Problem Set 4 Due in lecture Thursday, February 21

1. (The Diamond model with labor supply in both periods of life.) Consider the Diamond overlapping-generations model. Assume, however, that each individual supplies one unit of labor in <u>each</u> period of life. For simplicity, assume no population growth; thus total labor supply is 2L, where L is the number of individuals born each period.

In addition, assume that there is no technological progress, and that production is Cobb-Douglas. Thus, $Y_t = BK_t^{\alpha}[2L]^{1-\alpha}$, B > 0, $0 < \alpha < 1$. Factors are paid their marginal products.

The utility function of an individual born at time t is $U_t = \ln C_{1,t} + \ln C_{2,t+1}$. Finally, there is 100% depreciation, so $K_{t+1} = Y_t - [LC_{1,t} + LC_{2,t}]$.

a. Consider an individual born in period t who receives a wage of w_t in the first period of life and a wage of w_{t+1} in the second period, and who faces an interest rate of r_{t+1} . What is the individual's first-period consumption and saving as a function of w_t , w_{t+1} , and r_{t+1} ?

b. What will be the wage at t as a function of K_t ? What will be the interest rate at t as a function of K_t ? (Hint: Don't forget that the depreciation rate is not assumed to be zero.)

c. Explain intuitively why $K_{t+1} = (w_t - C_{1,t})L$.

d. Derive an equation showing the evolution of the capital stock from one period to the next.

- 2. Romer, Problem 2.17.
- 3. Romer, Problem 2.19.
- 4. Romer, Problem 3.1.

EXTRA PROBLEMS (NOT TO BE HANDED IN/ONLY SKETCHES OF ANSWERS WILL BE PROVIDED)

5. (Note: This problem was suggested by one of your classmates.) Consider a Ramsey model where initially k is above its balanced-growth-path level. Now suppose there is an unexpected, permanent rise in ρ .

Sketch the resulting paths of k and c, and what those paths would have been if ρ had not changed. Explain your answer.

6. Romer, Problem 2.13.

7. Romer, Problem 2.18.

8. Romer, Problem 2.20.