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1 Introduction

Information asymmetries are widely believed to be crucial impediments in �nancial markets.

Yet the evidence of asymmetric information in insurance markets is mixed (Chiappori and

Salanié (8)) and there is little empirical research testing for such asymmetries in credit

markets (Ausubel (4), Karlan and Zinman (13), Ahlin and Townsend (1)).1 In this paper

we use a natural experiment in South India to test for asymmetric information. The rich

institutional structure of the �nancial institution we study makes our identi�cation strategy

novel.

We ask if borrowers who are willing to pay a higher interest rate are riskier than those

who are not. We �nd clear evidence that they are. In particular we are able to reject

the null hypothesis that unobserved riskiness is unrelated to the interest rate a borrower

is willing to pay. Further, by exploiting small sample variation in the data we are able

to show that moral hazard does not explain this �nding. Our results therefore strongly

suggest that there is adverse selection in credit markets (Stiglitz and Weiss (20)). When

riskiness is unobserved, selection could go either way, however. De Meza and Webb (9) show

that safer borrowers may instead be willing to pay higher interest rates and derive opposite

implications from Stiglitz and Weiss (20).2 We �nd no evidence of their hypothesized

advantageous selection.3

The context for our study is a �nancial institution called a Rosca (or Rotating Savings

and Credit Association). These are popular in many developing countries. In a Rosca, a

1Our paper is most closely related to Karlan and Zinman (13) who �nd adverse selection among women

but not among men using randomized experiments. In contrast, we �nd adverse selection in a sample that

is predominantly male.
2Distinguishing between these two theories is di¢ cult but important. According to Besley (5): �...both

the Stiglitz-Weiss and De Meza-Webb analyses conclude that the level of investment will be ine¢ cient, but

they recommend opposite policy interventions as a solution. The con�icting recommendations would not

be especially disquieting except that the di¤erences between the models are not based upon things that can

be measured with precision...So it is hard to know which of the results would apply in practice.�
3This term advantageous selection is used by de Meza and Webb (10) in the insurance context, where it

refers to how increasing premiums can lead to a safer pool of insurees.
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group of people get together regularly, each contributes a �xed amount, and at each meeting

one of the participants receives the collected contribution, also called the pot.4 In random

Roscas, the pot is awarded in each round by lottery. In bidding Roscas, the subject of our

study, each pot is awarded to the highest bidder of an auction. Once a participant has

received a pot he is ineligible to bid for another. Unlike textbook �nancial markets with a

single interest rate, every participant in a bidding Rosca e¤ectively pays a di¤erent interest

rate. This variation in interest rates makes bidding Roscas particularly appropriate for

this kind of a study.

Bidding Roscas induce participants to self select. In each round, of those participants

who have not received a pot in any of the preceding rounds, the one who is willing to accept

the highest loan interest rate receives the pot. So recipients of early pots demonstrate a

willingness to pay higher interest rates than late recipients. The question is: are early

recipients riskier or safer than later recipients? Since early recipients have more to repay, if

they are riskier than later recipients, it would lead to higher default costs overall and hence

adverse selection. On the other hand, if earlier recipients are safer than later recipients,

the overall default costs would be lower, i.e. advantageous selection.5

To distinguish between adverse and advantageous selection, we exploit an exogenous

policy shock.6 In September 1993; the government unexpectedly imposed a bid ceiling (of

30% of the total pot). This e¤ectively transformed the early rounds of bidding Roscas into

random Roscas since many participants bid up to the ceiling but only one of them chosen

by lottery receives the pot. At an extreme, if a Rosca is transformed from bidding to

4The rationale for Roscas and for the di¤erent formats we observe are analyzed by Anderson and Baland

(2), Besley, Coate and Loury (6), Klonner (14) and Kovsted and Lyk-Jensen (16).
5The willingness to pay higher interest rates may be because of di¤erences in riskiness and pro�tability of

the investment technology (as in the Stiglitz-Weiss (20) and de Meza-Webb (9) models) or for other reasons

(say, impatience) that by coincidence are correlated with risk. In the paper we assume that the private

information is on project riskiness and pro�tability, but the results would go through if instead the private

information was about the degree of borrower impatience (and the associated default risk).
6Eeckhout and Munshi (11) study the performance of bidding Roscas as matching institutions using the

same natural experiment.
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complete random, all else equal, the average riskiness of all recipients should be the same

(implying a completely �at risk pro�le).

We �rst show theoretically how the policy shock will result in a di¤erent �attening of

riskiness depending on whether there is adverse or advantageous selection. With adverse

selection, the di¤erence between the riskiness of early and late recipients becomes smaller as

a result of the bid ceiling. In contrast, with advantageous selection, that di¤erence would

become larger. We therefore use a di¤erence-in-di¤erence speci�cation to test between the

models. Our null is that there is neither adverse nor advantageous selection.

The policy shock forms the basis of our identi�cation strategy. Figure 1 shows a

�attening of default rates for a particular Rosca denomination. Notice that the �attening

is consistent with adverse selection but inconsistent with advantageous selection. But such

a pattern could also arise for other reasons. In particular, aggregate shocks or changes in

the composition of participants could reduce defaults by early recipients (relative to late).

Or the changes in loan terms (earlier recipients typically receive more favorable terms after

the policy shock), and the associated changes in moral hazard propensity, could be driving

the observed pattern. We control for all these possibilities. In particular, we use the small

sample variation in auction outcomes to aid identi�cation. The amount of the winning bid

at which a pot is awarded before the policy shock can be used to control for the changes in

loan terms.

To summarize then, we �nd evidence of adverse selection, but no evidence of advan-

tageous selection. Our estimates are robust to controls for aggregate shocks, changing

composition of Roscas, di¤erent loan terms and moral hazard. We also show that adverse

selection is context speci�c. It is more pronounced in branches that have been established

more recently, are less remote and in larger cities. This is as expected: the Rosca organizer

presumably is less e¤ective at screening participants in newer branches and in more urban

areas.

Finally, we contrast our paper with an empirical literature on repayment incentives in

developing countries. Anderson et al (3) analyze how social collateral a¤ects Rosca design
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in Kenya. Karlan (12) and others use default data from group lending programs to explore

the role of social collateral in ensuring repayment. Since the bidding Roscas that we study

are commercially organized, the participants do not bear the cost of defaults of others in

their group.7 So we would not expect social ties between Rosca members to reduce default

rates.

We proceed as follows. In section 2, we provide background on bidding Roscas in South

India, and on the policy shock. In section 3, we construct a simple model of bidding Roscas

to illustrate the �attening result. In section 4, we discuss our identi�cation strategy. In

section 5, we discuss our results. We conclude in section 6.

2 Institutional Context

In this section we provide some background information on the bidding Roscas we study:

how they work, how contributions are enforced, how we calculate default rates, and how

default rates are a¤ected by the policy shock.

Rules and Denominations

Bidding Roscas are sophisticated mechanisms that match borrowers and lenders. Each

month participants contribute a �xed amount to a pot. They then bid to receive the pot in

an oral ascending bid auction where previous winners are not eligible to bid. The highest

bidder receives the pot of money less the winning bid and the winning bid is distributed

among all the members as a dividend. Consequently, higher winning bids mean higher

interest payouts to later recipients of the pot. Higher winning bids also e¤ectively mean

smaller loans for the winners of early pots. Over time, the winning bid falls as the duration

for which the loan is taken diminishes.
7Participants are asked to provide cosigners (typically from outside the Rosca) to guarantee that they

will continue to make contributions after receiving the pot. Bond and Rai (7) compare cosigned loans with

group loans.
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Example (Unrestricted Bidding) To illustrate these rules, consider the following 3 per-

son Rosca which meets once a month and each participant contributes $10: Suppose

the winning bid is $15 in the �rst month. Each participant receives a dividend of $5:

The recipient of the �rst pot e¤ectively has a net gain of $10 (i.e. the pot less the

bid plus the dividend less the contribution). Suppose that in the second month (when

there are 2 eligible bidders) the winning bid is $12: And in the �nal month, there is

only one eligible bidder and so the winning bid is 0: The net gains and contributions

are depicted as:

Month 1 2 3

Winning bid 15 12 0

First Recipient 10 -6 -10

Second Recipient -5 12 -10

Last Recipient -5 -6 20

The �rst recipient is a borrower (he receives $10 and repays $6 and $10 in subsequent

months, which implies a 34 percentage monthly interest rate). The last recipient is

a saver (she saves $5 for 2 months and $6 for a month and receives $20; a monthly

interest rate of 49 percent).

In South India, Roscas originated in villages and small communities where participants

were well informed about each other and could enforce repayments (Radhakrishnan (19)).

The bidding Roscas we study are larger scale: the participants typically do not know each

other and the Rosca organizer (a commercial company) takes on the risk of default. Bidding

Roscas are a signi�cant source of �nance in South India (where they are called chit funds).

Deposits in regulated chit funds were 12:5% of bank credit in Tamil Nadu and 25% of bank

credit in Kerala in the 1990s, and have been growing rapidly (Eeckhout and Munshi (11)).

There is also a substantial unregulated chit fund sector.

The data we use are from Shriram Chits and Investments Ltd., an established Rosca

organizer with headquarters in Chennai. The company started its business in Chennai,

the state capital located in the Northeast of Tamil Nadu. It began organizing Roscas in

6



1973 and has been expanding gradually over the state of Tamil Nadu since then, a process

which is still ongoing. While the company operated 78 branches in late 1991, the number

of branches has grown to 87 as of May 2005.

The most common Rosca denomination o¤ered by Shriram in the early 1990s meets for

40 months (with 40 members) and has a contribution of Rs 250. This Rosca has a pot

of Rs 10; 000: At that time, every year over �ve hundred Roscas were organized of this

denomination alone (see Table 1).

The organizer also o¤ers other Rosca denominations, some with shorter durations (e.g.

25 months), others with longer durations (e.g. 50 months), and some with higher contribu-

tions and some with lower contributions. In this way, the organizer can match borrowers

and lenders into Roscas that vary based on investment size and horizon. In what follows,

we will refer to a Rosca of duration n (in months) and contribution m as (n;m): Since

all Roscas administered by the organizer meet once per month, n also equals the number

of members. The available pot is nm: Our sample comprises those eleven denominations

that were most popular around the time the policy shock, which will be discussed shortly,

occurred. More precisely, we include all denominations of which Shriram started at least 40

Roscas between October 1992 and September 1994. The number of groups in the sample

is set out in Table 1 and Table 2 contains more detailed information on the 78 branches in

which the Roscas of our sample were organized.

Policy Shock

In September 1993 the Supreme Court of India enforced the 1982 Chit Fund Act, which

stipulates a 30% ceiling on bids for every Rosca denomination. Since there was considerable

uncertainty about when and if this law would ever be enacted, the 1993 ruling can reason-

ably be interpreted as an unanticipated policy shock (see Eeckhout and Munshi (11)). The

ceiling e¤ectively converted bidding Roscas into partial random Roscas: if several partici-

pants bid up to the ceiling only one of them receives the pot by lottery. This rule applied

to all Roscas started after September 1993. Roscas that were started before September
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1993 continued to operate under the old regime of unrestricted bidding.

Example (Restricted Bidding) In terms of the previous example then the law capped

bids at $9: So in both the �rst and second month, bidding would go up to the ceiling.

The �rst recipient contributes $10, receives the pot less the bid, $21; and also receives

a dividend of $3; which provides a net gain of $14 in the �rst month. Each of the

other participants contributes $10 and receives a dividend of $3 in the �rst month.

So the payo¤s are:

Month 1 2 3

Winning bid 9 9 0

First Recipient 14 -7 -10

Second Recipient -7 14 -10

Last Recipient -7 -7 20

From this example, then it is clear that the ceiling substantially lowers the interest rate

on borrowing for the �rst recipient (and hence the interest rate on savings for the last

recipient). According to Eeckhout and Munshi (11), interest rates fell from 14� 24%

pre policy shock to 9�17% post shock. This is in accordance with the stated objective

of the policy which was to prevent usurious interest rates in Roscas. The ceiling also

creates uncertainty about when a participant would receive the pot.

Our sample consists of Roscas that started in the 12 months prior to the shock and in

the 12 months after the shock. According to Table 1, there was a substantial decrease in the

number of Roscas formed for several of the Rosca denominations, including a drop of 37:5

percent for the popular (40; 250) denomination. Bidding reached the ceiling during the �rst

half of the Rosca cycle after the policy shock in all 11 denominations. In denominations

of shorter duration, the ceiling binds less often because the winning bid re�ects an interest

payment for a loan of shorter duration. At the other extreme, bidding reached the ceiling

in roughly 98% of the �rst 30 rounds of the (60; 1250) denomination.
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Enforcement

Early recipients clearly have an incentive to drop out and stop making contributions. The

organizer of the Roscas o¤ers protection to participants against such defaults. If a recipient

fails to make a contribution, the organizer will contribute the funds. The organizer receives

two forms of payment. He acts as a special member of the Rosca who is entitled to the

entire �rst pot (i.e. the �rst pot at a zero bid). He also receives a commission (usually

5� 6 percent) of the pot in each round.

Rosca participants do not put up any traditional collateral. Instead, the organizer relies

on the promise of future �nancial access and outside cosigners provide incentives for partic-

ipants to continue making contributions even after they have received the pot. In Roscas of

longer durations, recipients in the �rst half of the Rosca have to provide three cosigners with

a total monthly net income of �fteen percent of the pot, and recipients in the second half of

a Rosca have to provide two such guarantors. In shorter duration Roscas all recipients have

to provide two cosigners. Moreover the organizer uses alternative enforcement strategies

as well. Company o¢ cials claimed to us that their relatively high collection rates are due

to personalized collection e¤orts like home visits. Finally, the organizer tries to discourage

risky participants by admitting only those people who can show they have a regular wage

income. Company o¢ cials also told us that screening and enforcement procedures were not

changed in response to the policy shock and that enforcement policies were the same across

branches.

In contrast with the informal �nancial arrangements in village economies, in these orga-

nized urban Roscas social pressure plays no role in enforcing repayment. In each branch,

interested individuals simply sign up to join a Rosca of a speci�c denomination, and a new

Rosca commences once enough individuals have signed up. Since members of a particular

Rosca have negligible losses from a default in their group, they have no incentive to select

or monitor the other group members.
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Defaults

We calculate the individual default rate of a member of Rosca i who receives the pot in

round t 2 f1; :::; ng as

yti =
amount not repaid by round t recipient
amount owed by round t recipient

. (1)

So yti = 0 if the recipient has made all contributions, and yti = 1 if the recipient has made

no contributions after winning the pot. Partial defaults are observed in the data, which

means that yti is often less than 1.8

We also calculate the total default rate for Rosca i as

xi =
total amount not repaid by members of Rosca i
total amount owed by members of Rosca i

.

The total default rate gives the percentage of funds lent out in Rosca i that the company

failed to collect from the Rosca�s participants. It thus re�ects the risk for the organizer

associated with lending in Roscas. Notice that xi can be written as a weighted average

of individual default rates. Denoting by Qti the amount owed by the round t recipient in

Rosca i, we can write

xi =

X
t

ytiQtiX
t

Qti
:

The �weights�Qti are strictly decreasing in t because Qti equals Qt+1;i plus the net con-

tribution due in round t+ 1.9 Put di¤erently, while the recipient of the round t pot owes

another n� t net contributions, the recipient of the next pot only owes n� t� 1 net con-

tributions. This implies that individual default rates of early recipients a¤ect the default

costs of the organizer disproportionately.

8When a participant stops making contributions before receiving a pot, she is excluded from the group

and replaced by another individual.
9According to the rules of a Rosca, the net contribution in round t equals m minus 1

n
times the winning

bid in round t. This is because each member receives an equal share of the winning bid as dividend in each

round.
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Between 10 and 25% of members are �nance companies (institutional investors) which

have a close business relationship with Rosca organizer. Since �nance companies never

default, all pots allocated to them are excluded from the analysis. With an average total

default rate of 1.6 percent among customers other than �nance companies, Shriam maintains

an extraordinary collection record. To put this number into perspective, Ausubel (4) reports

an average chargeo¤ rate of 4.5 percent in his study of credit card lending in the US.

We are interested in how default rates were a¤ected by the bid ceiling. A dramatic

change occurred in the timing of individual defaults (see Table 3). Before the policy

change, the individual default rate of recipients during the �rst half of a group�s duration

averaged 1:74% while individual default rates of recipients during the second half of the

cycle averaged 0:54%. The respective �gures are 1:53% and 0:73% after the policy change.

For the 752 groups of the (30; 500) denomination this is illustrated in Figure 1. The pro�le

of individual default rates by round is considerably �atter for the post policy shock groups.

Although the average individual default rate remained virtually unchanged, the observed

�attening of the timing of defaults resulted in a decrease in the total default rate in the

sample. The average total default rate dropped by 18% from 1:71 percent to 1:41 percent

(see Table 3).

As can be seen from Table 3; default rates were higher before the policy change for

Roscas with large contributions, in the newer branches in the South and Northwest of the

state of Tamil Nadu (the older branches are in the Northeast), in more remote areas and

in smaller towns. These di¤erences persisted till after the policy change.

3 Theory

In this section, we develop a model of bidding Roscas in which borrowers di¤er in terms

of riskiness and pro�tability. In this model a Rosca provides �nancial intermediation

between members of di¤erent pro�tabilities. Speci�cally, high pro�tability members will

receive early pots to undertake their projects earlier. To do so, they compensate those

members who wait through the price they pay for a pot. We analyze bidding behavior
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�rst in the absence of a ceiling (unrestricted bidding) and then in the presence of a bid

ceiling (restricted bidding) when borrower types are private information. The purpose is to

establish implications which can distinguish adverse selection from advantageous selection.

The Basic Economy

There are two agents and two periods. Each agent is initially endowed with a riskless income

stream of $1 per period and has access to an investment project of size 2. The project yields

an expected (gross) rate of return of � per period. We assume that for each participant

� is independently drawn from a common distribution with cumulative distribution H at

the beginning of date 1.10 Assume that H is smooth and strictly increasing on its support

[�; �]. Moreover, � is privately observed.11 Assume that H is common knowledge and

so H also represents the beliefs of each agent about the distribution of the other agent�s

rate of return �. We assume that projects are risky, and their riskiness is related to their

return. They fail with probability �(�) and succeed with probability 1 � �(�): We shall

assume that �(�) is weakly monotonic, i.e. either �0(�) � 0 for all � or �0(�) � 0 for all

�: In words, riskiness is either (weakly) increasing or decreasing in pro�tability. We shall

assume further that there is a lower bound on �0(�):

�0(�) > �2=� (2)

We shall discuss both the reason for making this assumption and the consequences of

relaxing it at the end of this section. Both agents are assumed to have additively separable,

risk-neutral intertemporal preferences with common discount factor �:

10 In our model, as in Besley et al. (6), Kovsted and Lyk-Jensen (16) and Eeckhout and Munshi (11),

participants di¤er in their ex ante valuation for a given pot. There is an alternative way of modelling Roscas

(Klonner (14) and Klonner (15)) where members are identical ex ante and obtain private information before

every auction. Our approach to testing between adverse and advantageous selection goes through if we

assumed instead that participants were identical ex ante but each received a pro�tability draw of � from the

distribution H at each date.
11Kovsted and Lyk-Jensen (16), also assume private information, while this information is public in Besley

et al (6). and Eeckhout and Munshi (11).
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Both the agents form a bidding Rosca that meets at dates 1 and 2: Each member

contributes $1 at date 1 and there is an open-ascending bid auction. The winning bidder

of the auction receives the pot of $2 and, according to the rules, pays half of the price, p1

say, to the other, losing bidder. Thus the winner receives 2� p1=2. She needs additional

�nance of p1=2 to undertake the investment project. As in Kovsted and Lyk-Jensen (16),

we assume that each member has access to costly external funds to �nance this di¤erence

between the amount received from the Rosca upon winning the auction and the cost of the

project. Each dollar borrowed from this source causes an instantaneous disutility of c > 1.

At date 2; the winner at date 1 contributes if her project succeeds. If her project fails,

then the organizer contributes $1: In either case the date 1 losing bidder is assured of $2

at date 2 (there is no auction).

We are thinking of participation in the Rosca as an opportunity for a wage earner to

undertake a risky entrepreneurial activity. The pro�tability and riskiness of this entrepre-

neurial activity is privately observed. The winner of the auction in our model e¤ectively

takes a loan of 1 � p1
2 and repays $1 at date 2: The loser of the auction e¤ectively lends

1� p1
2 and is repaid $1: So the higher is the price (i.e. the second highest bid), the higher

is the interest rate (or equivalently the lower is the loan size).

Unrestricted Bidding

The bidding Roscas in our sample use an open ascending bid format. As is common in

the literature on private value auctions (McAfee and McMillan (17)), we model this as an

ascending clock auction, in which each bidder presses a button while the standing price

increases continuously (as on a clock). Once a bidder releases her button, the auction ends

and the price is equal to the stopout price of that bidder who �rst released her button. In

such an auction, a participant�s bid function is a stopout price that depends on her type.

We will denote the equilibrium bid function as b0(�).

We shall show below that the equilibrium bid function b0(�) is increasing. In this
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equilibrium, an agent who observes pro�tability � has expected utility:

�e(�) = H(�)
�
2�� c

2
E [b0(e�)je� � �]� �(1� �(�))

�
+ (1�H(�))

�
1

2
b0(�)� �

�
+ �2�:

The random variable e� denotes the other member�s pro�tability drawn from the distribution
H: The probability of winning the auction Pr(b0(�) � b0(e�)) is H(�) and the probability
of losing the auction is 1�H(�). If the agent wins, then 2� is the expected pro�t she earns

instantly from winning the �rst pot and investing, and c
2E [b0(e�)je� � �] is the expected

instantaneous disutility arising from having to �nance b0(�)=2. If the project succeeds,

which happens with probability 1��(�), she has to pay the Rosca contribution in the next

round, which gives the term ��(1 � �(�)): When a member of pro�tability � loses the

auction, she instantaneously consumes b0(�)=2 and has to pay the contribution in the next

round for sure, thus the term 1
2b0(�) � �. At the end of the second period both members

have invested and earn an expected income of 2�. Notice that the organizer insures the

loser of the auction against default in the second round by the �rst round winner, and it is

for that reason that both will invest.

We show that there is adverse selection if �0(�) > 0 and advantageous selection other-

wise:

Proposition 1 (Unrestricted Bidding)

A symmetric Bayesian Nash equilibrium exists in which:

(i) the equilibrium bid function b0(�) is strictly increasing

(ii) the early recipient is more pro�table than the late recipient

(iii) If �0(�) > 0 (< 0) the early recipient is riskier (safer) than the late recipient.

All proofs are in the appendix.

The equilibrium characterized in Proposition 1 implies that the participant with higher

pro�tability obtains �nance �rst (which is socially e¢ cient). The function �(�) repre-

sents the relation between riskiness and pro�tability. When riskiness and pro�tability are

positively related, �0(�) > 0; there is adverse selection. In contrast, when riskiness and
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pro�tability are negatively related, �0(�) < 0; there is advantageous selection. Since the

�rst participant is riskier under adverse selection, default costs are higher than with ad-

vantageous selection. If �0(�) = 0 for all �, all pro�tability types are of equal riskiness

and there is neither adverse nor advantageous selection. We shall discuss the relation-

ship between adverse/advantageous selection in our model of bidding Roscas and models of

adverse/advantageous selection in credit markets at the end of section 3.

Restricted Bidding

In this section we model the implication of a ceiling on bids, which we denote as b. At one

extreme, if the ceiling is set very low, then it will always bind. Participants will both bid

to the ceiling and the pot will be awarded by lottery (just as in a random Rosca).12 The

expected riskiness of the �rst recipient will be the same as the expected riskiness of the

second recipient. The risk ordering will be �attened. At the other extreme if the ceiling b

is set very high, then it will never bind and so the auction outcome will be the same as in

the unrestricted case (Proposition 1).

If the ceiling b is set somewhere in between the extremes, then it will only bind some-

times. In such a case there exists a bidding equilibrium in which, as before, a participant�s

bid function is weakly increasing. We denote this equilibrium bid function (restricted by

the ceiling) as b1(�). It is shown in Figure 2. This function is strictly increasing for

pro�tabilities below a certain threshold denoted by �0. For � > �0, on the other hand,

b1(�) is �at and equal to the ceiling b. If both participants bid to the ceiling, open bidding

stops and both participants have an equal chance of winning the pot.13 The ceiling binds

when both participants receive a pro�tability draw exceeding �0 and in such a case the early

12Unlike a random Rosca (where the price is zero for every pot), here the price of the �rst pot is b and so

the winner of the lottery makes a side payment of b=2 to the loser.
13 In practice, if both agents bid to the ceiling, they are invited to participate in the lottery (and either

may decline). We model this decision. So here a strategy for each agent is not just a bid function but also

the lottery participation decision (if invited). As we show in the proof of Proposition 2 an agent chooses to

participate in the lottery if and only if she bids up to the ceiling.
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recipient is of the same expected pro�tability (and hence the same expected riskiness) as

the late recipient.

We collect these cases together in the following proposition:

Proposition 2 (Restricted Bidding)

� If the ceiling is su¢ ciently high,

b � 2(2�+ ��(�))

1 + c
(3)

then the ceiling never binds and Proposition 1 applies.

� If the ceiling is su¢ ciently low,

b �
2(2�+ ��(�))

1 + c
(4)

then the ceiling always binds, both participants bid b and the early and late recipients have

the same pro�tability and riskiness.

� Finally, if neither (3) nor (4) hold, then a symmetric Bayesian Nash equilibrium exists,

in which a unique threshold �0 2 (�; �) exists such that:

(i) the equilibrium bid function b1(�) is increasing below the threshold �0 and b1(�) = b

above the threshold �0

(ii) the early recipient has lower pro�tability than the late recipient with probability 1
2(1 �

H(�0))2

(iii) if �0(�) > 0 (< 0), the early recipient is of lower (higher) risk than the late recipient

with probability 1
2(1�H(�

0))2:

The �rst pot is allocated to the higher pro�tability member with certainty only if at least

one member�s pro�tability is no bigger than �0. If, on the other hand, both participants

have pro�tability draws exceeding �0 which happens with probability (1�H(�0))2 a lottery

occurs, and the early recipient has lower pro�tability than the late recipient with probability

1
2 . In this sense, with a binding ceiling, the bidding Rosca no longer induces an ex-post

e¢ cient allocation.
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With unrestricted bidding the equilibrium bid function b0(�) is increasing. With re-

stricted bidding, participants with pro�tability exceeding a threshold �0 bid at the ceiling

b: We also show (below) that the bid ceiling shifts down the entire bid function (so b1(�) is

lower than b0(�)). This is depicted in Figure 2 and proved as:

Proposition 3 (Comparing Bid Functions)

In the symmetric equilibria characterized in Propositions 1 and 2, a member of pro�tability

� 2 [�; �] chooses a strictly smaller stopout price in an auction with restricted bidding, that

is b0(�) > b1(�) for all � 2 [�; �].

Testable Implication

Another more important e¤ect of introducing a ceiling on bids occurs whenever a lottery

takes place in the �rst round. Proposition 1 states that the recipient of the �rst pot always

has higher pro�tability than the recipient of the second pot. With the ceiling in place,

however, the recipient of the �rst pot has a lower pro�tability than the recipient of the

second pot with probability 1
2(1 � H(�0))2 if the ceiling sometimes binds (Proposition 2).

It is this reordering of types that we will use to identify the slope of the � function. More

precisely, conditional on the �rst pot being allocated through a lottery, the recipient of the

�rst pot has lower pro�tability than the recipient of the second pot with probability 1
2 , while

the probability of this event is zero when there is no ceiling on bids in place.

The ceiling makes the average riskiness of participants more equal over time. This

insight is summarized as:

Proposition 4 (Testable Implication)

Provided the ceiling binds sometimes or always, Propositions 1 and 2 imply:

(i) If �0(�) > 0; then the di¤erence between the riskiness of early and late recipients is

positive with both unrestricted and restricted bidding but smaller in the latter case.

(ii) if �0(�) < 0, then the di¤erence between the riskiness of early and late recipients is

negative with both unrestricted and restricted bidding but higher (that is less negative) in
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the latter case.

In other words, restricted bidding �attens the risk pro�le in both cases. So our empirical

strategy (which we discuss in detail in section 4) will be to take the di¤erence between early

and late recipients before and after the ceiling is imposed. We then take the di¤erence

between these di¤erences. This should be positive in the case where �0(�) > 0 and negative

in the case where �0(�) < 0:

Stiglitz-Weiss and de Meza-Webb

We now turn to the connection between adverse/advantageous selection in our model of

bidding Roscas and the adverse/advantageous selection in models of credit markets by

Stiglitz-Weiss (20) (henceforth SW) and de Meza-Webb (9) (henceforth DW).

So far we have generalized the SW model by allowing participants to di¤er in their

pro�tability. We have associated the adverse selection when �0(�) > 0 with SW since it is

the riskier borrowers who are willing to pay higher interest rates. But strictly speaking, SW

make the special assumption that all borrowers have the same pro�tability � and just di¤er

in their riskiness. It is straightforward to see that the riskier participant will bid more for

the �rst pot because she is less likely to pay the contribution in the second round. So the

SW special assumption will lead to adverse selection with unrestricted bidding, a �attening

of the risk pro�le under the ceiling and the same testable implication as in Proposition 4.

In their model of credit markets, DW assume that riskiness and pro�tability are neg-

atively related. When �0(�) < 0; we �nd advantageous selection if assumption (2) holds.

We associate this advantageous selection with DW since it is the safer borrowers who are

willing to pay higher interest rates.

For the sake of completeness, we will brie�y discuss what the model predicts if assump-

tion (2) does not hold. Suppose that:

�0(�) < �2=� for all �

Under this alternative assumption, there is an equilibrium with restricted bidding in which
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the less productive riskier participant takes the �rst pot. E¤ectively the alternative as-

sumption leads to adverse selection of the SW kind: the riskier participant is willing to

pay more for the pot than the safer participant. The reason is that the bene�t from the

higher chance of defaulting on the round 2 contribution for the risky participant outweighs

the higher pro�tability of the safer participant. With restricted bidding the risk pro�le

is �atter under the alternative assumption and so the testable implication (Proposition 4)

goes through as before.

4 Identi�cation

Our identi�cation strategy is based on the �attening e¤ect, as summarized in Proposition

4 and the assumption that, other things held constant, a member�s default rate as de�ned

in equation 1 is increasing in the member�s riskiness, �. The �attening e¤ect on the risk

pro�le immediately carries over to groups with n > 2 members.

In this section we �rst illustrate our basic identi�cation strategy in the context of an

ideal experiment. We then proceed to discuss how an empirical analysis can account for

various factors in the data which potentially �aw the basic identi�cation strategy. In

the course of this discussion, the speci�cation used for the empirical analysis is gradually

derived. As we shall see both the policy shock and small sample variation in winning bids

will be crucial to our identi�cation strategy.

The Ideal Experiment

An ideal experiment would be characterized by the following four properties:

1. There are groups with restricted and unrestricted bidding, which start and end at

identical dates.

2. The expected default rate of the recipient of a pot is independent of aggregate shocks,

i.e. transitory economic conditions that a¤ect all individuals who are Rosca members.
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3. Individuals who sign up for a Rosca membership are randomly assigned into groups

with restricted and unrestricted bidding.

4. The expected default rate of the recipient of a pot does not depend on the terms at

which the pot is obtained.

Suppose we have the ideal experiment: data from groups with unrestricted and groups

with restricted bidding, where all groups are from the same Rosca denomination, that is all

groups are of identical duration and contribution per round. The sign of the slope of the

�-function is then identi�ed through the econometric speci�cation

yti = �t + � afteri + � afteri late
�
t + uti; (5)

where t 2 f1; :::; ng denotes the round of receipt of the pot, and i 2 f1; :::; Ig indexes Roscas

of a particular denomination. The unit of observation yti is the individual default rate of

the recipient in round t of Rosca i. The intercept term �t is round speci�c. The dummy

variable afteri equals one if Rosca i started after the policy shock and zero otherwise. The

dummy variable late�t is an indicator for whether the recipient in round t was a late (as

opposed to and early) recipient. Here � 2 (0; 1) determines a �cuto¤ round�that separates

early from late recipients, where, qualitatively, early recipients correspond to the recipient

of the �rst, and late recipients to the recipient of the second pot in our theoretical model.

To be precise, late�t equals one if t > �n. The interaction term afteri late
�
t interacts the

indicator for before/after policy shock with the indicator for early/late receipt of the pot.

To give an example, when n = 40 and � = 0:5, speci�cation (5) relies on the di¤erence

in defaults between recipients of pots up to and after round 20. For identi�cation, � has

to be chosen such that �attening of the risk pro�le occurs around round n� . A su¢ cient

condition for this is that a lottery occurs in round n� (assuming this is an integer) in at

least some of the groups with restricted bidding.

The least-squares estimate of � is the di¤erence between (i) the di¤erence in the average

default rate of recipients of early and late pots with unrestricted bidding and (ii) the di¤er-

ence in the average default rate of recipients of early and late pots with restricted bidding.
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Loosely speaking we shall think of � as the treatment e¤ect of the policy shock. When all

members are of equal riskiness, �attening of types does not a¤ect the average riskiness of

the recipient in a given round. As a consequence, the riskiness of a given round�s recipient

is identical before and after the policy shock. This implies that the di¤erence in defaults

between late and early recipients is the same in Roscas with restricted and unrestricted bid-

ding. Thus the null hypothesis of no selection (�0(�) = 0 for all �) can be tested through

the statistical hypothesis � = 0.

Recall that, according to Proposition 4, �attening through a ceiling on bids decreases

the average pro�tability of early recipients and increases the average pro�tability of late

recipients. Thus with adverse selection, �0(�) > 0 for all �, early recipients are relatively

less risky with restricted than with unrestricted bidding. Consequently, a point estimate

of � signi�cantly bigger than zero indicates the presence of adverse selection, while a point

estimate of � signi�cantly smaller than 0 indicates advantageous selection.

To conclude this subsection, notice that identi�cation of selection through the empirical

speci�cation (5) is ensured if any of the following two subsets of conditions 1 through 4

holds: f1; 3; 4g or f2; 3; 4g. This is because simultaneity of restricted and unrestricted

groups (property 1) takes care of aggregate shocks. On the other hand, when there are no

time-dependent aggregate shocks (property 2), simultaneity of restricted and unrestricted

groups is not needed.

In the data set underlying this paper, we do not have an ideal experiment as charac-

terized in properties 1 through 4. More precisely, with the given data scenario, a robust

identi�cation strategy has to account for departures from all four properties of the ideal

experiment. We now address departures from each of these four properties and show how

our identi�cation strategy accounts for them such that the test for no adverse selection

remains unbiased.
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Aggregate Shocks and Non-simultaneity of Unrestricted and Restricted Groups

We �rst address properties 1 and 2. As to the former, unrestricted and restricted groups

do not occur simultaneously. In particular, all unrestricted groups in the data start before

September 30, 1993, while all restricted groups start after that month. On the other hand,

Rosca members may have been subject to transitory aggregate shocks unobserved by the

researcher, which is a departure from property 2. We accommodate these concerns by

exploiting the fact that unrestricted and restricted groups in our sample overlap.

To illustrate, consider the Rosca denomination (40; 250) and groups that started between

October 1992 and September 1994. The overlap of unrestricted and restricted groups in

such a sample ranges between 39 months for two groups that started in September and

October 1993, respectively, and 17 months for two groups that started in October 1992

and September 1994, respectively. To account for transitory aggregate shocks, we augment

(5) by quarterly dummies. Toward that, we introduce the dummy quarterti, which equals

one for all observations from the same quarter. To give an example, for the (40,250)

denomination and start dates between October 1992 and September 1994, the period covered

by such a sample is 63 months, from October 1992 to December 1997. With a partition

of that time period into quarters, we arrive at 21 dummy variables (starting with the last

quarter of 1992 and ending with the last quarter of 1997). Since, in the presence of an

intercept term, all except one of these dummies are identi�ed, quarterti equals zero for all

observations from the last quarter of 1992. Indexing quarters by j, we can now rewrite (5)

as

yti = �t + � afteri + � afteri late
�
t + j quarterti + uti (6)

and, as a consequence, identi�cation of the treatment e¤ect � is solely based on di¤erences

in defaults of contemporaneous recipients of pots.
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Different Member Characteristics in Unrestricted and Restricted Groups

In this subsection we address property 3 of the ideal experiment: random assignment into

unrestricted and restricted groups. In our data, individuals are not randomly assigned into

unrestricted and restricted groups. Instead, there were only unrestricted groups before

September 30th of 1993, and only restricted ones after that date. Ideally for the researcher,

an identical set of individuals signed up for each denomination before and after that date.

As we have discussed earlier, the policy shock was unanticipated so we are not confronted

with a selection problem arising from a deliberate choice by prospective Rosca members

whether to join a Rosca prior to September 1993 that they anticipated would be restricted

after September 1993:

There are, however, other plausible reasons for why the characteristics of members of

restricted groups of a certain denomination might be di¤erent from those of members of

unrestricted groups of that denomination. In this connection, Eeckhout and Munshi (11)

show that for an individual of a given type ex-ante expected utilities from a membership in

a Rosca with restricted and unrestricted bidding are di¤erent. This can result in di¤erent

pools of members in restricted and unrestricted groups of a certain denomination for at

least two reasons. First, an individual of a given type may choose to join a di¤erent

denomination when confronted with restricted instead of unrestricted bidding. Second, if

prospective Rosca members have �nance options other than Roscas, be it lending from a

money lender or saving in a bank, an individual who chooses to sign up for a certain Rosca

denomination when bidding is unrestricted may choose not to join a Rosca and seek other

forms of �nance instead when bidding is restricted. This latter argument could, at least in

principle, also work conversely: an individual for whom other sources of �nance dominate

a Rosca membership with unrestricted bidding may decide to join a Rosca when bidding is

restricted.

We explore this issue in the context of the theoretical model developed in Section 3,

in which both points just raised amount to di¤erent distribution functions for unrestricted

and restricted groups, respectively. Denote the distribution of pro�tabilities for a given
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denomination with unrestricted and restricted bidding by H0 and H1, respectively. Under

the null hypothesis of our test for no adverse selection, the risk pro�le is completely �at both

before and after the policy shock, which continues to holds when H0 and H1 are di¤erent

because, in that case, all pro�tability types are of identical riskiness. This implies that a

change in the pool of members does not bias our statistical test for no adverse selection,

� = 0 in (6).

Default Rate Depends on Loan Terms

We now address departures from Assumption 4. In general, observed defaults may not only

be a function of a borrower�s inherent riskiness, but also of the terms at which the loan is

obtained. In this section we shall show that the small sample variation in these bidding

Roscas allows us to compare default rates of participants before and after the policy shock

controlling for loan terms.

In a bidding Rosca with n members, the terms for the recipient of the pot in round t

consist of two components. The �rst component is the price at which that pot is obtained.

We will slightly abuse notation and denote this price by bt. In a Rosca, in which each

member contributes one Rupee at each meeting, that price determines the net amount

received, Rt = n� n�1
n bt. In our model of a two period Rosca there is only one auction. The

price in that auction equals the stopout price of the low pro�tability bidder, or equivalently

b1 = b(�2:2).

The second component of the loan terms is the vector of prices in all remaining rounds of

the Rosca, bt = (bt+1; :::; bn�1). Notice that bn always equals zero since there is no auction

in the last round. That vector determines the repayment burden of the round t recipient.

This is because in a Rosca with an individual contribution of one Rupee per round the net

payment that recipient has to make equals 1 � bs=n in each round after receiving the pot,

i.e. for s = t+ 1; :::; n� 1. As a consequence, the (aggregate) repayment burden faced by

the round t recipient equals Qt � n� s� 1
n

Xn�1

s=t+1
bs.

In what follows, we will discuss at some length how the net amount received is accounted
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for by our identi�cation strategy. Later, we will return to the repayment burden.

Net Amount Received

Let Rt be the net amount received by a winner of a round t pot in a Rosca, i.e. Rt =

n � n�1
n bt. Rt may a¤ect a recipient�s expected rate of default for at least two reasons.

First, in the absence of any kind of moral hazard, the success of the borrower�s project may

depend on the amount she is able to invest from the pot, where, most likely, the project has

higher chances of succeeding when more is invested. We will refer to this as the size e¤ect.

This mechanical e¤ect can confound tests of asymmetric information (Karlan and Zinman

(13)). Second, if the borrower can choose between projects of identical expected return

but di¤erent riskiness, or if the success of a project is a function of e¤ort, the borrower

will choose a riskier project or supply less e¤ort as Rt decreases. This is the classic moral

hazard (MH) situation in Stiglitz and Weiss (20) among others. To clarify terminology, we

will refer to a change in defaults that results from a change in Rt as the size/MH e¤ect on

defaults, which will prove useful because we cannot identify size and moral hazard e¤ects

separately.

In the presence of a size/MH e¤ect, speci�cation (6) does not unambiguously identify

a selection e¤ect on defaults because two e¤ects that are caused by the policy shift are

confounded. The �rst direct one is a cap on bids which together with its additional impact

on bidders�strategic behavior (see Proposition 3), results in a higher loan size on average

in restricted groups. The second indirect e¤ect of the cap is the �attening of the risk

pro�le (see Proposition 4). As a consequence, the coe¢ cient � in (6) captures the sum of

the size/MH and the selection e¤ect. To give an example, assume that �0(�) = 0 and as

hypothesized above a higher loan size results ceteris paribus in a lower rate of default. Then

average defaults of early recipients will be smaller with restricted bidding simply because

they receive more money on average from the pot. As a consequence we will �nd a positive

estimate of �, erroneously indicating the presence of adverse selection.

The obvious remedy is to condition on the price paid by the recipient. In this case,
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we only compare pre vs post shock recipients who receive the pot at identical conditions.

A concern arising in this connection is that such conditioning may introduce selection.

To illustrate, in terms of our simple model, conditioning on low bids in pre shock groups

means conditioning on low pro�tability types. Since all pro�tability types are of identical

riskiness under the null hypothesis, however, such selection does not bias our test for no

adverse selection.

In econometric terms, we include bti into speci�cation 6. Doing so in a linear fashion,

we obtain

yti = �t + � afteri + � afteri late
�
t + j quarterti +  tbti + uti: (7)

Notice that we allow the coe¢ cient for bti to be round- speci�c.

Repayment Burden

We now turn to the second component in the terms that the recipient of the round t pot

faces, the repayment burden Qt. Clearly Qt induces a size e¤ect because both numerator

and denominator of our measure of the default rate (see equation 1) are a¤ected by Qt. To

see this rewrite (1) as

yti =
Qti �min(Qti; Zti)

Qti
;

where Zti denotes the maximum amount recipient i can repay, or repayment potential for

short. For constant repayment potential, which, in the absence of moral hazard, is deter-

mined by i�s type, y is clearly (weakly) increasing in Q. To summarize, the (mechanical)

size e¤ect of repayment burden, Qt, on the rate of default, y, is positive. To account for

this, we will condition on the repayment burden by adding the term �tQti to the right hand

side of (7),

ysti = �t + � afteri + � afteri late
�
t + j quarterti +  tbti + �tQti + uti: (8)
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5 Results

In this section, we estimate equation (8) for the eleven Rosca denominations in our data

sample. The objective of this empirical exercise is twofold. First, we seek to identify if

selection is adverse or advantageous (or neither). Second, we want to identify determinants

of adverse/advantageous selection that can be inferred from branch locations or denomi-

nation characteristics. We use Roscas that were started after September 1992 and before

October 1994 (the two year period around the implementation of the policy shift). This

has the advantage of taking care of potential seasonality of membership in Roscas as well

as providing a su¢ ciently large number of observations. The latter is especially crucial for

our analysis since default is a low probability event in our sample.

The sample means reproduced in Table 3 foreshadow our later regression results. As

elaborated in the preceding section, our identi�cation strategy is based on the change in

the di¤erence of defaults between early and late recipients around the policy shock. Ac-

cordingly, the last four columns of this table give individual default rates by round averaged

over the �rst and second half of the duration of each group, respectively. Let k index the

Rosca denomination, where k 2 f1; :::; 11g: So column 3 for instance displays the average

default rate for early recipients before the policy shock which is calculated as:

1P11
k=1

nk
2 Ik0

11X
k=1

nk=2X
t=1

Ik0X
i=1

ykti;

where nk is the duration of denomination k and Iks denotes the number of Roscas of

denomination k started before (s = 0) and after (s = 1) the policy shock.

For the entire sample, the di¤erence between early and late defaults shrunk from 1:74�

0:54 = 1:2 percent for Roscas that started before the shock to 1:53 � 0:73 = 0:80: This

gives a di¤erence-in-di¤erence of 0:4 (see column 7) which hints at adverse selection. This

pattern is illustrated in Figure 1, where the default rate is graphed by round for the popular

(30; 500) denomination. While default rates are similar in later rounds of such Roscas pre

and post ceiling, early recipients defaulted considerably more often in the pre ceiling Roscas.

Table 3 suggests that the magnitude of the double di¤erence di¤ers across sample par-
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titions. For instance there is no �attening of the risk pro�le with smaller contributions.

There is less �attening in recently established branches (relative to well established ones).

There is also less �attening in branches established in smaller and more remote towns (rel-

ative to larger towns and less remote towns) respectively suggesting that there may be

di¤erences in adverse selection between rural and urban areas.

Next we turn to the regression analysis to establish whether these �ndings hold when

several factors which potentially confound our measure of selection are taken into account.

At the end of section 4, we showed that the speci�cation (8) ensures identi�cation in the

absence of an ideal experiment. Here we adapt speci�cation (8) to the 11 denominations

in our sample indexed by k to estimate:

ykti = �kt + �k afterki + � afterki late
�
kt + j quarterkti +  ktbkti + �ktQkti + ukti: (9)

Notice that, except for the aggregate shock terms, we incorporate denomination-speci�c

controls for bid bkti and repayment burden Qkti throughout.14

The OLS results for the treatment e¤ect (which is the coe¢ cient on the interaction term

afterkilate
�
kt) with alternative sets of controls are in Table 4. With no controls included,

the statistically signi�cant point estimate is 0:0036: This roughly corresponds to the 0:4

percentage points by which the di¤erence in defaults between early and late recipients fell

(Table 3). The two numbers are not exactly equivalent because the regression in Table 4

includes denomination-round speci�c intercept terms �kt and denomination speci�c policy

shock terms �kafterki. When controls for loan size, repayment burden and aggregate

economic conditions are added, we obtain an almost identical positive point estimate of

0:0037 signi�cant at the 1% level. This con�rms that selection in this credit market is

adverse rather than advantageous. At �rst glance this might suggest that controlling for
14 In principle, could estimate (9) by OLS and/or by a Tobit speci�cation (since the default rate is censored

at 0 and 1). For the present application the results from an OLS speci�cation are of primary interest since

they are based on changes in the conditional expected value of actual defaults as opposed to changes in the

unobserved default propensity variable. More practically, given that (9) implies a total of 1; 251 right hand

side variables and that 121; 943 observations are used, it was computationally infeasible to maximize the

associated likelihood function.
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the aggregate shocks, winning bid and repayment burden is unimportant. But columns 3

to 8 illustrate that the results vary when subsets of the controls are deliberately omitted.

For instance, when only loan size (through the winning bid) is controlled for in column 4

the treatment e¤ect of the policy experiment disappears. We take this as evidence for the

importance to control for all three factors included in (9) for the subsequent, more detailed

analysis.

To identify to what extent the treatment e¤ect di¤ers by participant characteristics, we

augment (9) by additional terms:

1. We partition the set of denominations into two groups by contribution: small-contribution

groups with m � 500 and large-contribution groups where m > 500. The interaction

term afterki late
�
kt largekti is added to the right hand side of (9). Notice that this is

a triple interaction term: it interacts indicators for before-after, early-late and large-

small contributions. Since the contribution chosen by a prospective Rosca member

is almost proportionally related to her income on average (see Table 1 of Eeckhout

and Munshi (11)), the coe¢ cient on this interaction term indicates whether adverse

selection is more pronounced among the rich.

2. We include the interaction term afterki late
�
kt nk, which controls for the duration of

a group. Since loan terms are di¤erent in groups of di¤erent durations, we will not

attribute a signi�cant coe¢ cient associated with this regressor directly to di¤erences

in adverse selection. Instead, we view it as a control which ensures robustness of the

estimates of the (other) coe¢ cients of interest.

3. We include several observable characteristics of the branch where a group is admin-

istered. In particular, we allow for a di¤erent magnitude of the treatment e¤ect for

groups administered in towns with a population of less than 300; 000. We further

partition branches by remoteness from a metropolitan center, where, as in Table 2, a

branch is considered remote if it is more than 100 kilometers away from large cities

with a population of at least 500; 000. To see how the lender�s experience interacts
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with selection, we interact the treatment e¤ect with a dummy variable that equals

one for the 40 branches that are located in the Northeast of Tamil Nadu, where the

company started its business in 1973.

4. Finally, we tackle the potential problem of resorting of Rosca members (see Section

4). We attempt to do this by including an interaction term, which captures the

change in membership for each denomination (see Table 1) around the policy shift.

A signi�cant estimate provides evidence for an impact of resorting on our measure of

adverse selection.

Results of an OLS estimation of this augmented speci�cation are in Table 5.15 The

results are presented with alternative cuto¤s. In the left panel a cuto¤ of one half is

used.16 The base treatment e¤ect is estimated positive at 0:0133 and signi�cant at the

6% level. For Roscas with contributions larger than Rs. 500, however, the (aggregate)

treatment e¤ect amounts to 0:0163, which is di¤erent from zero at conventional signi�cance

levels (p-value 1:6%).17 The negative although insigni�cant coe¢ cient of the interaction

term afterki late
�
kt nk suggests that the treatment e¤ect is smaller in groups of longer

duration. The next set of results in Table 5 (rows 4 � 6) are the most interesting. The

treatment e¤ect is reduced by 0:4 and 0:26 percentage points for branches located in small

and remote towns, respectively. These coe¢ cients are signi�cant at the 1% and 6% level.

15 As with the initial econometric analysis, estimation of a Tobit model was computationally infeasible.
16 In the right panel of Table 5; we present results using an early-late cuto¤ of one third instead. This

earlier cuto¤ potentially increases the power of our test for no selection because the relative frequency of

lotteries is higher during the �rst third than during the �rst half of Roscas after the policy. But the more

unequal balance of the number of observations from early and late rounds works to reduce the power of

the test. This set of results serves as a useful robustness check of the �ndings obtained so far. All results

obtained for a cuto¤ of one half are con�rmed qualitatively.
17Since Table 5 gives the subgroup treatment e¤ects at zero duration, it raises the question of whether the

subgroup treatment e¤ects are still signi�cant if evaluated at the sample mean duration (of 38:7 months).

We do �nd that subgroup treatment e¤ects are still signi�cant. For instance, the treatment e¤ect for a

Rosca of 38:7 months with large contributions with a branch in a large town that is not remote and recently

established with zero attrition is 0:00745 and signi�cant (p-value 0:0046):
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Further, the estimated treatment e¤ect is discounted by another 0:39 percentage points for

established branches, a reduction that is signi�cant at the 1% level. Finally, as far as we

are able to test, attrition does not appear to systematically interfere with our approach to

measure selection: the coe¢ cient is negligible in magnitude and far from being signi�cant

at conventional levels.

These results suggest that adverse selection is more pronounced in urban areas and

in recently established branches. According to the Rosca organizers, identical policies to

screen participants (and admit only those with regular salaries) are in place in all branches.

Our �ndings can be explained as follows. Screening could be less e¤ective in urban areas

where participants tend to move more often. Further, well established branches�Rosca

organizers could have had more time to detect and exclude riskier participants. So un-

observed riskiness that is positively related to the willingness to pay could be more of a

problem in urban areas and newer branches.

The importance of including controls is highlighted through a comparison of the double

di¤erence in Table 3 and the results of the regression analysis in Tables 4 and 5. As

discussed previously, the average treatment e¤ect for the entire sample in Table 4 is almost

identical to the double di¤erence in Table 3: Further, the treatment e¤ect for the partitions

of the sample in Table 5 are mostly the same as the qualitative �ndings in Table 3. An

important caveat however is for the role of organizer�s experience. The double di¤erence in

column 7 of Table 3 is positive and more than twice as big for established branches, while

we �nd a signi�cantly negative corresponding coe¢ cient in Table 5. Clearly it is the latter

which we would expect to see.

We close this section by asking how much adverse selection contributes to the di¤erence

in total default rates across partitions of the sample. We do this by comparing the di¤erence

in total default rates across a partition with di¤erences in the treatment e¤ect across the

same partition in Table 6: If they are of the same sign then adverse selection explains some

of the di¤erence in total default rates. This is the case in the �rst two rows. But if they

are of di¤erent signs (as in the last two rows) that provides evidences that the di¤erence in
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average riskiness exceeds the e¤ect of adverse selection.

We �nd that large contribution denominations have higher total defaults both before

and after the policy change and more pronounced adverse selection than small contribution

denominations, but the latter e¤ect is not statistically signi�cant. For lender experience we

�nd more recently established branches have higher total default rates and the treatment

e¤ect is estimated at 0:4 percentage points higher than for more established branches. So

adverse selection signi�cantly contributes to higher total defaults when the Rosca organizer

is lacking local experience.

The opposite pattern emerges for rural vs. urban branches (when the sample is parti-

tioned based on the size and remoteness of the towns in which branches are located). Here

we see higher total defaults in small and remote towns while the treatment e¤ect is signi�-

cantly smaller in these settings. From this we conclude that higher total defaults in more

rural areas are due not to more pronounced adverse selection but rather to higher average

riskiness of borrowers. This makes intuitive sense: rural Rosca participants are exposed to

weather-related risks that urban Rosca participants are insulated from.

6 Conclusion

We have used a natural experiment to distinguish between adverse and advantageous selec-

tion. This experiment involved imposing a bid ceiling on bidding Roscas which e¤ectively

made the early rounds more like random Roscas. The experiment did not substantially

change overall default rates. But the di¤erence between early and late defaulters changed

substantially. This is what we use for identi�cation of asymmetric information. We also

use the small sample variation in auction outcomes to control for moral hazard (and other

e¤ects of di¤erent loan terms). We are thus able to identify a signi�cant adverse selection

e¤ect. Further, we �nd that the adverse selection e¤ect is more pronounced where we

would expect it to be: in urban areas and in recently opened branches.
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7 Appendix

Proof of Proposition 1:

For b0(�) to be a Bayesian Nash equilibrium agent 1 must be playing a best response

to agent 2 (who has pro�tability draw e�2 and is bidding b0(e�2)). Suppose agent 1 also
determines her stopout price according to b0(�) but pretends to be of type �, which may or

may not be her true type �1,the relevant part of agent 1�s expected utility is

�(�; �1) = F (�)
�
2�1 �

c

2
E [b0(e�2)je�2 � �]� �(1� �(�1))

�
+ (1� F (�))

�
1

2
b0(�)� �

�
(10)

where e�2 denotes member 2�s pro�tability as random variable distributed according to H.

F (�) equals Pr(b0(�) � b0(e�2)), the probability of winning the auction if pretending �,
when b0(�) is increasing. 2�1 is the expected pro�t she earns instantly when winning the

�rst pot and investing. c
2E [b0(e�2)je�2 � �] is the expected instantaneous disutility arising

from having to �nance b0(�2)=2. If she invests and the project succeeds, where the latter

occurs with probability (1 � �(�1)), she has to pay the Rosca contribution of one in the

subsequent round. Thus the term ��(1��(�1)), which is the discounted expected disutility

from having to pay the next contribution when she wins the �rst auction. Notice that the

organizing company insures the other member against such a default.

When she pretends � and loses the auction, she instantaneously consumes b0(�)=2 and

has to pay the contribution in the next round for sure, thus the term ��.

A necessary condition for b0(�) to represent a Bayesian Nash equilibrium of this bidding

game is that

�1 = argmax�2[�;�]�(�; �1) for all �1 2 [�; �]: (11)

Taking the derivative of �(�; �1) with respect to � gives

@�(�; �1)

@�
= f(�)

�
2�1 + ��(�1)� (1 + c)

1

2
b0(�)

�
+ (1� F (�)) b

0(�)

2
: (12)

Evaluating this at � = �1 and setting it equal to zero gives an ordinary �rst-order di¤erential

equation. Moreover, the RHS of (12) gives the boundary condition 2� + ��(�) � (1 +
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c)12b0(�) = 0. The unique solution to this boundary value problem is

b0(�) = bb(�) + �Z
�

bb0(t)� 1� F (t)
1� F (�)

�1+c
dt;

where bb(�) = 2(2�+ ��(�))=(1+ c). (Note that bb(�) is the price which makes a participant
indi¤erent between winning and losing, and since losing bidders can push up the winning

bid, the equilibrium bid schedule exceeds bb(�)). It is readily veri�ed that b0 is strictly

increasing if and only if assumption (2) holds. To determine whether b0 also satis�es a

su¢ cient condition for a Bayesian Nash equilibrium, we seek to determine whether (10) is

pseudoconcave in � around �1 for all � � �1 � � (see Matthews, 1995). This requirement

is equivalent to the condition,

for all � � �1 � �, � (�(�1)� �(�)) �
2

�
(�1 � �) if and only if � � �1 (13)

which clearly holds globally if assumption 2 holds. Finally, since b00(�) > 0; that immediately

implies parts (ii) and (iii) of the proposition. QED

Proof of Proposition 2:

The proof proceeds as follows. First we consider the interior case: the ceiling sometimes

binds and neither (3) nor (4) hold At the very end of the proof, we consider the extreme

cases: when (3) holds and the ceiling never binds and when (4) holds and the ceiling always

binds.

Before the beginning of this auction, agent 1, say, observes a pro�tability of �1 and

assumes that the other member is playing a strategy characterized by:

(i) b01(�) > 0 for all � < �0 and b1(�) = b for all � � �0

(ii) when invited, a bidder of pro�tability � chooses to participate in the lottery if, and

only if, � � �0.

If participant 1 also determines her stopout price according to b1(�) but pretends to be of

type �, which may or may not be di¤erent from �1,the relevant part of member 1�s expected

utility, is
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�(�; �1) =

8>>>>>><>>>>>>:

F (�)
�
2�1 � c

2E [b1(e�2)je�2 � �]� �(1� �(�1))
�

+(1� F (�))
�
1
2b1(�)� �

�
; if � < �0

F (�0)
�
2�1 � c

2E [b1(e�2)je�2 � �0]� �(1� �(�1))
�

+(1� F (�0)) 12
��
2�1 � c

2b� �(1� �(�1))
�
+
�
1
2b� �

��
; if � � �0:

(14)

The interpretation of terms is analogous to the case of unrestricted bidding, except for

1
2

��
2�1 � c

2b� �(1� �(�1))
�
+
�
1
2b� �

��
, which is the expected utility from participating

in the equal-odds lottery conditional on the other member also joining the lottery.

A necessary condition for b0(�) to represent a Bayesian Nash equilibrium of this bidding

game is that

�1 = argmax�2[�;�]�(�; �1) for all �1 2 [�; �] (15)

For � < �0, this implies that the derivative of �(�; �1) with respect to to � evaluated at

� = �1 has to equal zero. This gives, as for unrestricted bidding (see equation 12),

@�(�; �1)

@�
= f(�)

�
2�1 + ��(�1)� (1 + c)

1

2
b1(�)

�
+ (1� F (�)) b

0
1(�)

2
= 0 (16)

an ordinary �rst-order di¤erential equation. Moreover, an individual of pro�tability �0 has

to be indi¤erent between participating and not participating in the lottery when invited.

This gives the boundary condition

2�0 + ��(�0)� (1 + c)1
2
b1(�

0) = 0 (17)

The unique solution to this boundary value problem is

b1(�) = bb(�) + �0Z
�

bb0(t)� 1� F (t)
1� F (�)

�1+c
dt, � � �0;

which is strictly increasing for � < �0 if and only if assumption (2) holds.

It is, moreover, readily veri�ed that, for � > (<)�0, interim expected utility from par-

ticipating in the lottery when invited is strictly bigger (smaller) than not participating. A

strategy consisting of bidding

35



b1(�) =

8>>><>>>:
bb(�) + �0Z

�

bb0(t)� 1�F (t)1�F (�)

�1+c
dt if � < �0

b if � � �0

and participating in the lottery if, and only if, � � �0 thus satis�es necessary conditions

for a symmetric Bayesian Nash equilibrium.

To determine whether b1 also satis�es a su¢ cient condition for a Bayesian Nash equi-

librium, we seek to determine whether (14) is pseudoconcave in � for all � � �1 � �. It is

straightforwardly veri�ed that this is in fact the case provided condition (13) holds.

If the ceiling binds then riskiness and pro�tability are the same for the early and late

recipient. If it does not, then since the equilibrium bid function b1(�) is weakly increasing,

the early recipient has higher pro�tability and either higher or lower riskiness (depending

on �0(�)).

Finally, note that (17) implies that �0 is de�ned by:

2(2�0 + ��(�0))

1 + c
= b (18)

Now if �0 � �, then (18) implies the condition (3) for the extreme where the ceiling never

binds. On the other hand, if �0 � � then the the ceiling always binds, and (18) gives

condition (4) for this extreme. QED

Proof of Proposition 3:

Recall that, in the bidding equilibria characterized in Propositions 1 and 2, a bidder in

the auction of the �rst round determines her stopout price according to the function

b0(�) = bb(�) + �Z
�

bb0(t)� 1� F (t)
1� F (�)

�1+c
dt

with unrestricted, and according to

b1(�) =

8>>><>>>:
bb(�) + �0Z

�

bb0(t)� 1�F (t)1�F (�)

�1+c
dt, � < �0

b; � � �0
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with restricted bidding. We obtain

b0(�)� b1(�) =

8>>>>>>><>>>>>>>:

�Z
�0

bb0(t)� 1�F (t)1�F (�)

�1+c
dt, � < �0

�Z
�0

bb0(t)dt+ �Z
�

bb0(t)� 1�F (t)1�F (�)

�1+c
dt; � � �0;

which is clearly strictly positive for all � when assumption (2) holds. QED

Proof of Proposition 4: Follows directly from Propositions 1 and 2.
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Table 1.  Descriptive Statistics for the Sample by Denomination 
 

Members   20 25 25 30 40 40 40 40 40 50 60 

Contribution   500 400 1,000 500 250 500 625 1,250 2,500 1,000 1,250 

Pot   10,000 10,000 25,000 15,000 10,000 20,000 25,000 50,000 100,000 50,000 75,000 

Groups 
Before 
Shock1  138 135 85 395 1,188 60 219 17 26 151 34 

 After Shock2  188 135 102 357 742 39 147 24 26 107 19 

 Increase (%)  36.2 0.0 20.0 -9.6 -37.5 -35.0 -32.9 41.2 0.0 -29.1 -44.1 
 

Ceiling 
binding (%)3 

Before 
Shock Early4  7.1 24.6 28.1 40.5 79.1 83.2 71.9 82.2 71.4 91.6 98.4 

  Late5 1.7 0.0 0.0 0.0 1.8 3.8 0.4 0.6 0.4 4.8 13.3 

 After Shock  Early  18.6 44.0 42.4 57.2 72.7 87.9 69.8 83.8 67.2 91.9 97.9 

  Late 3.8 0.3 0.4 0.6 3.8 7.2 3.8 7.9 5.2 14.2 27.0 
 

                                                 
1 Groups that started between October 1992 and September 1993 
2 Groups that started between October 1993 and September 1994 
3 For pre policy shock groups, winning bid is no smaller than 0.3 times the pot; for post policy shock groups, reported winning bid 
equals 0.3 times the pot 
4 All those rounds before half of the rosca cycle is completed 
5 All those rounds after half of the rosca cycle is completed 
 



 
 Number of Branches 

 Total 
 

In towns with 
population 
<300,000* 

 

Number of 
cities with 
population 
>500,000* 

 

Average Distance 
to city with 
population 

>500,000 (km)** 
 

Entire Sample 78 40 3 68 

Established Branches 40 13 1 30 

Recent Branches 38 27 2 108 

* Source: Census of India, 1991 
** Source: Census of India 1991 and own calculations based on road maps 
 



Table 3. Rates of default (%)*. 
 
  (1) (2)             (3) (4) (5) (6) (7) 

  
total default rate           individual default rate  

  
before 
shock 

after 
shock 

before shock after shock double 
difference** 

    early late early late  
entire sample 

 
1.71 

 
1.41 

 
1.74 0.54 1.53 0.73 0.40 

by contribution ≤ 500 Rs. 1.33 1.24 1.63 0.64 1.87 0.90 0.02 

 > 500 Rs. 2.00 1.56 1.88 0.43 1.20 0.56 0.81 

by experience recent 1.96 1.92 1.86 0.62 1.88 0.87 0.23 

 established 1.48 0.94 1.62 0.47 1.15 0.58 0.58 

by remoteness <100 km from city with 
population >500,000 

1.45 1.09 1.57 0.51 1.27 0.71 0.50 

 ≥ 100 km from city with 
population >500,000 
 

2.33 2.30 2.11 0.61 2.17 0.77 0.10 

by size of town Population < 300,000 2.47 2.12 2.26 0.71 2.14 0.80 0.21 

 Population ≥ 300,000 1.38 1.13 1.48 0.47 1.22 0.69 0.48 

 
* see footnotes to Table 1. 
** Calculated as ((3)-(4)) – ((5)-(6)) 



Table 4.  OLS results for β, τ = 0.5, with alternative sets of controls. 
 

  (1) (2) (3) (4) (5) (6) (7) (8) 

Estimate 0.00355 0.00372 0.00242 0.00008 0.00620 0.00219 0.00451 0.00253 
 

Std. 0.00079 0.00135 0.00125 0.00091 0.00084 0.00128 0.00131 0.00099 

 p-Value 0.000 0.006 0.053 0.934 0.000 0.087 0.001 0.011 

Aggr. 
Shocks* No Yes Yes No No Yes Yes No 

 

Winning 
Bid** No Yes No Yes No Yes No Yes Controls 

 
Repayment 
Burden** No Yes No No Yes No Yes Yes 

 
* 24 quarterly dummies from 93, first quarter, to 98, fourth quarter 
** Controls are in logs and interacted with 11 denomination-specific dummies 
All specifications include 78 branch fixed effects 



Table 5.  OLS results with Interaction Terms.* 
 

 τ = 0.5 τ = 0.33 

Interaction Term Estimate Std p-value Estimate Std p-value 

after late 0.01333 0.00705 0.059 0.02395 0.00879 0.006 

after late large 0.00303 0.00237 0.201 0.00497 0.00281 0.077 

after late duration -0.00024 0.00022 0.274 -0.00063 0.00028 0.024 

after late (small town) -0.00401 0.00127 0.002 -0.00461 0.00117 0.000 

after late remote -0.00256 0.00134 0.057 -0.00214 0.00124 0.086 

after late established -0.00394 0.00127 0.002 -0.00448 0.00118 0.000 

after late attrition** (%) -0.00005 0.00008 0.530 -0.00015 0.00010 0.135 

* All footnotes to Table 4 apply 
** Percentage increase in number of groups of the same denomination 



Table 6. Differences in total default rates and differences in the extent of adverse selection 
 
  

  

difference in 
total default rate 

before shock1 

difference in 
treatment effect2 

contribution large - small 0.67  0.30  

experience established - recent -0.48  -0.40 ** 

remoteness of branch remote - not remote 0.88  -0.26 * 

size of town small town - large town 1.09  -0.39 ** 
 

1 obtained from Table 3 
2 in percentage points; see column 1 of Table 5 
* significant at the 10% level 
** significant at the 1% level



Figure 1. Average default rate by round, pre (dotted) and post (solid) ceiling, 
Denomination (30,500) 
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Figure 2. Equilibrium bid functions with unrestricted (solid line) and restricted bidding 
(dashed line) 
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