Econ 219B Psychology and Economics: Applications (Lecture 8)

Stefano DellaVigna

March 12, 2008

Outline

- 1. Non-Standard Beliefs
- 2. Overconfidence
- 3. Law of Small Numbers
- 4. Projection Bias

1 Non-Standard Beliefs

• So far, focus on non-standard utility function $U(x_i^t|s_t)$ as deviations from standard model:

$$\max_{x_{i}^{t} \in X_{i}} \sum_{t=0}^{\infty} \delta^{t} \sum_{s_{t} \in S_{t}} p(s_{t}) U(x_{i}^{t}|s_{t})$$

- Non-standard preferences
 - Self-Control Problems (β, δ)
 - Reference Dependence $(U(x_i^t|s_i, r))$
 - Social Preferences $(U(x_i, x_{-i}|s))$

• Today: Non-Standard Beliefs:

$$\max_{x_{i}^{t} \in X_{i}} \sum_{t=0}^{\infty} \delta^{t} \sum_{s_{t} \in S_{t}} \tilde{p}\left(s_{t}\right) U\left(x_{i}^{t} | s_{t}\right)$$

where $\tilde{p}(s_t)$ is the subjective distribution of states S_i for agent.

- Distribution for agent differs from actual distribution: $\tilde{p}(s_t) \neq p(s_t)$
- Three main examples:
 - 1. Overconfidence. Overestimate one's own skills (or precision of estimate): $\tilde{p} (good \ state_t) > p (good \ state_t)$
 - 2. Law of Small Numbers. Gambler's Fallacy and Overinference in updating from past signals $\tilde{p}(s_t|s_{t-1})$
 - 3. Projection Bias. Expect future utility $\widetilde{U}\left(x_{i}^{t}|s_{t}\right)$ to be too close to today's

2 Overconfidence

- Overconfidence is of at least two types:
 - Overestimate one's ability (also called *overoptimism*)
 - Overestimate the precision of one's estimates (also called *overprecision*)
- Psychology: Evidence on overconfidence/overoptimism
 - Svenson (1981): 93 percent of subjects rated their driving skill as above the median, compared to the other subjects in the experiment
 - Weinstein (1980): Most individuals underestimate the probability of negative events such as hospitalization
 - Buehler-Griffin-Ross (1994): Underestimate time needed to finish a project

- Economic experiment: Camerer and Lovallo (AER, 1999)
 - Experimental design:
 - * Initial endowment: \$10
 - \ast Simultaneous entry decision: enter –> play game or stay out –> payoff 0
 - \ast Parameter c for entry payoffs:
 - \cdot Top c entrants share \$50
 - \cdot Bottom n-c entrants get -\$10

	Р	Payoff for successful entrants as a function of "c"					
Rank	2	4	6	8			
1	33	20	14	11			
2	17	15	12	10			
3		10	10	8			
4		5	7	7			
5			5	6			
6			2	4			
7				3			
8				2			

- -n = 12, 14, 16 subjects
 - Within-subject variation in games played if entry: chance or skill (trivia, puzzles)
 - Only feedback: Total number of entrants
 - Paid at the end of game for one randomly-determined round (no feedback on performance)

Experiment #	Sample	n	Selection procedure	Rank order
1	Chicago, undergraduates	12	random	R/S
2	Chicago, undergraduates	14	random	S/R
3	Wharton, undergraduates	16	random	R/S
4	Wharton, undergraduates	16	random	S/R
5	Wharton, undergraduates	16	self-selection	R/S
6	Wharton, undergraduates	16	self-selection	S/R
7	Chicago, M.B.A.'s	14	self-selection	R/S
8	Wharton, M.B.A.'s	14	self-selection	S/R

TABLE 3-DESCRIPTION OF EXPERIMENTS

- Optimal decision for risk-neutral players in chance game
- Asymmetric Nash equilibria:
 - c + 4 enter
 - n (c + 4) stay out
 - Probability of being in top group \boldsymbol{p}
 - Probability p = c/(c+5)
 - average payoff of entry is

$$p\frac{50}{c} - (1-p)10 = \frac{1}{c+5}50 - \frac{5}{c+5}10 = 0$$

– average payoff of exit is 0 –> Indifference

• Games of skill -> Overstimate chance of winning -> Too much entry

- Luck: Higher profits than in Nash eq. –> Too little entry
- Skill: Lower profits (but still >0), Profits<0 with selection (Exp. 5-8)

Profit for random-rank condition														
		Rounds												
Experiment #	n	1	2	3	4	5	6	7	8	9	10	11	12	Total
1	12	50	50	20	30	40	30	20	50	30	40	20	40	420
2	14	0	-10	10	20	-10	10	20	10	0	0	30	20	100
3	16	10	50	20	40	10	20	30	40	20	40	30	20	330
4	16	0	10	10	20	10	-10	0	10	20	10	0	20	100
5	16	20	10	10	10	0	0	30	20	-10	0	0	0	90
6	16	30	20	10	0	-10	30	20	10	10	30	10	20	180
7	14	10	20	40	20	30	40	-30	40	10	0	0	20	200
8	14	20	10	0	30	30	0	10	10	20	10	20	40	200

Profit for skill-rank condition														
		Rounds												
Experiment #	n	1	2	3	4	5	6	7	8	9	10	11	12	Total
1	12	50	0	20	10	30	10	20	10	40	10	10	30	240
2	14	0	-10	10	20	-10	10	20	10	0	0	30	20	100
3	16	10	20	10	20	0	10	20	10	10	30	20	10	180
4	16	0	0	20	20	10	-30	10	-10	-10	10	-20	0	0
5	16	-30	-20	-20	-10	-40	-10	-30	0	-30	-10	-20	0	-220
6	16	10	-40	-20	-30	-10	-30	-10	-20	-20	-10	0	0	-180
7	14	-40	-10	-10	0	-20	-10	-40	0	0	0	-10	0	-140
8	14	10	-10	-10	-10	-20	-20	-20	0	-20	10	-20	-20	-130

- Overconfidence about own performance *relative* to others
 - Overconfidence about own ability?
 - Or underestimation of entry of others?
- Forecasts of people about entry of others:
 - forecast 0.3 entrants too high in chance game;
 - forecast 0.5 entrants too low in skill game;
 - (some underestimation of entry of others)

- Applications in the field of overconfidence/overoptimism
- Example 1. Overconfidence about self-control by consumers ($\hat{\beta} > \beta$)
 - Evidence on self-control supports idea of naiveté
 - * Status-quo bias (Madrian-Shea, 1999)
 - * Response to teaser rates (Ausubel, 1999)
 - * Health-club behavior (DellaVigna-Malmendier, 2006)

- Example 2. Overconfidence about ability by CEOs
- Malmendier-Tate (JF 2005, JFE forthcoming, and 2007)
- Assume that CEOs overestimate their capacity to create value
- Consider implications for:
 - Investment decisions (MT 2005)
 - Mergers (MT forthcoming)
 - Equity issuance (MT 2007)
- Slides courtesy of Ulrike

Model

Assumptions

- 1. CEO acts in interest of current shareholders. (*No agency problem*.)
- 2. Efficient capital market. (*No asymmetric information*.)

Notation

 $V_A =$ market value of the acquiring firm $V_T =$ market value of the target firm V = market value of the combined firm $\hat{V}_A =$ acquiring CEO's valuation of his firm $\hat{V} =$ acquiring CEO's valuation of the combined firm c = cash used to finance the merger

Rational CEO

• Target shareholders demand share *s* of firm such that:

$$sV = V_T - c$$
.

- CEO decides to merge if $V (V_T c) > V_A$ (levels). \Rightarrow Merge if e > 0 (differences), where e is "synergies."
 - \Rightarrow First-best takeover decision.
- Post-acquisition value to current shareholders:

$$\overline{V} = V - (V_T - c) = (V_A + V_T + e - c) - (V_T - c) = V_A + e$$
$$\Rightarrow \frac{\partial \overline{V}}{\partial c} = 0 \text{ (No financing prediction.)}$$

Overconfident CEO (I)

• CEO overestimates future returns to own firm: $\hat{V}_A > V_A$

CEO overestimates returns to merger:

$$\hat{V} - V > \hat{V_A} - V_A$$

• Target shareholders demand share *s* of firm such that: $sV = V_T - c$

CEO believes he should have to sell *s* such that:

$$s\hat{V} = V_T - c$$

Overconfident CEO (II)

• CEO decides to merge if

$$\hat{V} - (V_T - c) - \left[\frac{(\hat{V} - V)(V_T - c)}{V}\right] > \hat{V}_A \text{ (levels)},$$

$$e + \hat{e} > \left[\frac{(\hat{V}_{A} - V_{A} + \hat{e})(V_{T} - c)}{V}\right] (differences),$$

where \hat{e} are perceived "synergies."

Propositions

Compare

$$V(c) - (V_T - c) > V_A \text{ and}$$
$$\widehat{V}(c) - (V_T - c) - \frac{\left[\widehat{V}(c) - V(c)\right](V_T - c)}{V(c)} > \widehat{V}_A$$

- 1. Overconfident managers do some value-destroying mergers. (Rational CEOs do not.)
- 2. An overconfident manager does more mergers than a rational manager when internal resources are readily available
- 3. An overconfident manager may forgo some valuecreating mergers. (Rational managers do not.)

Empirical Predictions

Overconfident CEO

- 1. On average?
- 2. Overconfident CEOs do more mergers that are likely to destroy value
- 3. Overconfident CEOs do more mergers when they have abundant internal resources
- 4. The announcement effect after overconfident CEOs make bids is lower than for rational CEOs

Data on private accounts

1. Hall-Liebman (1998) Yermack (1995)

Key: Panel data on stock and option holdings of CEOs of Forbes 500 companies 1980-1994

2. Personal information about these CEOs from

- Dun & Bradstreet
- Who's who in finance

Data on corporate accounts

1. CRSP/COMPUSTAT

Data

Cash flow, Q, stock price...

2. CRSP/SDC-merger databases

Acquisitions

Primary Measure of Overconfidence "Longholder"

(Malmendier and Tate 2003)

CEO holds an option until the year of expiration.
CEO displays this behavior at least once during sample period.
→ minimizes impact of CEO wealth, risk aversion, diversification

Robustness Checks:

- 1. Require option to be at least x% in the money at the beginning of final year
- 2. Require CEO to *always* hold options to expiration
- 3. Compare "late exercisers" to "early exercisers"

Empirical Specification

 $\Pr\{Y_{it} = 1 \mid \mathbf{X}, O_{it}\} = \mathbf{G}(\beta_1 + \beta_2 \bullet O_{it} + \mathbf{X}^{\mathrm{T}} \mathbf{\gamma})$

with	<i>i</i> company	0	overconfidence
	t year	X	controls
	Y acquisition (yes or no)		

→ H₀: $\beta_2 = 0$ (overconfidence does not matter) → H₁: $\beta_2 > 0$ (overconfidence does matter)

Identification Strategy (I)

<u>Case 1:</u>

Wayne Huizenga (Cook Data Services/Blockbuster)

- CEO for all 14 years of sample
- Longholder

M MM M MH

1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994

- J Willard Marriott (Marriott International)
- CEO for all 15 years of sample
- Not a Longholder

1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994

AND

<u>Case 2:</u>

Colgate Palmolive

- Keith Crane CEO from 1980-1983 (Not a Longholder)
- Reuben Mark CEO from 1984-1994 (Longholder)

Table 4. Do Overconfident CEOs Complete More Mergers?

Longholder = holds options until last year before expiration (at least once) **Distribution:** Logistic. Constant included.

Dependent Variable: Acquistion (yes or no); **Normalization:** Capital.

	logit with controls	random effects	logit with fixed
		logit	effects
Size	0.8733	0.8600	0.6234
	(1.95)*	(2.05)**	(2.60)***
Q _{t-1}	0.7296	0.7316	0.8291
	(2.97)***	(2.70)***	(1.11)
Cash Flow	2.0534	2.1816	2.6724
	(3.93)***	(3.68)***	(2.70)***
Ownership	1.2905	1.3482	0.8208
	(0.30)	(0.28)	(0.11)
Vested Options	1.5059	0.9217	0.2802
	(1.96)*	(0.19)	(2.36)**
Governance	0.6556	0.7192	1.0428
	(3.08)***	(2.17)**	(0.21)
Longholder	1.5557	1.7006	2.5303
	(2.58)***	(3.09)***	(2.67)***
Voor Fixed Effecte	2/00	200	Voo
Charactions	yes	yes	yes
Coservations	3090	309U 227	2201 197
		JZ1	104

Table 6. Are Overconfident CEOs Right toHold Their Options? (I)

Returns from exercising 1 year sooner and investing in the S&P 500 index							
<u>Percentile</u>	<u>Return</u>						
10th	-0.24						
20th	-0.15						
30th	-0.10						
40th	-0.05						
50th	-0.03						
60th	0.03						
70th	0.10						
80th	0.19						
90th	0.39						
Mean	0.03						
Standard Deviation	0.27						
All exercises occur at the maximum stock price during the fiscal year							

Alternative Explanations

- 1. Inside Information or Signalling
 - Mergers should "cluster" in final years of option term
 - Market should react favorably on merger announcement
 - CEOs should "win" by holding
- 2. Stock Price Bubbles
 - Year effects already removed
 - All cross-sectional firm variation already removed
 - Lagged stock returns should explain merger activity
- 3. Volatile Equity
- 4. Finance Training

Empirical Predictions

Overconfident CEO

- 1. On average?
- 2. Overconfident CEOs do more mergers that are likely to destroy value
- 3. Overconfident CEOs do more mergers when they have abundant internal resources
- 4. The announcement effect after overconfident CEOs make bids is lower than for rational CEOs

Table 8. Diversifying Mergers

Longholder = holds options until last year before expiration (at least once) Distribution: Logistic. Constant included; Normalization: Capital. Dependent Variable: Diversifying merger (yes or no).

		<u> </u>	
	logit	logit with	logit with fixed
		random effects	effects
Longholder	1.6008	1.7763	3.1494
	(2.40)**	(2.70)***	(2.59)***
Year Fixed Effects	yes	yes	yes
Observations	3690	3690	1577
Firms		327	128
Dependent Variable: Intra	-industry merge	r (yes or no).	
Longholder	1.3762	1.4498	1.5067

Longholder	1.3762	1.4498	1.5067					
	(1.36)	(1.47)	(0.75)					
Year Fixed Effects	yes	yes	yes					
Observations	3690	3690	1227					
Firms		327	100					
Regressions include Cash Flow, Q t-1, Size, Ownership, Vested Options, and Governance.								
Industries are Fama French industry groups.								

Empirical Predictions

Overconfident CEO

- 1. On average?
- 2. Overconfident CEOs do more mergers that are likely to destroy value
- 3. Overconfident CEOs do more mergers when they have abundant internal resources
- 4. The announcement effect after overconfident CEOs make bids is lower than for rational CEOs

Kaplan-Zingales Index

 $KZ = -1.00 \cdot \frac{CashFlow}{Capital} + 0.28 \cdot Q + 3.14 \cdot Leverage - 39.37 \cdot \frac{Dividends}{Capital} - 1.31 \cdot \frac{Cash}{Capital}$

- Coefficients from logit regression (Pr{financially constrained})
- High values Cash constrained
 - Leverage captures debt capacity
 - Deflated cash flow, cash, dividends capture cash on hand
 - Q captures market value of equity (Exclude?)

Table 9. Kaplan-Zingales Quintiles

Longholder – holds options until last year before expiration (at least once)									
Distribution: Logistic Constant included									
Dependent Variable: Acquistion (ves or no): Normalization: Capital									
All regressions are legit with random effects									
	Least Equity				Most Equity				
	Dependent			>	Dependent				
	-		All Mergers		-				
	Quintile 1	Quintile 2	Quintile 3	Quintile 4	Quintile 5				
Longholder	2.2861	1.6792	1.7756	1.9533	0.8858				
	(2.46)**	(1.48)	(1.54)	(1.50)	(0.33)				
Year Fixed Effects	yes	yes	yes	yes	yes				
Observations	718	719	719	719	718				
Firms	125	156	168	165	152				
		Div	ersifying Merg	ers					
	Quintile 1	Quintile 2	Quintile 3	Quintile 4	Quintile 5				
Longholder	2.5462	1.8852	1.7297	1.0075	1.0865				
	(1.89)*	(1.51)	(1.36)	(0.01)	(0.18)				
Year Fixed Effects	yes	yes	yes	yes	yes				
Observations	718	719	719	719	718				
Firms	125	156	168	165	152				
Regressions include C	ash Flow, Q _{t-1} , Size	, Ownership, Ves	sted Options, and	Governance.					

Empirical Predictions

Overconfident CEO

- 1. On average?
- 2. Overconfident CEOs do more mergers that are likely to destroy value
- 3. Overconfident CEOs do more mergers when they have abundant internal resources
- 4. The announcement effect after overconfident CEOs make bids is lower than for rational CEOs

Empirical Specification

 $CAR_i = \beta_1 + \beta_2 \cdot O_i + X'\gamma + \varepsilon_i$

with *i* company

O overconfidence*X* controls

$$CAR_{i} = \sum_{t=-1}^{1} (r_{it} - E[r_{it}])$$

where $E[r_{it}]$ is daily S&P 500 returns ($\alpha=0$; $\beta=1$)

Table 14. Market Response

Longholder = holds options until last year before expiration										
(at least once)										
Dependent Variable: Cumulative abnormal returns [-1,+1]										
	OLS	OLS	OLS							
	(3)	(4)	(5)							
Relatedness	0.0048	0.0062	0.0043							
	(1.37)	(1.24)	(1.24)							
Corporate Governance	0.0079	0.0036	0.0073							
	(2.18)**	(0.64)	(1.98)**							
Cash Financing	0.014	0.0127	0.0145							
	(3.91)***	(2.60)***	(3.99)***							
Age			-0.0005							
			(1.46)							
Boss			0.0001							
			(0.04)							
Longholder	-0.0067	-0.0099	-0.0079							
	(1.81)*	(2.33)**	(2.00)**							
Year Fixed Effects	yes	yes	yes							
Industry Fixed Effects	no	yes	no							
Industry*Year Fixed Effects	no	yes	no							
Observations	687	687	687							
R-squared	0.10	0.58	0.10							
Regressions include Ownership and Vested Options.										

Do Outsiders Recognize CEO Overconfidence?

Portrayal in Business Press:

- 1. Articles in
 - New York Times
 - Business Week
 - Financial Times
 - The Economist
 - Wall Street Journal
- 2. Articles published 1980-1994
- 3. Articles which characterize CEO as
 - Confident or optimistic
 - Not confident or not optimistic
 - Reliable, conservative, cautious, practical, steady or frugal

Table 13. Press Coverage and Diversifying Mergers

Ĩ

Distribution: Logistic. Constant included; Normalization: Capital.									
Dependent Variable: Dive	Dependent Variable: Diversifying merger (yes or no).								
	logit	logit with	logit with fixed						
		random effects	effects						
TOTALconfident	1.6971	1.7826	1.5077						
	(2.95)***	(3.21)***	(1.48)						
Year Fixed Effects	yes	yes	yes						
Observations	3647	3647	1559						
Firms		326	128						
Dependent Variable: Intra	a-industry merge	r (yes or no).							
TOTALconfident	1.0424	1.0368	0.8856						
	(0.20)	(0.16)	(0.31)						
Year Fixed Effects	yes	yes	yes						
Observations	3647	3647	1226						
Firms		326	100						
Regressions include Total Co	overage, Cash Flo	w, Q ₁ , Size, Ownershi	p, Vested Options,						
and Governance. Industries are Fama French industry groups.									

Conclusions

- Overconfident managers are more acquisitive.
- Much of this acquisitiveness is in the form of diversifying mergers.
- Overconfidence has largest impact if CEO has abundant internal resources.
- The market reacts more negatively to the mergers of overconfident CEOs

- Overconfidence/Overprecision: Overestimate the precision of one's estimates
- Alpert-Raiffa (1982). Ask questions such as
 - 'The number of "Physicians and Surgeons" listed in the 1968 Yellow
 Pages of the phone directory for Boston and vicinity'
 - 'The total egg production in millions in the U.S. in 1965.'
 - 'The toll collections of the Panama Canal in fiscal 1967 in millions of dollars'
- Ask for 99 percent confidence intervals for 1,000 questions
- No. of errors: 426! (Compare to expected 20)
- (Issue: Lack of incentives)

- Investor Overconfidence: Odean (1999)
- Investor overconfidence/overprecision predicts excessive trading
 - investor believes signal is too accurate -> Executes trade
- Empirical test using data set from discount brokerage house
- Follow all trades of 10,000 accounts
- January 1987-December 1993
- 162,948 transactions

- Traders that overestimate value of their signal trade too much
- Substantial cost for trading too much:
 - Commission for buying 2.23 percent
 - Commission for selling 2.76 percent
 - Bid-ask spread 0.94 percent
 - Cost for 'round-trip purchase': 5.9 percent (!)

- Stock return on purchases must be at least 5.9 percent.
- Compute buy-and-hold returns
- Evidence: Sales outperform purchases by 2-3 percent!

TABLE 1—AVERAGE RETURNS FOLLOWING PURCHASES AND SALES										
Panel A: All Transactions										
	п	84 trading	252 trading	504 trading						
		days later	days later	days later						
Purchases	49,948	1.83	5.69	-24.00						
Sales	47,535	3.19	9.00	27.32						
Difference		-1.36	-3.31	-3.32						
N1		(0.001)	(0.001)	(0.001)						
N2		(0.001)	(0.001)	(0.002)						

• Is the result weaker for individuals that trade the most? No

Panel C: Th	e 10 Percen	nt of Investors	Who Trade the	Most
	п	84 trading days later	252 trading days later	504 trading days later
Purchases	29,078	2.13	7.07	25.28
Sales	26,732	3.04	9.76	28.78
Difference		-0.91	-2.69	-3.50
N1		(0.001)	(0.001)	(0.001)
N2		(0.001)	(0.001)	(0.010)

- Huge cost to trading for individuals:
 - Transaction costs
 - Pick wrong stocks

- Overconfidence/overprecision can explain other puzzles in asset pricing:
 - short-term positive correlation of returns (momentum)
 - long-term negative correlation (long-term reversal)
- Daniel, Hirshleifer, and Subrahmanyam, 1998
- Assume overconfidence + self-attribution bias (discount information that is inconsistent with one's priors)
 - Overconfidence -> trade excessively in response to private information
 - Long-term: public information prevails, valuation returns to fundamentals -> long-term reversal
 - Short-term: additional private information interpreted with self-attribution bias -> become even more overconfident
- Two other explanations for this: Law of small numbers + Limited attention

3 Law of Small Numbers

- Overconfidence is only one form of non-Bayesian beliefs
- **Tversky-Kahneman (1974).** Individuals follow heuristics to simplify problems:
 - Anchoring. -> Leads to over-precision (above)
 - Availability. -> Connected to limited attention (next lecture)
 - *Representativeness.* -> Today's lecture
- Individuals expect random draws to be exceedingly representative of the distribution they come from
 - HTHHTT judged more representative than HHHTTT
 - But the two are equally likely! (exchangeability)

- Rabin (QJE, 2002). Law of Small Numbers
 - I.i.d. signals from urn drawn with replacement
 - Subjects instead believe drawn from an urn of size $N<\infty$ without replacement
 - -> Gambler's Fallacy: After signal, subject expect next draw to be a different signal
 - Example: Return to mutual fund is drawn from an urn with 10 balls,
 5 Up and 5 Down (with replacement)
 - Observe 'Up, Up' Compute probability of another Up
 - * Bayesian: .5
 - * Law of Small Numbers: 3/8 < .5
 - Example of representativeness: 'Up, Up, Down' more representative than 'Up, Up, Up'

- Evidence on gambler's fallacy.
- Clotfelter and Cook (MS, 1993)
- Lotteries increasingly common in US (\$17bn sales in 1989)
- Maryland daily-numbers lottery -> Bet on 3-digit number
 - Probability of correct guess .001
 - Payout: \$500 per \$1 bet (50 percent payout)
- Gambler's Fallacy -> Betters will stop betting on number just drawn
 - Examine 52 winning numbers in 1988
 - In 52 of 52 cases (!) betting volume decreases 3 days after win, relative to baseline

- Substantial decrease in betting right after number is drawn
 - Effect lasts about 3 months
 - However: no cost for fallacy -> Does effect replicate with cost?

- Terrell (JRU, 1994)
- New Jersey's pick-three-numbers game (1988-1992)
- Pari-mutuel betting system
 - the fewer individuals bet on a number, the higher is the expected payout
 - Cost of betting on popular numbers
 - Payout ratio .52 -> Average win of \$260 for 50c bet
- Issue: Do not observe betting on all numbers -> Use payout for numbers that repeat

	Number	Mean	Standard deviation				
Winners repeating within 1 week	8	349.06	91.66				
Winners repeating between 1 and 2 weeks	8	349.44	81.56				
Winners repeating between 2 and 3 weeks	14	307.76	58.33				
Winners repeating between 3 and 8 weeks	59	301.03	70.55				
Winners not repeating within 8 weeks	1622	260.11	57.98				
All Winners	1714	262.79	57.99				

Table 1. Average payouts to winning numbers

- Strong gambler's fallacy:
 - Right after win, 34 percent decrease in betting
 - -> 34 percent payout increase
 - Effect dissipates over time

- Comparison with Maryland lottery:
 - Smaller effect (34 percent vs. 45 percent)
 - -> Incentives temper phenomenon, but only partially
- Other applications:
 - Probabilities are known, but subjects misconstrue the i.i.d. nature of the draws.
 - Example: Forecast of the gender of a third child following two boys (or two girls)

- Back to Rabin (QJE, 2002).
 - Probabilities known -> Gambler's Fallacy
 - Probabilities not known -> Overinference: After signals of one type, expect next signal of *same* type
- Example:
 - Mutual fund with a manager of uncertain ability.
 - Return drawn with replacement from urn with 10 balls
 - * Probability .5: fund is well managed (7 balls Up and 3 Down)
 - * Probability .5: fund is poorly managed (3 Up and 7 Down)
 - Observe sequence 'Up, Up, Up' -> What is P(Well|UUU)?
 - * Bayesian: $P(Well|UUU) = .5P(UUU|Well) / [.5P(UUU|Well) + .5P(UUU|Poor)] = .7^3 / (.7^3 + .3^3) \approx .927.$

- * Law-of-Small-Number: $P(Well|UUU) = (7/10*6/9*5/8)/[(7/10*6/9*5/8) + (3/10*2/9*1/8)] \approx .972.$
- * Over-inference about the ability of the mutual-fund manager
- Also assume:
 - * Law-of-Small-Number investor believes that urn replenished after 3 periods
 - * Need re-start or
- What is Forecast of P(U|UUU)?
 - * Bayesian: $P(U|UUU) = .927 * .7 + (1 .927) * .3 \approx .671$
 - * Law-of-Small-Number: $P(U|UUU) = .972 * .7 + (1 .972) * .3 \approx$.689
- Over-inference despite the gambler's fallacy beliefs

- Substantial evidence of over-inference (also called extrapolation)
- Notice: Case with unknown probabilities is much more common than lottery case
- Benartzi (JF, 2001)
 - Examine investment of employees in employer stock
 - Does it depend on the past performance of the stock?
- Sample:
 - S&P 500 companies with retirement program
 - Data from 11-k filing
 - 2.5 million participants, \$102bn assets

Buy-and-Hold Raw Returns and Subsequent Allocations to Company Stock as a Percentage of Discretionary Contributions

This table displays equally weighted mean allocations to company stock (as a percentage of discretionary contributions) by quintile of past buy-and-hold raw returns. Company stock allocations are measured at the end of 1993. Portfolio 1 (5) includes retirement savings plans with the lowest (highest) past buy-and-hold raw returns. The table also provides the difference between the allocations of the extreme portfolios (i.e., portfolio 5 minus portfolio 1) and *t*-statistics. N = 142.

Quintiles Formed on the Basis of Buy-and-Hold	Q	uintile of	Observed				
Raw Returns for:	(Low) 1	2	3	4	5 (High)	(5-1)	T-Statistic
Prior year	21.10%	23.16%	27.85%	25.99%	23.70%	2.60%	0.60
Prior 2 years	22.61	22.43	25.18	28.74	22.96	0.35	0.06
Prior 3 years	14.14	25.45	26.21	28.84	27.78	13.64	3.33
Prior 4 years	11.74	22.20	28.18	31.10	30.23	18.49	4.64
Prior 5 years	12.64	18.68	26.27	34.66	31.21	18.57	4.33
Prior 6 years	11.99	18.72	29.33	33.45	29.96	17.97	4.63
Prior 7 years	11.36	18.98	24.11	34.79	33.70	22.34	5.87
Prior 8 years	11.46	20.69	24.22	32.96	33.63	22.17	5.70
Prior 9 years	11.08	20.76	20.52	34.04	36.68	25.60	6.49
Prior 10 years	10.37	19.68	21.56	31.51	39.70	29.33	8.39

Very large effect of past returns + Effect depends on long-term performance

• Is the effect due to inside information?

		Allocati	on to Compa	ny Stock		Observed	Threshold for Significant Difference at
	(Low) 1	2	3	4	5 (High)	(5 - 1)	$\alpha = 10\%$
Allocation to company stock as a percentage of discretionary contributions	4.59%	12.19%	19.34%	31.85%	53.90%	49.41%	
One-year returns	6.64	6.55	1.27	-1.03	0.13	-6.77	7.12
Two-year returns	43.69	40.78	38.24	43.33	31.92	-11.77	14.75
Three-year returns	59.29	70.28	68.64	79.66	56.25	-3.04	21.99
Four-year returns	101.08	114.55	109.89	149.92	103.14	2.06	36.15

- No evidence of insider information
- Over-inference pattern observed for investors of all types

- Barberis-Shleifer-Vishny (JFE, 1998)
 - Alternative model of law of small number in financial markets.
 - Draws of dividends are i.i.d.
 - Investors believe that
 - * draws come from 'mean-reverting' regime or 'trending' regime
 - * 'mean-reverting' regime more likely ex ante
 - Result: If investors observe sequence of identical signals,
 - * Short-Run: Expect a mean-reverting regime (the gambler's fallacy)
 -> Returns under-react to information -> Short-term positive correlation (momentum)
 - Long-run: Investors over-infer and expect a 'trending' regime -> Long-term negative correlation of returns

4 **Projection Bias**

- Beliefs systematically biased toward current state
- Read-van Leeuwen (1998):
 - Office workers choose a healthy snack or an unhealthy snack
 - Snack will be delivered a week later (in the late afternoon).
 - Two groups: Workers are asked
 - * when plausibly hungry (in the late afternoon) -> 78 percent chose an unhealthy snack
 - when plausibly satiated (after lunch).-> 42 percent choose unhealthy snack
- **Gilbert et al., 1998).** Individuals under-appreciate the adaptation to future circumstances

- Projection bias. (Loewenstein, O'Donoghue, and Rabin (2003)
 - Individual is currently in state s' with utility $u\left(c,s'\right)$
 - Predict future utility in state \boldsymbol{s}
 - Simple projection bias:

$$\hat{u}(c,s) = (1 - \alpha) u(c,s) + \alpha u(c,s')$$

- Parameter α is extent of projection bias –> α = 0 implies rational forecast
- Notice: People misforecast utility \hat{u} , not state s; however, same results if the latter applies

- Conlin-O'Donoghue-Vogelsang (2006)
- Purchasing behavior: Cold-weather items
- Main Prediction:
 - Very cold weather
 - -> Forecast high utility for cold-weather clothes
 - -> Purchase 'too much'
 - -> Higher return probability
- Additional Prediction:
 - Cold weather at return –> Fewer returns

- Focus on Probability[Return|Order]
- Denote temperature at Order time as ω_O and temperature at Return time as ω_R
- Predictions:
 - 1. If $\alpha = 0$ (no proj. bias), P[R|O] is independent of ω_O and ω_R
 - 2. If $\alpha > 0$ (proj. bias), $\partial P[R|O] / \partial \omega_O < 0$ and $\partial P[R|O] / \partial \omega_R > 0$
- Notice: Do not observe date of return decision

- Purchase data from US Company selling outdoor apparel and gear
 - January 1995-December 1999, 12m items
 - Date of order and date of shipping + Was item returned
 - Shipping address
- Weather data from National Climatic Data Center
 - By 5-digit ZIP code, use of closest weather station
- Items:
 - Parkas/Coats/Jackets Rated Below 0F
 - Winter Boots
 - Drop mail orders, if billing and shipping address differ, >9 items ordered, multiple units same item, low price
 - No. obs. 2,200,073

- Summary Stats:
 - Probability of return fairly high
 - Prices of items substantial
 - Delay between order and receipt 4-5 days

	TABLE 1							
Summ	ary Statis	tics by It	em Cate	gories				
	Gloves/	Winter	Hats	Sports	Parkas/	Vests	Jackets	All Seven
Observations	484.084	262.610	484.086	Equipment 146,594	524.831	151.958	145.910	2.200.073
Number of Different Items	106	93	88	233	133	20	37	710
Percent Returned	10.9	15.6	10.8	6.6	22.2	12.8	18.0	14.4
Price of Item (dollars)	29.26	68.33	23.74	74.10	148.58	40.90	106.70	70.10
Percent of Buyer's Prior Purchases Returned	7.2	6.6	6.9	7.2	7.3	6.8	8.2	7.14
Number of Buyer's Prior Purchases	27.3	22.2	23.9	27.7	20.5	21.71	25.3	23.83
Buyer has a Prior Purchase	0.85	0.82	0.83	0.86	0.77	0.83	0.82	0.82
Days Between Order and Shipment	0.42	0.97	0.72	0.94	2.17	1.24	1.13	1.11
Days Between Order and Receipt	4.13	4.66	4.46	4.58	5.92	5.04	4.89	4.84
Ordered Through Internet	0.04	0.03	0.03	0.02	0.04	0.02	0.05	0.03
Purchased by a Female	0.71	0.66	0.71	0.70	0.66	0.72	0.66	0.69
Item Purchased with Credit Card	0.97	0.98	0.98	0.97	0.98	0.98	0.97	0.98
Items in Order	3.5	2.5	3.4	2.9	2.2	2.8	2.3	2.9
Temperature Rating					-10.11		-5.64	
WEATHER CONDITIONS Order-Date Temperature (°F)	40.60	39.74	41.48	37.81	43.29	44.76	46.88	41.85
Receiving-Date Temperature (°F)	39.90	38.97	40.72	36.70	42.29	43.20	45.70	40.94
Snowfall on Day Item Ordered (0.1'')*	1.79	2.69	1.69	2.65	1.30	1.26	0.63	1.70
Snowfall on Day Item Received $(0.1)^*$	1.58	2.32	1.51	2.35	1.33	1.43	0.66	1.57

• Main estimation: Probit

$P(R|O) = \Phi \left(\alpha + \gamma_O \omega_O + \gamma_R \omega_R + BX \right)$

Probit Regression Measuring the Effect of Temperature on the Probability Cold Weather Clothing is Returned								
Dependent Variable is	s Whether It	em is Return	ed (=1 if ite	m returned a	nd 0 otherwi	ise)		
	Gloves &	Winter	Hats	Sports	Parkas &	Vests	Jackets	All Seven
	Mittens	Boots		Equipment	Coats			Categories
Order-Date Temperature	-0.00013**	-0.00026**	-0.00020**	-0.00011*	-0.00009	-0.00048**	-0.00014	-0.00019**
	(0.00005)	(0.00009)	(0.00005)	(0.00006)	(0.00007)	(0.00011)	(0.00013)	(0.00003)
Receiving-Date Temperature	0.00005	0.00018*	-0.00005	-0.00008	0.00007	-0.00010	0.00010	0.00003
	(0.00006)	(0.00009)	(0.00006)	(0.00007)	(0.00008)	(0.00011)	(0.00014)	(0.00003)

Price of Item	0.00075**	0.00005 (0.00013)	0.00145** (0.00025)	0.00033** (0.00008)	0.00019** (0.00004)	0.00166** (0.00024)	0.00016 (0.00018)	0.00023** (0.00003)
Item Purchased with Credit Card	0.02042**	0.04337**	0.02876**	0.02395**	0.05893**	0.02294**	0.05312**	0.03531**
Items in Order	-0.00157** (0.00022)	0.00012 (0.00039)	-0.00035 (0.00022)	-0.00078** (0.00028)	0.00196** (0.00033)	-0.00177** (0.00045)	0.00141** (0.00058)	-0.00028** (0.00012)
Clothing Type Fixed Effects Item Fixed Effects	YES YES	YES YES	YES YES	NO ^a YES	YES YES	YES YES	YES YES	YES YES
Month-Region Fixed Effects	YES	YES	YES	YES	YES	YES	YES	YES
Year-Region Fixed Effects	YES	YES	YES	YES	YES	YES	YES	YES
Observations	484,067	262,610	484,085	146,403	524,831	151,958	145,910	2,199,950
R-Squared	0.04	0.05	0.07	0.13	0.03	0.03	0.04	0.07

Table presents marginal effects on the probability that an item is returned. Standard errors are in parentheses. * Statistically significant at the .10 level; ** Statistically significant at the .05 level.

^a Clothing Type information was not provided for sports equipment items.

- Main finding: $\gamma_O < 0$.
 - Warmer weather on order date lowers probability of return
 - Magnitude:
 - This goes against standard story: If weather is warmer, less likely you will use it -> Return it more
 - Projection Bias: Very cold weather –> Mispredict future utility –> Return the item
- Second finding: $\gamma_R \approx \mathbf{0}$
 - Warmer weather on (predicted) return does not affect return
 - This may be due to the fact that do nto observe when return decision is made

- Similar estimates for linear probability model with household fixed effects
- (Restrict sample to multiple orders by households)

	Household Fixed Effects	No Household Fixed Effects
Order-Date Temperature	-0.00082** (0.00027)	-0.00039** (0.00013)
Receiving-Date Temperature	0.00017 (0.00029)	0.00002 (0.00015)

TABLE 3 Linear Regression Measuring the Effect of Temperature on the Probability Cold Weather Clothing is Returned: With and Without Household Fixed Effects

Clothing Type Fixed Effects	YES	YES
Item Fixed Effects	YES	YES
Month-Region Fixed Effects	YES	YES
Year-Region Fixed Effects	YES	YES
Household Fixed Effects	YES	NO
Observations	162,580	162,580
R-Squared	0.19	0.10

• Simple structural model of projection bias: Estimates of projection bias α around .3-.4

	TAI Structura	BLE 6 l Estimation				
Γ		Winter	Hats	Parkas &	Vests	Jackets
	*	Boots		Coats		
					I	
	a	0.3084**	0.4698**	0.3814**	0.0002	0.4992**
		(0.0570)	(0.00001)	(0.0352)	(0.0056)	(0.0002)

• Other applications?

5 Next Lecture

- Non-Standard Decision-Making (next 3 lectures)
- Limited Attention (next lecture)