Problem Set 5 Due in lecture Thursday, February 28

1. Romer, Problem 3.3.

2. Knowledge accumulation may vary in a complicated way over time. This problem asks you to investigate one way that this might occur.

For simplicity, <u>population is constant</u>. Output at time t is given by $Y(t) = (1 - a_L)A(t)L$, where Y is output, a_L is the fraction of the population that is engaged in producing knowledge, A is knowledge, and L is population.

Knowledge accumulation is given by the function: $\dot{A}(t) = B_1 a_L L A(t)^{\theta}$ if $A < A^*$, $\dot{A}(t) = B_2 a_L L$ if $A \ge A^*$, where A^* , B_1 , and B_2 are positive parameters, and where $\underline{\theta}$ is a parameter that is assumed to be greater than 1. In addition, B_1 and B_2 are assumed to be such that \dot{A} does not change discontinuously when A reaches A^* . This requires that $B_1 a_L L A^{*\theta} = B_2 a_L L$, which is equivalent to $B_2 = B_1 A^{*\theta}$.

The initial level of knowledge, A(0), is assumed to be greater than zero and less than A^* .

- a. Consider the period when A is less than A*.
 - i. Define $g_A(t) = \dot{A}(t)/A(t)$. What is $g_A(t)$ as a function of B_1 , a_L , L, and A(t)?
 - ii. Find an expression for $g_A(t)$ as a function of $g_A(t)$ and θ .
 - iii. Is $g_A(t)$ rising, falling, or constant over time?
- b. Now consider the period when A is greater than or equal to A^* .
 - i. What is $\dot{A}(t)$?
 - ii. Is $g_A(t)$ rising, falling, or constant over time?
- c. Combine your answers to (a) and (b) to:
 - i. Sketch the path of the growth rate of output, $\dot{Y}(t)/Y(t)$, over time.
 - ii. Sketch the path of the log of output, ln Y(t), over time.
- 3. Romer, Problem 3.12.

EXTRA PROBLEMS (NOT TO BE HANDED IN/ONLY SKETCHES OF ANSWERS WILL BE PROVIDED)

4. Romer, Problem 3.2.

5. Consider the following variant of our model of R&D and growth. All of the notation is standard; R(t) denotes use of natural resources at time t, and a_R denotes the fraction of those resources that are used in the R&D sector.

$$\begin{split} Y(t) &= A(t)[(1 - a_L)L(t)]^{\beta}[(1 - a_R)R(t)]^{1 - \beta} \ 0 < \ a_L < \ 1, \ 0 < \ a_R < \ 1, \ 0 < \ \beta < \ 1 \\ \\ \overset{\bullet}{L}(t) &= \ nL(t) \quad n > \ 0 \\ \mathbf{R}(t) &= \ -\mu R(t) \quad \mu \ge 0 \\ \\ \overset{\bullet}{A}(t) &= \ B[a_L L(t)]^{\gamma}[a_R R(t)]^{\phi}A(t)^{\theta} \ B > \ 0, \ \gamma > \ 0, \ \varphi > \ 0 \end{split}$$

<u>Assume $\theta < 1$ </u>. A(0), L(0), and R(0) are all strictly positive.

a. Let $g_A(t) = \dot{A}(t)/A(t)$. Derive an expression for $\dot{g}_A(t)$ in terms of $g_A(t)$ and the parameters.

b. Sketch the function you found in part (a). For what values of g_A is $g_A = 0$? For what parameter values and/or initial conditions does g_A converge to each of these values?

c. What is the growth rate of output per person on the balanced growth path as a function of the parameter values and/or initial conditions?

6. Romer, Problem 3.4.