Problem Set 5
Due in lecture Thursday, February 28

1. Romer, Problem 3.3.
2. Knowledge accumulation may vary in a complicated way over time. This problem asks you to investigate one way that this might occur.

For simplicity, population is constant. Output at time t is given by $Y(t)=\left(1-a_{L}\right) A(t) L$, where Y is output, a_{L} is the fraction of the population that is engaged in producing knowledge, A is knowledge, and L is population.

Knowledge accumulation is given by the function: $\dot{\mathrm{A}}(\mathrm{t})=\mathrm{B}_{1} \mathrm{a}_{\mathrm{L}} \mathrm{LA}(\mathrm{t})^{\theta}$ if $\mathrm{A}<\mathrm{A}^{*}$, $\dot{A}(t)=B_{2} a_{L} L$ if $A \geq A^{*}$, where A^{*}, B_{1}, and B_{2} are positive parameters, and where $\underline{\theta \text { is a }}$ parameter that is assumed to be greater than 1. In addition, B_{1} and B_{2} are assumed to be such that \dot{A} does not change discontinuously when A reaches A^{*}. This requires that $B_{1} \mathrm{a}_{\mathrm{L}} \mathrm{LA}^{* \theta}=$ $B_{2} a_{L} L$, which is equivalent to $B_{2}=B_{1} A^{* \theta}$.

The initial level of knowledge, $\mathrm{A}(0)$, is assumed to be greater than zero and less than A^{*}.
a. Consider the period when A is less than A^{*}.
i. Define $g_{A}(t) \equiv \dot{A}(t) / A(t)$. What is $g_{A}(t)$ as a function of B_{1}, a_{L}, L, and $A(t)$?
ii. Find an expression for $g_{A}(t)$ as a function of $g_{A}(t)$ and θ.
iii. Is $g_{A}(t)$ rising, falling, or constant over time?
b. Now consider the period when A is greater than or equal to A^{*}.
i. What is $\dot{\AA}(t)$?
ii. Is $g_{A}(t)$ rising, falling, or constant over time?
c. Combine your answers to (a) and (b) to:
i. Sketch the path of the growth rate of output, $\dot{\mathrm{Y}}(\mathrm{t}) / \mathrm{Y}(\mathrm{t})$, over time.
ii. Sketch the path of the \log of output, $\ln \mathrm{Y}(\mathrm{t})$, over time.
3. Romer, Problem 3.12.

EXTRA PROBLEMS (NOT TO BE HANDED IN/ONLY SKETCHES OF ANSWERS WILL BE PROVIDED)
4. Romer, Problem 3.2.
5. Consider the following variant of our model of $R \& D$ and growth. All of the notation is standard; $R(t)$ denotes use of natural resources at time t, and a_{R} denotes the fraction of those resources that are used in the $\mathrm{R} \& \mathrm{D}$ sector.

$$
\begin{aligned}
& \mathrm{Y}(\mathrm{t})=\mathrm{A}(\mathrm{t})\left[\left(1-\mathrm{a}_{\mathrm{L}}\right) \mathrm{L}(\mathrm{t})\right]^{\beta}\left[\left(1-\mathrm{a}_{\mathrm{R}}\right) \mathrm{R}(\mathrm{t})\right]^{1-\beta} 0<\mathrm{a}_{\mathrm{L}}<1,0<\mathrm{a}_{\mathrm{R}}<1,0<\beta<1 \\
& \dot{\mathrm{~L}}(\mathrm{t})=\mathrm{nL}(\mathrm{t}) \quad \mathrm{n}>0 \\
& \mathrm{R}(\mathrm{t})=-\mu \mathrm{R}(\mathrm{t}) \quad \mu \geq 0 \\
& \dot{\mathrm{~A}}(\mathrm{t})=\mathrm{B}\left[\mathrm{a}_{\mathrm{L}} \mathrm{~L}(\mathrm{t})\right]^{\gamma}\left[\mathrm{a}_{\mathrm{R}} \mathrm{R}(\mathrm{t})\right]^{\phi} \mathrm{A}(\mathrm{t})^{\theta} \mathrm{B}>0, \quad \gamma>0, \phi>0
\end{aligned}
$$

Assume $\theta<1$. $\mathrm{A}(0), \mathrm{L}(0)$, and $\mathrm{R}(0)$ are all strictly positive.
a. Let $g_{A}(t)=\dot{A}(t) / A(t)$. Derive an expression for $\dot{g}_{A}(t)$ in terms of $g_{A}(t)$ and the parameters.
b. Sketch the function you found in part (a). For what values of g_{A} is $\dot{g}_{A}=0$? For what parameter values and/or initial conditions does g_{A} converge to each of these values?
c. What is the growth rate of output per person on the balanced growth path as a function of the parameter values and/or initial conditions?
6. Romer, Problem 3.4.

