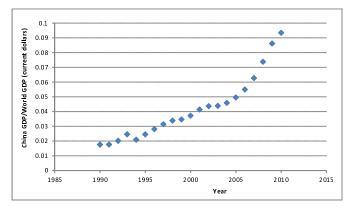
Next Week's Topic

"The Chinese Growth and Slowdown"

- Next Week Professor Eichengreen will discuss
 - Gregory C. Chow, "How and Why China Succeeded in Her Economic Reform,"
 - Yiping Huang and Bijun Wang, "Rebalancing China's Economic Structure,"
 - Barry Eichengreen, Donghyun Park and Kwanho Shin, "When Fast Growing Economies Slow Down: International Evidence and Implications for China."

ション ふゆ く 山 マ チャット しょうくしゃ


- This Week John and Vladimir will discuss
 - Why studying China may be important
 - Some important facts about growth
 - Basics of growth accounting
 - Solow growth model

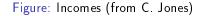
Why China?

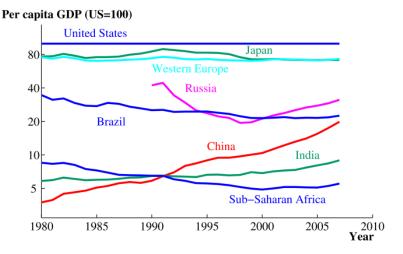
- About a fifth of world population (1.4 out of 6.8 billion).
- Large economy and an important player in world economic and political affairs (about 10% of World GDP).
- Example of a poor country graduating to a status of middle income country (and possibly more).
- Example of a successful transition from a centrally planned to a market based economy (contrast to ex-USSR countries).

ション ふゆ アメリア メリア しょうくの

Figure: China relative to World (from IMF WEO)

◆□ > ◆□ > ◆三 > ◆三 > 三 の < ⊙


- Questions:
 - What are the reasons for the rapid rise of China? (Chow 1985)
 - Is rapid economic growth sustainable in China? (Eichengreen et al. 2011)

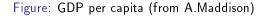

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- If yes, then great! If not, what can be or is being done to sustain it? (Huang et al. 2010)
- Are there lessons to be learned for other nations?

Fact 1: "There is enormous variation in per capita income across economies. The poorest countries have per capita incomes that are less than 5 percent of per capita incomes in the richest countries."

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで


Fact 2: "Rates of economic growth vary substantially across countries."

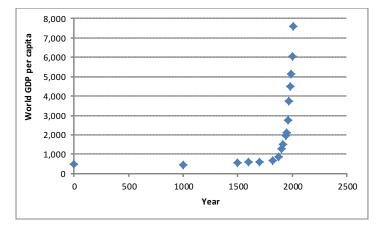
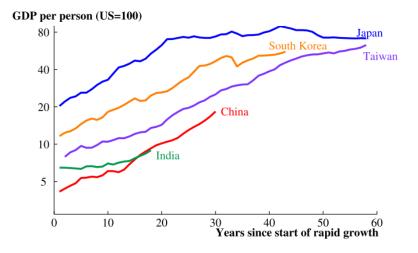

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Table: GDP per capita growth rates (from IMF WEO)

	1990 - 2000	2000 - 2010	
World	0.016	0.029	
Advanced Economies	0.016	0.021	
Developing Asia	0.032	0.061	
Latin America	0.025	0.036	
Sub-Saharan Africa	0.002	0.051	
China	0.053	0.069	

Fact 3: "Growth rates are not generally constant over time. For the world as a whole, growth rates were close to zero over most of history but have increased sharply in the twentieth century. For individual countries, growth rates also change over time."



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Fact 4: "A country's relative position in the world distribution of per capita incomes is not immutable. Countries can move from being "poor" to being "rich," and vice versa."

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Figure: Catching Up (from C.Jones)

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Growth Accounting

What explains these facts? Is there a general framework to analyze the determinants of incomes?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Growth Accounting

Growth Accounting Basics

Production Function

$$Y(t) = F(K(t), A(t) L(t))$$

where K(t), L(t), A(t) denote a country's stock of capital, number of workers, and state of technology respectively.

Constant Returns to Scale (Cobb-Douglas)

$$egin{aligned} & \mathcal{F}\left(c\mathcal{K},\mathcal{A}(cL)
ight)=c\mathcal{F}\left(\mathcal{K},\mathcal{A}L
ight)\ & \mathcal{F}\left(\mathcal{K},\mathcal{A}L
ight)=\mathcal{K}^{lpha}\left(\mathcal{A}L
ight)^{1-lpha} \end{aligned}$$

Differentiate F (cK, A(cL)) = cF (K, AL) with respect to c and plug c = 1

$$Y = F_K K + F_L L$$

where $\frac{F_{K}K}{Y} = \alpha$ and $\frac{F_{L}L}{Y} = 1 - \alpha$ with Cobb-Douglas.

Growth Accounting Basics

• Take logarithms of
$$Y = K^{\alpha} (AL)^{1-\alpha}$$

$$log(Y) = lpha log(K) + (1 - lpha) log(A) + (1 - lpha) log(L)$$

Determinants of cross-country income differences -

$$\Delta log(Y) = \alpha \Delta log(K) + (1 - \alpha) \Delta log(A) + (1 - \alpha) \Delta log(L)$$

and using the fact that log(x/z) = log(x) - log(z)

$$\Delta \log\left(\frac{Y}{L}\right) = \alpha \Delta \log\left(\frac{K}{L}\right) + (1 - \alpha) \Delta \log(A)$$

 Thus cross-country per capita income differences can be attributed to differences in per capita capital stock and to differences in technology

Growth Accounting Basics

Determinants of income growth over time -

$$\frac{d}{dt}\log(Y) = \alpha \frac{d}{dt}\log(K) + (1-\alpha)\frac{d}{dt}\log(A) + (1-\alpha)\frac{d}{dt}\log(L)$$

and use the Chain Rule $\frac{d}{dt}\log(Y) = \frac{\frac{dY}{dt}}{Y} \equiv g_Y$ (same for A, L)
 $g_Y = \alpha g_K + (1-\alpha)g_T + (1-\alpha)g_L$

► And Growth rate of GDP per capita is (again using that log (x/z) = log (x) - log (z))

$$g_{Y/L} = \alpha g_{K/L} + (1 - \alpha) g_T$$

ション ふゆ アメリア メリア しょうくの

Growth Accounting

Figure: Growth Accounting - China

Sources of China's Economic Growth Using Simple Solow Growth Accounting

	1978-2008	1978-1999	1999-2008
Contribution to GDP growth	ı (%)		
Physical capital stock	44.96%	36.35%	67.62%
Labor	8.50%	10.78%	3.97%
TFP	46.54%	52.87%	28.41%

◆□ > < 個 > < E > < E > E 9 < 0</p>

Growth Accounting

Figure: Growth Accounting (from Hall and Jones (1999))

Country	Y/L	Contribution from			
		$(K/Y)^{\mu^{(1-\alpha)}}$	H/L	Α	
United States	1.000	1.000	1.000	1.000	
Canada	0.941	1.002	0.908	1.034	
Italy	0.834	1.063	0.650	1.207	
West Germany	0.818	1.118	0.802	0.912	
France	0.818	1.091	0.666	1.126	
United Kingdom	0.727	0.891	0.808	1.011	
Hong Kong	0.608	0.741	0.735	1.115	
Singapore	0.606	1.031	0.545	1.078	
Japan	0.587	1.119	0.797	0.658	
Mexico	0.433	0.868	0.538	0.926	
Argentina	0.418	0.953	0.676	0.648	
U.S.S.R.	0.417	1.231	0.724	0.468	
India	0.086	0.709	0.454	0.267	
China	0.060	0.891	0.632	0.106	
Kenya	0.056	0.747	0.457	0.165	
Zaire	0.033	0.499	0.408	0.160	
Average, 127 countries:	0.296	0.853	0.565	0.516	
Standard deviation:	0.268	0.234	0.168	0.325	
Correlation with Y/L (logs)	1.000	0.624	0.798	0.889	
Correlation with A (logs)	0.889	0.248	0.522	1.000	

TABLE I PRODUCTIVITY CALCULATIONS : RATIOS TO U. S. VALUES