Economics 172 Issues in African Economic Development

Professor Ted Miguel Department of Economics University of California, Berkeley

Economics 172 Issues in African Economic Development

Lecture 3 – January 23, 2007

Lecture 3: Economics 172 Information

- Lecturer: Prof. Ted Miguel Email: <u>emiguel@econ.berkeley.edu</u> Office hours: Mondays 9-11:30am, Evans 647
- Reading packets are in Copy Central. The course syllabus is on my website at:

http://www.econ.berkeley.edu/~emiguel/undergrad_syllabus.pdf

Introduction to the Solow Growth Model

- The goal is to explain income per capita, y
- The "inputs" into economic production are:
 - The "capital" stock per capita, k

This should be broadly interpreted to include both physical capital stocks (factories, machinery, tractors, and infrastructure) and human capital stocks (education, skills, health)

– The "technology" of production, A

This should also be broadly interpreted to include production processes, the organization of society, government institutions, geography, and social characteristics that affect productivity

Modeling economic production

 Economic production is often modeled using the following functional form:

 $y = f(A, k) = Ak^{\alpha}$, where $0 < \alpha < 1$

- There is a single production good (called "output")
- Production is increasing in both capital per person (k) and in technology A
- There are decreasing marginal returns to *k*. Thus returns to capital investment should be highest in poorer countries, everything else equal (ceteris paribus)

Modeling capital accumulation

• The change in the capital stock from last period to this period is denoted by \dot{k} ("kay-dot")

Modeling capital accumulation

- The change in the capital stock from last period to this period is denoted by \dot{k} ("kay-dot")
- Assume that this is a closed economy (so no international flows), and all saving goes into investment.
- Abstract away from firms' investment decisions, and assume that a fraction s, 0 < s < 1, of output is saved
- Assume that some fraction d of capital is lost or worn out ("depreciation") in each period of time. This yields:

Modeling capital accumulation

- The change in the capital stock from last period to this period is denoted by \dot{k} ("kay-dot")
- Assume that this is a closed economy (so no international flows), and all saving goes into investment.
- Abstract away from firms' investment decisions, and assume that a fraction s, 0 < s < 1, of output is saved
- Assume that some fraction d of capital is lost or worn out ("depreciation") in each period of time. This yields:

$$\dot{k} = sy - dk = sAk^{\alpha} - dk$$

Solving for steady-state per capita income

- We want to explain steady-state / equilibrium per capita income in terms of the given "exogenous" variables: the savings rate (s), technology (A), the curvature of the production function (α), and capital depreciation (d).
- Steady state capital per capita (k*) and income per capita (y*) are the "endogenous" variables determined within the model that we seek to explain

Solving for steady-state per capita income

- We want to explain steady-state / equilibrium per capita income in terms of the given "exogenous" variables: the savings rate (s), technology (A), the curvature of the production function (α), and capital depreciation (d).
- Steady state capital per capita (k*) and income per capita (y*) are the "endogenous" variables determined within the model that we seek to explain
- The steady state is where there is the same stable amount of capital per capita across periods: $\dot{k} = 0$ or equivalently where $sAk^{\alpha} = dk$. Solving \rightarrow

$$k^* = \left(\frac{sA}{d}\right)^{\frac{1}{1-\alpha}}$$

Graphical solutions to the Solow model

 Imagine plotting the two components of the capital accumulation equation graphically:

Graphical solutions to the Solow model

- For initial $k_0 < k^*$, the increase in capital is positive
- For initial $k_0 > k^*$, capital decreases

Graphical solutions to the Solow model

• The difference between output and savings is consumption, $c = (1 - s)Ak^{\alpha}$

Comparative statics: s

• The level of savings increases to $s' > s \rightarrow k^*$ increases

ullet

Comparative statics: A

• Technology increases to $A' > A \rightarrow k^*$ increases

ullet

Comparative statics: d

Lower depreciation d' < d boosts steady state k*

An illustrative case: Africa versus Asia

• Both Africa and Asia start in 1950 at k_0

Economics 172: Lecture 3

Sources of long-run economic growth

- High investment rates in physical or human capital do not yield long run growth: you can only save up to s=1, and at that point you are consuming nothing (which is very bad for human welfare)
- Technological improvements are the key source of longrun economic growth (Easterly 2001). They make a given set of production inputs go farther

Evidence on sources of growth

- If A were equal across regions / countries, and all differences were driven by baseline capital intensity, then we would see: systematically higher returns to investment in poor countries (like those in Sub-Saharan Africa), most capital flowing from rich to poor countries, and poor countries growing faster than rich countries.
- But we do not see these patterns

Evidence on sources of growth

- If A were equal across regions / countries, and all differences were driven by baseline capital intensity, then we would see: systematically higher returns to investment in poor countries (like those in Sub-Saharan Africa), most capital flowing from rich to poor countries, and poor countries growing faster than rich countries.
- More evidence: African countries have shown massive increases in education (e.g., school enrollment, literacy) in the past 50 years but average growth has been zero
- Similarly, massive infusions of international capital often in "foreign aid" – have not produced growth

Investigating underlying determinants of growth

 For next time, please read the Easterly (2001) chapter, the review of linear regression, and the Bloom and Sachs (1998) article

