Econ 219B Psychology and Economics: Applications (Lecture 10)

Stefano DellaVigna

March 31, 2004

Outline

- 1. CAPM for Dummies (Taught by a Dummy)
- 2. Event Studies
- 3. Event Study: Iraq War
- 4. Attention: Introduction
- 5. Attention: Oil Prices

1 CAPM for Dummies (Taught by a Dummy)

1.1 Summary

- Capital Asset Pricing Model: Sharpe (1964) and Lintner (1965)
- Tenet of Asset Pricing II

Assumptions:

- All investors are price-takers.
- All investors care about returns measured over one period.
- There are no nontraded assets.
- Investors can borrow or lend at a given riskfree interest rate (Sharpe-Lintner version of the CAPM).
- Investors pay no taxes or transaction costs.
- All investors are mean-variance optimizers.
- All investors perceive the same means, variances, and covariances for returns.

Implications:

- All investors face the same mean-variance tradeoff for portfolio returns
- All investors hold a mean-variance efficient portfolio.
- Since all mean-variance efficient portfolios combine the riskless asset with a fixed portfolio of risky assets, all investors hold risky assets in the same proportions to one another.
- These proportions must be those of the market portfolio or value-weighted index that contains all risky assets in proportion to their market value.
- Thus the market portfolio is mean-variance efficient.

1.2 Mean-Variance Optimization

- Assume investors care only about mean (positively) and variance (negatively)
- (Can motivate with normally distributed assets)
- Mean-variance analysis with one riskless asset and N risky assets.
- The solution finds portfolios that have minimum variance for a given mean return, \overline{R}_p .
- These are called "mean-variance efficient" portfolios and they lie on the "minimum-variance frontier".

- Define:
 - \overline{R} as the vector of mean returns for the N risky assets and R_f as the return of the riskless asset
 - Σ as the variance-covariance matrix of returns
 - w as the vector of portfolio weights for the risky assets
 - ι as a vector of ones and $1 w'\iota$ is the weight in the portfolio for the riskless asset
- Rewrite maximization as min Variance s.t. given return R_p:

$$\min_{w} \frac{1}{2} w' \Sigma w \text{ s.t. } (\overline{R} - R_f \iota)' w = \overline{R}_p - R_f$$

Lagrangian:

$$\mathcal{L}(w,\lambda) = \frac{1}{2}w'\Sigma w + \lambda(\overline{R}_p - R_f - (\overline{R} - R_f\iota)'w)$$

First Order Conditions:

$$\frac{\partial \mathcal{L}(w,\lambda)}{\partial w} = \Sigma w - \lambda^* (\overline{R} - R_f \iota) = 0$$

$$\frac{\partial \mathcal{L}(w,\lambda)}{\partial \lambda} = \overline{R}_p - R_f - (\overline{R} - R_f \iota)' w^* = 0$$

Rearranging,

$$w^* = \lambda^* \Sigma^{-1} (\overline{R} - R_f \iota)$$

$$\overline{R}_p - R_f = (\overline{R} - R_f \iota)' w^*$$

Solve for λ ?

Substitute for \boldsymbol{w}^* in the second equation using the first equation

$$\overline{R}_p - R_f = (\overline{R} - R_f \iota)' \lambda^* \Sigma^{-1} (\overline{R} - R_f \iota)$$
$$\lambda^* = \frac{\overline{R}_p - R_f}{(\overline{R} - R_f \iota)' \Sigma^{-1} (\overline{R} - R_f \iota)}$$

Consequently,

$$w^* = \left(\frac{\left(\overline{R}_p - R_f\right)}{(\overline{R} - R_f\iota)'\Sigma^{-1}(\overline{R} - R_f\iota)}\right) \left(\Sigma^{-1}(\overline{R} - R_f\iota)\right)$$

Implications:

• w_i^* increasing in return of asset $i \ \overline{R}_i$

- w_i^* decreasing in variance of asset $i \sigma_i^2$ (see Σ)
- Different portfolio choices with different risk aversion?
 - Only \overline{R}_p varies
 - more risk-averse -> lower \overline{R}_p -> hold fewer risky assets, more riskless assets (w^* lower)
 - Everyone holds same share of risky assets: if write down w_i/w_j , the parenthesis disappears

1.3 Asset Pricing Implications

- Assume that w is a vector of weights for a meanvariance efficient portfolio with return R_p .
- Consider the effects on the variance of the portfolio return for very small change in the weights of two assets w_i and w_j such that $d\overline{R}_p = 0$.

$$dVar(R_p) = 2Cov(R_i, R_p)dw_i + 2Cov(R_j, R_p)dw_j$$

- Must be dVar(Rp) = 0, or initial portfolio was not optimal.
- Substituting,

$$2Cov(R_{i},R_{p})dw_{i} = 2Cov(R_{j},R_{p})\left(\frac{(\overline{R}_{i}-R_{f})}{(\overline{R}_{j}-R_{f})}\right)dw_{i}$$
$$\frac{\overline{R}_{i}-R_{f}}{Cov(R_{i},R_{p})} = \frac{\overline{R}_{j}-R_{f}}{Cov(R_{j},R_{p})}$$

• Use relationship for mean-variance return (j = p):

$$\frac{\overline{R}_{i} - R_{f}}{Cov(R_{i,}R_{p})} = \frac{\overline{R}_{p} - R_{f}}{Var(R_{p})}$$
$$\overline{R}_{i} - R_{f} = \frac{Cov(R_{i,}R_{p})}{Var(R_{p})}(\overline{R}_{p} - R_{f})$$

• Write for market return R_m (which is mean-variance efficient under null of CAPM):

$$\overline{R}_i - R_f = \frac{Cov(R_i, R_m)}{Var(R_m)} (\overline{R}_m - R_f)$$

- $Cov(R_{i},R_{m})/Var(R_{m})$ is the famous Beta!
- Test of CAPM in a regression:

$$R_{it} - R_f = \alpha_i + \beta_{im}(R_{mt} - R_f) + \varepsilon_{it}$$

• Jensen's α_i should be zero for all assets. (rejected in data)

- Point of all this: stock return of asset *i* depends on correlation with market.
- High correlation with market -> higher return to compensate for risk

1.4 Implications for Event Studies

- Assume an event (merger announcement, earning announcement) happened to company *i*
- Want to measure effect on stock return i
- Can just look at R_{it} before and after event?
- Better not. Have to control for correlation with market
- Should look at $(R_{it} R_f) \beta_{im}(R_{mt} R_f)$
- Otherwise bias.

- In reality two deviations from CAPM:
 - 1. Control for both α and β
 - 2. Neglect R_f
- Typical estimation of abnormal return:

- Run (daily or monthly) regression:

 $R_{it} = \alpha_i + \beta_i R_{mt} + \varepsilon_{it}$

for days (-150,-10) prior to event

- Obtain $\hat{\alpha}_i$ and $\hat{\beta}_i$
- Abnormal return is

$$AR_{it} = R_{it} - \hat{\alpha}_i + \hat{\beta}_i R_{mt}$$

- Use this as dependent variable

2 Event Studies

- Examine the impact of an event into stock prices:
 - merger announcement –> Mergers good or bad?
 - earning announcement –> How is company doing?
 - campaign-finance reform -> Effect on companies financing Reps/Dems
 - election of Bush/Gore -> Test quid-pro-quo partiesfirms
 - Iraq war (later in class) -> Effect of war

• How does one do this?

- Three main methodologies:
 - 1. Regressions
 - 2. Deciles
 - 3. Portfolios

- Illustrate with earning announcement literature
- Event is earning surprise $s_{t,k}$

• **Methodology 1.** Run regression:

$$r_{t,k}^{(h,H)} = \alpha + \phi s_{t,k} + \varepsilon_{t,k}$$

- Details:
 - Use abnormal returns as dependent variable r
 - (For short-term event studies, can also use net returns $r_{t,k} r_{t,m}$)
 - Look at returns at multiple horizons: (0,0), (1,1), (3,75), etc.
 - Worry about cross-sectional correlation: cluster by day
 - Can add control variables to allow for time-varying effects, size-related effects

• Identification:

- time-series (same company over time, different announcements)
- cross-sectional (same time, different companies)

- Issues:
 - Do you know event time?
 - * earning *surprise*?
 - * legal changes
 - Need unexpected changes in information

- Methodology 2. Create deciles (Fama-French)
- Sort event into deciles (quantiles):
 - Decile 1 $d_{t,k}^1$: Bottom 10% earnings surprises
 - Decile 2 $d_{t,k}^2$: 10% to 20% earnings surprises

– etc.

- Estimate average return decile-by-decile
- Equivalent to running regression:

$$r_{t,k}^{(h,H)} = \sum_{j=1}^{10} \phi_j d_{t,k}^j + \varepsilon_{t,k}$$

- Details:
 - Use buy-and-hold returns
 - Worry about correlation of standard errors

- Issues:
 - Plus: Non-linear specification
 - Minus: Cannot control for variables
- Finance uses (abuses?) this 'decile' methodology
- Examples:
 - Small firms and large firms deciles by size
 - Growth vs. value stocks deciles by book-market ratios

- Methodology 3. Form portfolios
- Aggregate stock of a given category into one portfolio
- Observe its daily or monthly returns
- Idea: can you make money with this strategy??!
- Examples:
 - Size.
 - * Form portfolio of companies by decile of size
 - * Hold for one/2/10 years
 - * Does a portfolio of small companies outperform a portfolio of large companies?

- Momentum
 - * Form portfolio of companies by measure of past performance
 - * Hold for one/2/10 years
 - * Do stocks with high past returns outperform other stocks?

- Big difference from methodology 2:
 - Now there is only one observation for time period (day/month)
 - Have aggregated all the small firms into one portfolio

- Details:
 - Run regression of raw portfolio returns on market returns as well as other factors:

 $r_t^{small} = \alpha + \beta r_{t,m} + \beta_2 r_{t,2} + \beta_3 r_{t,3} + \varepsilon_{t,k}$

- Standard Fama-French factors:

* control for market returns $r_{t,m}$

* control for size 'factor' $r_{t,2}$

- * control for book-to-market 'factor' $r_{t,3}$
- Idea: Do you obtain outperformance of an event beyond things happening with the market, with firms size, and with book-to-market?

• Issues:

- Pluses: Get rid of cross-sectional correlation now only have one ebservation per time period
- Minus: Cannot control for variables

3 Event Study: Iraq War

• See Additional slides

4 Attention: Introduction

- Attention as limited resource:
 - Satisficing choice (Simon, 1955)
 - Heuristics for solving complex problems (Gabaix and Laibson, 2002; Gabaix et al., 2003)

- In a world with a plethora of stimuli, which ones do agents attend to?
- Psychology: Salient stimuli (Fiske and Taylor, 1991)

4.1 Attention to Non-Events

- Remember Huberman and Regev (2001)?
- Timeline:
 - October-November 1997: Company EntreMed has very positive early results on a cure for cancer
 - November 28, 1997: Nature "prominently features;" New York Times reports on page A28
 - May 3, 1998: New York Times features essentially same article as on November 28, 1997 on front page
 - November 12, 1998: Wall Street Journal front page about failed replication

• In a world with unlimited arbitrage...

• In reality...

Figure 5: ENMD Closing Prices and Trading Volume 10/1/97-12/30/98

• Which theory of attention explains this?

- We do not have a theory of attention!
- However:
 - Attention allocation has large role in volatile markets
 - Media is great, underexplored source of data
- Suggests successful stategy on attention papers:
 - Do not attempt geneal model
 - Focus on specific deviation

5 Attention: Oil Prices

- Idea here: People do not think of indirect effects that much
- Josh's slides.