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Identifying Causality

Causal questions:

I What is the effect of taxes on consumption?

I What is the effect of alcohol on health?

I What is the effect of race on income?

I etc...

In order to answer these questions we need to know what happens
when we treat (tax, drink, belong to race A) and when we don’t
treat.
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From Angrist and Pischke (2009)

What is the effect of hospitalization on health outcomes? Let’s
think of healthy outcomes as high numbers and unhealthy
outcomes as low numbers.

Let Yi be the observed health outcome for person i . Di = 1 if they
went to the hospital and Di = 0 if they didn’t go.

Then the potential health outcome for individual i can be
expressed as

potential oucome =

{
Y1i if Di = 1
Y0i if Di = 0

We can express the observed outcome:

Yi = Y0i + (Y1i − Y0i )Di

Y1i − Y0i is the causal effect of going to the hospital.
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Using our notation let’s just compare average observed outcomes,
i.e. we compare average outcomes of people who went to the
hospital to average outcomes of people who didn’t go:

E [Yi |Di = 1]− E [Yi |Di = 0] = E [Y1i |Di = 1]− E [Y0i |Di = 0]

Adding zero:

E [Yi |Di = 1]− E [Yi |Di = 0] =

E [Y1i |Di = 1]− E [Y0i |Di = 1] + E [Y0i |Di = 1]− E [Y0i |Di = 0]

Let’s examine this in detail to figure out what we have.
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E [Yi |Di = 1]− E [Yi |Di = 0]︸ ︷︷ ︸
Observed Difference

=

E [Y1i |Di = 1]− E [Y0i |Di = 1]

+E [Y0i |Di = 1]− E [Y0i |Di = 0]
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E [Yi |Di = 1]− E [Yi |Di = 0]︸ ︷︷ ︸
Observed Difference

=

E [Y1i |Di = 1]− E [Y0i |Di = 1]︸ ︷︷ ︸
Causal treatment effect

+ E [Y0i |Di = 1]− E [Y0i |Di = 0]︸ ︷︷ ︸
Selection bias

E [Y1i |Di = 1]− E [Y0i |Di = 1] is exactly what we want, but it’s
obscured.
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“The Experimental Ideal”

We need to randomize Di so that the correlation between Di and
the potential outcomes is zero. Mathematically, this means:

E [Y0i |Di = 1] = E [Y0i |Di = 0]

If we do this in our equation then we have

E [Yi |Di = 1]− E [Yi |Di = 0] = E [Y1i |Di = 1]− E [Y0i |Di = 0]

= E [Y1i |Di = 1]− E [Y0i |Di = 1]

= E [Y1i − Y0i ]
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Regression

Remember our expression for the observed outcome Yi :

Yi = Y0i + (Y1i − Y0i )Di

We can reformulate this in terms of a regression:

Yi = α︸︷︷︸
E [Y0i ]

+ β︸︷︷︸
Y1i−Y0i

Di + εi︸︷︷︸
Y0i−E [Y0i ]
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If we evaluate this regression at Di = 0 and Di = 1 we get:

E [Yi |Di = 1] = α + β + E [εi |Di = 1]

E [Yi |Di = 0] = α + E [εi |Di = 0]

Rearranging:

E [Yi |Di = 1]− E [Yi |Di = 0] = β+

E [εi |Di = 1]− E [εi |Di = 0]︸ ︷︷ ︸
Selection bias

From your econometrics class: we need the error term and the
regressor to be uncorrelated.
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Review of OLS

Remember that for the linear regression model Y = βX + ε OLS
gives you the solution the following minimization problem:

min
β

∑
i

(yi − xiβ)2

E [ε] = 0

E [εX ] = 0

If the moment conditions are satisfied then

βOLS =
cov(X ,Y )

var(X )
= β
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Picture from C. Gibbons
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Experiments are powerful, but they are expensive and not always
feasible:
The Tennesseee STAR program attempted to evaluate the impact
of smaller class sizes on learning outcomes. So they randomly
assigned kindergarteners to classes of different sizes.

Parents of children in regular classrooms protested, so children
were moved back after the kindergarten year.

Natural experiments might be more feasible:
Angrist and Lavy (1999) and Israeli class sizes.

But what if we can’t run an experiment and can’t find a natural
one? How do we identify the treatment effect?
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We have a problem in the regression model Y = βX + ε if there is
a correlation between X and ε (E [X ε] 6= 0).

Y = βX + ε(X )

We want OLS to tell us dY
dX = β, instead it will tell us

dY

dX
= β +

dε

dX

More accurately:

βOLS = β +
X ′ε

X ′X
= β +

cov(X , ε)

var(X )
(1)

It’s double counting: direct effect through β and indirect effect
through ε.
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Supply and Demand
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Demand Shifters

Vladimir Asriyan and John Mondragon Lecture 3: Education



The demand shifters allow us to trace out the supply curve. The
same applies for supply shifters. These are called instrumental
variables. Formally, we are finding a variable Z such that:

E [Zε] = 0

E [ZX ] 6= 0

Then we run two regressions:

X = βOLS
Z Z + εZ

This gives us X̂ = βZZ . Then we do:

Y = βX̂ + ε

We have purified X of the part that was giving us trouble:

βIV =
Z ′Y

Z ′X
+

Zε

Z ′X
=

Z ′Y

Z ′X
+ 0 (2)
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Example from Cameron and Trivedi (2005)

Want to estimate the effect of schooling on wages:

log(w)i = α + β1Schooli + β2Expi + X ′i γ + εi

What is the problem with running this regression by OLS?

We think ability makes schooling and experience endogenous. So
we need two instrumental variables.

Ideas?
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We can (arguably) use proximity to a college as an instrumental
variable for schooling and age as an instrumental variable for
experience.

Table: Returns to Schooling

OLS IV
β1 (School) 0.073 0.132

[0.004] [0.049]
R2 0.304 0.207

IV can help us, but it also has its own problems:

I Bigger standard errors.

I Explains less of the variation.

I A really weak instrument can contain very little information.
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Graphic from Kennedy [2003])
Ordinary Least Squares (OLS) works here because it estimates the
blue part.

Vladimir Asriyan and John Mondragon Lecture 3: Education



But here OLS will be inconsistent (we want blue without any red,
but OLS estimates blue + red).
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What if we have a third variable (Z ) that is correlated with X , but
not with the confounder?

Vladimir Asriyan and John Mondragon Lecture 3: Education



Now if we estimate Y = βX̂ we get purple. Free of red, but not
exactly blue...
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Good or bad IV?
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Mathematically, the estimators for Y = βX + ε

βOLS = (X ′X )−1X ′Y

and
β2SLS = [X ′Z (Z ′Z )−1Z ′X ]−1X ′Z (Z ′Z )−1Z ′Y

When “just identified” this reduces to

βIV = (Z ′X )−1Z ′Y

In STATA type reg Y X to do OLS. Type ivregress 2SLS Y X
(instrument = Z) to instrument Z with X.
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For further reading:

I “A Guide to Econometrics” by Kennedy

I “Mostly Harmless Econometrics” by Angrist and Pischke

I “Introductory Econometrics” by Wooldridge

I “Microeconometrics” by Cameron and Trivedi
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