i2} > 0$ 0->Positive correlation within cluster among x variables and ε
- Positive correlation -> Standard errors understated if no clustering

- Calculation of Adjustment of Standard Errors due to Clustering
 - T observations within cluster
 - Within-cluster correlation of x_s : ho_x
 - Within-cluster correlation of arepsilon: $ho_arepsilon$
- Compare $Var(\hat{\beta})_{Clust}$ and $Var(\hat{\beta})_{OLS}$: $Var(\hat{\beta})_{Clust} = Var(\hat{\beta})_{OLS} * (1 + (T - 1)\rho_x \varrho_{\varepsilon})$
 - Standard errors downward biased with OLS if $\rho_x \varrho_{\varepsilon} > 0$, or positive correlations (as above)
 - No bias if no correlation in either x or ε
 - Bias larger the larger is ${\cal T}$
 - Illustrative case: Suppose all observations within cluster identical ($ho_x=
 ho_arepsilon=1$) –> Bias = T

- Issues with clustering:
- Issue 1. Number of clusters
 - Convergence with speed I –> Need a large number of clusters I to apply LLN
 - Beware of papers that apply clustering with <20 clusters
 - Cameron-Gelbach-Miller (2008): Test with good finite sample properties even for $I \approx 10$
- Issue 2. Cluster in only one dimension
 - Clustering by I controls for autocorrelation
 - Clustering by T controls for cross-sectional correlation
 - How can control for both? Cannot really -> However: Cameron-Gelbach-Miller (2006): Two-way clustering, can do so

- Readings on clustered standard errors:
 - Stata Manual -> basic, intuitive
 - Bertrand-Duflo-Mullainathan (QJE, 2004) -> Excellent discussion of practical issues with autocorrelation in diff-in-diff papers, good intuition
 - **Peterson (2007)** -> Fairly intuitive, applied to finance
 - Cameron-Trivedi (2006) and Wooldridge (2003) -> More serious treatment
 - Colin Cameron (Davis)'s website -> Updates

5 Market Reaction to Biases: Behavioral Finance

- Who do 'smart' investors respond to investors with biases?
- First, brief overview of anomalies in Asset Pricing (from Barberis and Thaler, 2004)

1. Underdiversification.

- (a) Too few companies.
 - Investors hold an average of 4-6 stocks in portfolio.
 - Improvement with mutual funds
- (b) Too few countries.
 - Investors heavily invested in own country.
 - Own country equity: 94% (US), 98% (Japan), 82% (UK)
 - Own area: own local Bells (Huberman, 2001)

(c) Own company

 In companies offering own stock in 401(k) plan, substantial investment in employer stock

2. Naive diversification.

Investors tend to distribute wealth 'equally' among alternatives in 401(k) plan (Benartzi and Thaler, 2001; Huberman and Jiang, 2005)

3. Excessive Trading.

- Trade too much given transaction costs (Odean, 2001)

4. Disposition Effect in selling

- Investors more likely to sell winners than losers

5. Attention Effects in buying

 Stocks with extreme price or volume movements attract attention (Odean, 2003)

• Should market forces and arbitrage eliminate these phenomena?

• Arbitrage:

- Individuals attempt to maximize individual wealth
- They take advantage of opportunities for free lunches
- Implications of arbitrage: 'Strange' preferences do not affect pricing
- Implication: For prices of assets, no need to worry about behavioral stories

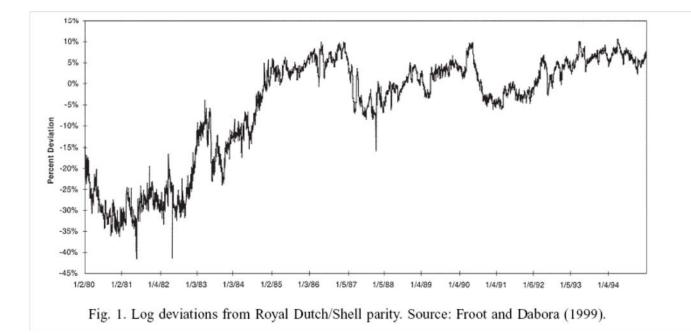
• Is it true?

- Fictitious example:
 - Asset A returns \$1 tomorrow with p = .5
 - Asset B returns \$1 tomorrow with p = .5
 - Arbitrage –> Price of A has to equal price of B
 - If $p_A > p_B$,
 - \ast sell A and buy B
 - * keep selling and buying until $p_A = p_B$
 - Viceversa if $p_A < p_B$

- Problem: Arbitrage is limited (de Long et al., 1991; Shleifer, 2001)
- In Example: can buy/sell A or B and tomorrow get fundamental value
- In Real world: prices can diverge from fundamental value

- Real world example. Royal Dutch and Shell
 - Companies merged financially in 1907
 - Royal Dutch shares: claim to 60% of total cash flow
 - Shell shares: claim to 40% of total cash flow
 - Shares are nothing but claims to cash flow
 - Price of Royal Dutch should be 60/40=3/2 price of Shell

• p_{RD}/p_S differs substantially from 1.5 (Fig. 1)



• Plenty of other example (Palm/3Com)

- What is the problem?
 - Noise trader risk, investors with correlated valuations that diverge from fundamental value
 - (Example: Naive Investors keep persistently bidding down price of Shell)
 - In the long run, convergence to cash-flow value
 - In the short-run, divergence can even increase
 - (Example: Price of Shell may be bid down even more)

• Noise Traders

- DeLong, Shleifer, Summers, Waldman (*JPE* 1990)
- Shleifer, Inefficient Markets, 2000
- Fundamental question: What happens to prices if:
 - (Limited) arbitrage
 - Some irrational investors with correlated (wrong) beliefs
- First paper on Market Reaction to Biases
- *The* key paper in Behavioral Finance

The model assumptions

- A1: arbitrageurs risk averse and short horizon
- \longrightarrow Justification?
 - * Short-selling constraints
 - (per-period fee if borrowing cash/securities)
 - * Evaluation of Fund managers.
 - * Principal-Agent problem for fund managers.

A2: noise traders (Kyle 1985; Black 1986)

misperceive future expected price at $t\ {\rm by}$

$$\rho_t \overset{i.i.d.}{\sim} \mathcal{N}(\rho^*, \sigma_{\rho}^2)$$

misperception *correlated* across noise traders ($\rho^* \neq 0$)

- \longrightarrow Justification?
 - * fads and bubbles (Internet stocks, biotechs)
 - * pseudo-signals (advice broker, financial guru)
 - * behavioral biases / misperception riskiness

What else?

- μ noise traders, (1μ) arbitrageurs
- OLG model
 - Period 1: initial endowment, trade
 - Period 2: consumption
- $\bullet\,$ Two assets with identical dividend r
 - safe asset: perfectly elastic supply
 - \implies price=1 (numeraire)
 - unsafe asset: inelastic supply (1 unit)
 price?
- Demand for unsafe asset: λ^a and λ^n , with $\lambda^a + \lambda^n = 1$.

$$U(w) = -e^{-2(\gamma w)} (w \text{ wealth when old})$$
$$E[U(w)] = \int_{-\infty}^{\infty} -e^{-2\gamma w} \cdot \frac{1}{\sqrt{2\pi\sigma^2}} \cdot e^{-\frac{1}{2\sigma^2}(w-\overline{w})}$$
$$= -e^{-2\gamma(\overline{w}-\gamma\sigma_w^2)}$$

$$\max E\left[U(w)
ight] \qquad \bigcirc \max \overline{w} - \gamma \sigma_w^2$$
 pos. mon. transf.

 \bigcup

Arbitrageurs:

$$\begin{aligned} \max(w_t - \lambda_t^a p_t)(1+r) \\ + \lambda_t^a (E_t[p_{t+1}] + r) \\ - \gamma (\lambda_t^a)^2 Var_t(p_{t+1}) \end{aligned}$$

Noise traders:

$$\max(w_t - \lambda_t^n p_t)(1+r)$$
$$+\lambda_t^n (E_t[p_{t+1}] + \rho_t + r)$$
$$-\gamma (\lambda_t^n)^2 Var_t(p_{t+1})$$

(Note: Noise traders know how to factor the effect of future price volatility into their calculations of values.)

f.o.c.

Arbitrageurs: $\frac{\partial E[U]}{\partial \lambda_t^a} \stackrel{!}{=} 0$

$$\lambda_t^a = \frac{r + E_t[p_{t+1}] - (1+r)p_t}{2\gamma \cdot Var_t(p_{t+1})}$$

Noise traders: $\frac{\partial E[U]}{\partial \lambda_t^n} \stackrel{!}{=} \mathbf{0}$

$$\lambda_t^n = \frac{r + E_t[p_{t+1}] - (1+r)p_t}{2\gamma \cdot Var_t(p_{t+1})} + \frac{\rho_t}{2\gamma \cdot Var_t(p_{t+1})}$$

Interpretation

- Demand for unsafe asset function of:
 - (+) expected return $(r + E_t[p_{t+1}] (1+r)p_t)$
 - (-) risk aversion (γ)
 - (-) variance of return $(Var_t(p_{t+1}))$
 - (+) overestimation of return ρ_t (noise traders)
- Notice: noise traders hold more risky asset than arb. if $\rho > 0$ (and viceversa)
- Notice: Variance of prices come from noise trader risk. "Price when old" depends on uncertain belief of next periods' noise traders.

Impose general equilibrium: $\lambda^a + \lambda^n = 1$

Price

$$p_t = 1 + \frac{\mu(\rho_t - \rho^*)}{1 + r} + \frac{\mu\rho^*}{r} - \frac{2\gamma\mu^2\sigma_{\rho}^2}{r(1 + r)^2}$$

• Noise traders affect prices!

Interpretation

- Term 1: Variation in noise trader (mis-)perception
- Term 2: Average misperception of noise traders
- Term 3: Compensation for noise trader risk
- Special case: $\mu = 0$ (no noise traders)

Relative returns of noise traders

• Compare returns to noise traders R^n to returns for arbitrageurs R_a :

$$egin{aligned} \Delta R &= R^n - R^a = (\lambda_t^n - \lambda_t^a) \left[r + p_{t+1} - p_t \left(1 + r
ight)
ight] \ E\left(\Delta R
ight) &=
ho^* - rac{(1+r)^2 \left(
ho^*
ight)^2 + (1+r)^2 \, \sigma_
ho^2}{2 \gamma \mu \sigma_
ho^2} \end{aligned}$$

- Noise traders hold more risky asset if $\rho^* > 0$
- Return of noise traders can be higher if $\rho^* > 0$ (and not too positive)
- Noise traders therefore may outperform arbitrageurs if optimistic!
- (Reason is that they are taking more risk)

Welfare

- Sophisticated investors have higher utility
- Noise traders have lower utility than they expect
- Noise traders may have higher returns (if $\rho^* > 0$)
- Noise traders do not necessarily disappear over time

- Three fundamental assumptions
 - 1. OLG: no last period; short horizon
 - 2. Fixed supply unsafe asset (a cannot convert safe into unsafe)
 - 3. Noise trader risk systematic

- Noise trader models imply that biases affect asset prices:
 - Reference Dependence
 - Attention
 - Persuasion

- Here:
 - Biased investors
 - Non-biased investors
- Behavioral corporate finance:
 - Investors (biased)
 - CEOs (smart)
- Behavioral Industrial Organization:
 - Consumers (biased)
 - Firms (smart)

6 Next Lecture

- More Market Response to Biases
 - Managers: Corporate Decisions
 - Employers: Contracting
 - Politicians: Political Economy
 - Welfare Response to Biases
- Methodology of Field Psychology and Economics
- Concluding Remarks