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Abstract

We formulate and numerically simulate various dynamic models of endogenously incomplete
credit markets that allow for moral hazard and unobservable capital/investment. We compare
them to exogenously incomplete autarky, saving only, and borrowing and lending environments.
We characterize the optimal allocations implied by the regimes from both cross-sectional and
dynamic perspective. The paper develops computational methods based on mechanism design
theory and linear programming methods that are used to structurally estimate, compare and
distinguish between the structural models. Our results match several stylized facts from the
empirical firm dynamic literature as listed by Cooley and Quadrini, 1999. The compared fi-
nancing regimes are demonstrated to differ significantly in qualitative and/or quantitative sense
with respect to their implications for investment, consumption, financial flows, and insurance in
cross-section, transitions, and long-run outcomes.
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1 Introduction

Small and medium enterprise in both emerging markets and developed economies are typically single
proprietorships run by households as family businesses. Yet, with some important exceptions,
the literature maintains a dichotomy embedded in the conceptualization of the national income
accounts: households are consumers and suppliers of market inputs, whereas firms do the production
and hire labor and other factors1. This gives rise, on the one hand, to a development literature
which studies household consumption smoothing, recognizing a wide range of possible financial
regimes (full risk sharing, limited commitment, moral hazard, permanent income, buffer stock2.
On the other hand, there is a literature in finance which studies investment of firms and sensitivity
to cash flow; risk neutral firms maximize the discounted expected present value of profits and access
credit according a pecking order or hierarchy of funds hypothesis (first internal funds, then credit,
then equity (Myers and Majuf, 1984). In Bond and Meghir (1994), firms follow Euler equations
derived from a cost-of-adjustment model, and this fits the data well only if the firm is essentially not
constrained. Many empirical studies find rejections for small firms (Fazzari, Hubbard and Petersen,
1988) though this field is not without controversy (Kaplan and Zingales, 2000).

The purpose of this paper is contribute to a literature which is attempting to bring these two
consumption and investment strands of empirical research together3. We contrast the consump-
tion and investment behavior of risk averse households running business under various possible
financial regimes, both exogenously incomplete (autarky, savings only, borrowing and lending) and
endogenously constrained by information considerations (moral hazard and observed investment,
moral hazard and unobserved capital, both relative to full insurance). We compare the predictions
of each of the financial regimes to the stylized facts reported in the literature (e.g., Cooley and
Quadrini, 1999) and discuss in what circumstances they might be distinguished in data. Indeed,
we develop methods for empirical implementation of mechanism design models and test the various
models against each other, naturally using data generated from the models themselves. This is an
important step toward implementation in actual data.

A brief listing of the kind of data we have in mind may help to clarify both what we are
trying to accomplish in this paper and the longer run research agenda. A Townsend survey of
households in villages in Thailand in 1997 turns up 22% running small businesses (see Paulson
and Townsend, 2004). Some of these have incomes below the poverty line, while others are large
enough to show up in a comprehensive Industrial Census (Townsend, 2007). Eighty percent use
family labor, only. In a corresponding monthly panel, consumption among households is quite
smooth (Chiappori, Shulhulfer-Wohl, Samphantharak, and Townsend, 2006) as if in a risk-sharing
network, though business and agricultural investment seems sensitive to cash flow (Samphantharak
and Townsend, 2007). Credit is available in principle from friends and family, money lenders,
traders, store owners, village-level savings and loan funds, a government agricultural development
bank (BAAC), and commercial banks. Quite a few households use multiple sources, but a few do
not borrow at all. On the asset side, savings is in cash, rice storage, and formal financial accounts
(Seiler, 1998; Kaboski and Townsend, 1998).

Ideally, one might like to distinguish the role of each of these financial providers and/or financial

1See Dept of Commerce (l985) for the construction and a critique of its application in India, also Srinivasan (2003).
2There is a vast empirical literature on the buffer stock, permanent income model risk sharing model, in many

countries, replete with rejections. For incorporation of private information and limited commitment see Ligon (1998),
Ligon Thomas and Worall (2002), Albarran and Attanasio (2003).

3From theory point of view, the separation between consumption and production is not justified when assuming
market imperfections. Thus, we look at consumption and production at the same time.
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instruments4. Here though we consider credit and savings as if from a single competitive financial
sector as this allow us to focus on the overall net effect, the overall financial regime in place and
the salient obstacles5. Specifically, we consider dynamic, investment versions of Paulson, Townsend
and Karaivanov (2006), hereafter PTK, who distinguish moral hazard from limited commitment
in the (retrospective) l997 Thai data on firm formation and initial wealth, and Karaivanov (2006)
who cannot distinguish in the same data moral hazard from a simple model of debt with default.
On the other hand, in Karaivanov, Socio-Economic Survey (SES) data from the 1970’s in Thailand
indicate that a savings-only regime fits best, consistent historically with a less developed financial
system.

Related to our goals in this paper are the ENAMIN surveys of small enterprise in Mexico.
Much as in Thailand, these come from a household-based enumeration, in this case an urban labor
survey, ENEU, which picks up family business, in turn based on the Population Census. Among
the 10,000 firms in the follow-up ENAMIN surveys, the maximum number of paid employees is 15,
but a majority use only unpaid family labor. Still, these firms account for a nontrivial fraction
of the Mexican workforce, and in Woodruff and McKenzie (2006), high rates of return suggests
these firms are credit constrained. Starting on the other end, from a firm based enumeration, a
survey of registered firms in Ghana, conducted by the Rural Program for Enterprise Development
(in collaboration with the World Bank/Oxford), many Ghanaian manufacturing firms have (only)
1-5 employees. Rates of return are high yet investment is rare, especially for the micro/small firms,
again a symptom of credit constraints. This is modeled by Schundeln (2006) as a costly adjustment
model with a reduced-form equation capturing an exogenous and increasing cost of finance. The
point is that small firms are a large part of poor and emerging market economies, yet we are left
with many questions about the nature of the financial markets, institutions and constraints.

Of course, OECD counties have small enterprise too. In Spain, based on the Sabi-Informa
database of the commercial registry, newly established (plus merged) firms have 493,000 Euro sales
(and some are much smaller). For these firms, the number of banking relationships increase with
age (and size), and about half of the new firms (and small firms) have no credit from formal
financial institutions. Thus it appears that age (size) may alleviate constraints. On the other
hand, firms without formal financial institution credit do get trade and other credit; the ratio of
banking credit to total credit is only 16% for the smallest firms. Growth and the variance of growth
decrease with age of the firm (and sometimes with size), while debt/asset ratios are somewhat flat
if not declining, replicating some, but not all the stylized facts in the US literature (Cooley and
Quadrini, 1999). Some firms seem to be sensitive to cash flow, as Euler equation implications are
rejected for the lowest decile of firms ordered by (lagged) cash/investment ratios (Ruano, 2006).
We want to see if this is ameliorated with credit (Ruano, Saurina, and Townsend, in progress).
Finally, and related, many financial institutions in Spain have nontrivial amounts of their portfolio
in household proprietorships (as distinct from legally registered firms). The point is that household
proprietorships and small firms remain a big part of the financial system of an industrialized country,
yet we do not understand well the financial arrangements that they have.

4For example, using the annual panel , Alem and Townsend (2006) find that the BAAC seems to help households
smooth consumption while commercial banks help to smooth investment from cash flow. Kaboski and Townsend
(2007a, b) using the same data focus on the impact of movement in consumption, investment, savings, and credit
from of a government-induced innovation in village funds. Gine (2005) tests a theory of selection, why some borrow
from both formal and informal sources and others not.

5In a neoclassical world credit from one source can substitute for another and, more generally, there would be
indifference across various credit providers in a Miller-Modigliani world. A mechanism design, optimal contracting
model of credit can reduce to pure borrowing and lending when clients have unlimited access to outside funds or
internal savings at the same rate as the principal, e.g. Cole and Kocherlakota (1999), Allen (1985).
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Similarly, small firms are a very important part of the US economy: the Small Business Database
of manufacturing firms gathered by Dunn and Bradstreet (l980), used by Brock and Evans (1986)
and others, finds 1.1 and 2.5 million firms with sales of 0-25,000 and 25,000-999,999, respectively
(the IRS numbers are 2.7 and 7.8 million, respectively). The Fed’s l998 Survey of Small Business
Finance selects from a population of 2.6 million firms with fewer than 500 employees and finds a
preponderance of owner equity, low debt/asset ratios (median .35), yet many loans with personal
guarantees. An attempt is made to distinguish business from non-business wealth, but on the other
end of the distribution and starting with a household based survey, the Federal Reserve Board’s
Survey of Consumer Finances shows the personal side of the wealthier of the business owners, some
with substantial positions in the stock market. Indeed wealth transmission, enterprise formation,
and inequality in the US income distribution are the focus of Cagetti and De Nardi (2007). Similarly,
Heaton and Lucas (2000) and Moskowitz and Vissing-Jorgensen (2002), focus on proprietorships
as a portfolio choice while finding rate of return anomalies. But typically, this literature imposes a
financial regime, typically some combination of debt and equity, not a full set of contingent claims
markets.

Using numerical methods based on mechanism design theory, this paper characterizes invest-
ment, financial flows and insurance in a wide range of incomplete and complete markets dynamic
models of asymmetric information as opposed to a single, exogenously assumed financial regime.
Financial market imperfections affect agents’ and firm’s investment and consumption choices in
static and dynamic sense. The goal of this paper is to distinguish across various dynamic models of
financial market imperfections affecting access to finance and the ability to smooth consumption.
To that end we put together a unified theoretical framework in which we analyze, compare across,
estimate and test both exogenously and endogenously incomplete market environments aiming to
provide insights as to the source and nature of financial constraints6.

Specifically, we study the following alternative financial regimes under which firms may oper-
ate: (1) autarky (no access to credit markets), (2) saving only, (3) borrowing and lending in a
single risk-free asset, (4) contingent claims market under moral hazard and adverse selection (due
to unobserved effort and unobserved capital), (5) contingent claims market under moral hazard
(unobserved effort but observed capital), and (6) contingent claims market under full information.
Regimes (2) and (3) are relatively standard ”permanent income” type models of self-insurance by
saving and/or borrowing, while the endogenously incomplete regimes (4) and (5) belong to the
class of dynamic moral hazard models pioneered by Townsend (1982), Rogerson (1985) or Spear
and Srivastava (1987).

We model an economy in which infinitely-lived agents (interpreted as running small businesses)
produce output using two inputs: labor effort and capital. Output is stochastic, i.e. a given input
combination induces a probability distribution over a finite set of output levels. Capital can be
accumulated over time. An important difference with most of the existing empirical literature on
dynamic moral hazard is our emphasis on investment and capital accumulation (firm dynamics)
in a production economy7. By assuming that the capital stock (and investment) which enters
production can be unobserved, but the agent’s access to outside finance is fully controlled by the
principal, our analysis is also different to most of the “hidden savings” literature8 (Allen, 1985;

6In a similar vein Attanasio and Pavoni (2005) derive methods for testing private information models with asset
accumulation concentrating on their predictions about the distribution of consumption over time.

7In contrast, the previous theory literature has mostly looked at either endowment or exogenous income economies
(Green, 1987; Thomas and Worrall, 1990), taste shocks (Atkeson and Lucas, 1991), or models with stochastic output
affected only by effort (Spear and Srivastava, 1987; Phelan and Townsend, 1991).

8Hidden access to outside credit affects consumption in these models but not production and they typically abstract

4



Cole and Kocherlakota, 2001; Abraham and Pavoni, 2005).
The numerical approach that we employ allows us to look at the model implications from vir-

tually all possible angles, both static and dynamic. We concentrate on the behavior of investment,
firm size and insurance. We first compare the implications of the various regimes with five ”stylized
facts” about firm growth and investment sensitivity to cashflow as listed in Cooley and Quadrini
(1999) using data on the joint distribution of firm size today and next period and cashflow. In
contrast with most of the finance literature, we do not need to resort to the assumption of risk
neutrality as our methodology allows us to consider general preferences and technologies.

Overall, our model is shown to be successful in matching the empirical regularities from the
finance literature. However, this success should be taken with caution. We find that most of
the stylized facts are matched qualitatively by financial regimes from the whole spectrum between
autarky and complete markets, suggesting that these regularities perhaps need to be qualified if we
are to use them to elicit information about firm’s credit market circumstances. On the other hand,
we find significant quantitative differences between the regimes and test whether this could serve
as a basis of which to distinguish between the alternative financial environments.

We also search for other testable predictions of the model that can be used to differentiate
between regimes and hence give us insights into the major sources of financial market incomplete-
ness in a given dataset. Specifically, we look at cross-sectional and intertemporal consumption
profiles, which theory predicts should differ across the regimes, using data on the cross-sectional
distribution of consumption and output/cashflow. We also demonstrate that the model regimes
differ significantly in the dynamics they generate. The exogenously incomplete regimes are shown
to converge relatively quickly (within 20-50 periods) to non-degenerate consumption, investment
and asset distributions. This implies time-invariant cross-sectional consumption variance in the
long run.9 In contrast, the endogenously incomplete regimes are shown to converge more slowly.
Indeed, panel data or cross sectional histograms separated by a large time interval can serve to
distinguish moral hazard with and without observed capital. Specifically, we compute and use as
a basis to distinguish across the regimes the dynamics of consumption smoothing over time (using
data on the distributions of consumption and cashflow one or fifty periods apart).

We take one of our models as a baseline and generate data (potentially subject to measurement
error) and we use that data to estimate and statistically test and distinguish across all the financial
regimes we study. We use structural maximum likelihood estimation methods (see PTK, 2006 in a
static setting) and Vuong’s (1989) model selection procedure to statistically test if the regimes can
be distinguished based on each of the listed dimensions of the simulated data.

One remarkable finding is that the various regimes are rank ordered in the likelihoods exactly as
the nature of incompleteness or endogenous constraints might suggest (they are not rank ordered by
the variance of the measurement error). That is, if we generate data from the moral hazard observed
capital regime , then the likelihoods are ordered from best to worst by: moral hazard with observed
capital (MH), moral hazard with unobserved capital (UC), full information (FI), borrowing and
lending (BL), savings only (S), and autarky (A). Indeed, in pairwise tests of the regimes, the regime
which dominates is the one which is closest, even if we start with a counterfactual. For example,
if we generate data from MH, but test borrowing/lending we find that BL is dominated by FI and

from investment.
9This is an important observation in view of the literature on testing the full vs. partial insurance hypotheses

(e.g. Blundell, Pistaferri and Preston, 2002). Observing time varying variance in the consumption distribution is
certainly a sufficient condition to reject the full insurance hypothesis but, as our results show, the opposite is not
true - observing zero time variation in the cross-sectional variance is perfectly consistent with partial insurance as
well as is observing non-zero variation.
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UC, but BL dominates S and A . Not all these dominance pairings are statistically significant,
however.

Naturally, the ability to distinguish between the regimes depends on both the type of data used
and the amount of measurement error allowed for, as well as underlying parameters. As expected,
higher levels of measurement error in the data reduce the power of the model comparison test to
such an extent that many of the models cannot be distinguished from the data generating baseline
as well as from each other. This is more pronounced for the cases of firm size data (especially under
full depreciation). For the consumption/cashflow data, we typically cannot distinguish between the
moral hazard and full information regimes, and we cannot distinguish between the autarky and
saving only regimes. In contrast, in virtually all cases we are able to distinguish between regime
groups, that is autarky/ saving only versus the less constrained moral hazard with observed or
unobserved capital and full information regimes.

When using repeated cross-sections data, we are generally able to distinguish between the
exogenously incomplete vs. endogenously constrained regimes, even under high measurement error,
although when the data are fifty periods apart, the distinction between the exogenously incomplete
regimes is blurred. That is, if the hypothesized null regime is true, then we can distinguish the truth
from other regimes. But if the researcher guesses incorrectly, and the null is a counterfactual regime,
then there is less ability to distinguish the null of other regimes nearby using time-separated data.
This happens in other instances, i.e., under incomplete depreciation, the (consumption, output)
data allow one to correctly pick the MH regime more reliably than using (capital / investment data),
but less able statistically to reject and distinguish incorrect guesses of S and BL. Thus researchers
should be cautious when testing a given regime against an alternative when they fail to reject it in
the data. Both the null and the alternatives may not be the true regime.

2 The Model

We consider an environment consisting of agents (firms) which are heterogeneous in their initial
endowments (firm size), k0 of the single consumption and investment good in the economy. The
agents live T periods, where T can be infinity. They can potentially interact with a financial
intermediary, entering into saving, debt, or insurance contracts.

We characterize the optimal dynamic financial contracts that will arise between the agents and
the financial intermediary under the different information regimes described in the introduction
(all details are provided in the next section). We model these financial contracts as probability
distributions over assigned or implemented allocations of consumption, effort and investment. There
are two possible ways to interpret this. First, we can either think of a principal (the intermediary)
contracting with a single agent (a firm) at a time, in which case the optimal contract specifies a
mixed strategy over various allocations. Alternatively, we can think of a continuum of agents where
the optimal contract specifies the fraction of agents of given type that receive a specific deterministic
allocation. It is assumed that there are no aggregate shocks, there are no technological links between
the agents, and they cannot collude.

The agents are risk-averse and have time-separable preferences defined over consumption, c, and
labor effort, z represented by U(c, z) where U1 > 0, U2 < 0. They discount future utility using a
discount factor, β where β ∈ (0, 1).While we use concave utility in our applications below, we should
mention that our methods are valid for any (possibly non-convex) preferences and technologies.
For computational reasons we assume that c and z belong to the finite discrete sets (grids) C, Z
accordingly.
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The agents have access to a stochastic output technology, P (q|z, k) : Q × Z × K → [0, 1]
interpreted as the probability of obtaining output q from effort level z and investment (capital)
level k10. The sets Q and K are assumed to be finite and discrete11. In all information regimes we
study output is assumed to be fully observable and verifiable. However, one or both of the inputs,
k and z may be unobservable to the principal introducing moral hazard and/or adverse selection
problems. Capital, k depreciates at a rate δ every period. Depending on the application we have
in mind, the lowest capital level (k = 0) could be interpreted as a “worker” occupation (similar to
PTK, 2006) or as a “firm exit” state when computing the optimal contract.

The financial intermediary is risk neutral and has an access to an outside credit market at an
opportunity cost of funds of R. In the endogenously constrained information regimes, the contract
between the principal and the agent allows for any optimal transfer, τ (possibly contingent on
output history) between the two parties. As with all other variables, we assume τ ∈ T where T is a
discrete finite set. In contrast, in the saving only and borrowing and lending regimes, the transfer
(the amount saved or borrowed, b) is exogenously constrained to be non-contingent on output (no
default is allowed). Finally, the principal and the agent can fully commit to the ex-ante optimal
contract in each regime (although our methods allow us to relax this assumption - see last section).

3 Information and Credit Access Regimes

This section describes in detail the various information and credit access regimes we study. For each
regime we write down the recursive dynamic optimization problem determining the optimal contract
and characterize the respective state space. In solving for the optimal contracts under incomplete
information we use the revelation principle looking only at direct mechanisms in which the agents
announce truthfully their type, k and obey the principal’s recommendations for effort, z and next
period capital, k0. The proof that the revelation principle applies in our setting is a relatively
simple extension of the proofs in Doepke and Townsend (2005) and hence is not reproduced here.
Demonstrating that the optimal contracting problem can be written in a recursive form also follows
easily from Doepke and Townsend’s results.

As mentioned above, the information / credit access regimes we analyze can be classified into two
broad classes. The first class consists of exogenously incomplete market regimes - the autarky (A),
the savings only (S), and borrowing and lending (BL) regimes. In these regimes the reason for the
financial market incompleteness is exogenously given, i.e. it is assumed that the feasible contracts
that agents have access to take a specific form similar to some typical financial arrangements
observed in reality (autarky, a deposit contract, or a debt contract).

We also look at a second class of information regimes where the optimal financial contract is
endogenously determined, subject only to the constraint of asymmetric information. We look at
two such regimes - moral hazard (MH) where agents’ effort is unobserved by the bank and hence
non-contractible but their investment decisions, k and k0 are observed, and a moral hazard with
unobserved capital (UC) regime where both agents’ efforts, z, and capital stock, k and investment,
k0− (1− δ)k are unobservable. As a benchmark those regimes are compared to the full information
(FI) regime (the first best) where all variables are observable and contractible upon.

In terms of numerical methods12, we employ the linear programming (LP) solution approach

10We can easily incorporate heterogeneity in entrepreneurial ability across agents as in Paulson et al. (2006), for
instance by adding a talent parameter θ multiplying output q in the production function P (q|z, k).
11This can be interpreted as either a technological or purely computational assumption depending on the particular

application.
12Given our goal is to develop an empirically applicable methodology to distinguish between financial regimes,
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pioneered by Prescott and Townsend (1984) and Phelan and Townsend (1991). Building on the
theoretical results of Doepke and Townsend (2005) below we show how one can write the dynamic
problems corresponding to each regime as recursive linear programs (LP). An alternative to our
LP methodology is the “first order approach” (Rogerson, 1985) used for instance by Abraham and
Pavoni (2005) and Kapicka (2005). A potential problem is that the resulting solution may not be
a maximum in the original problem due to non-convexities introduced by the incentive constraints
(e.g. see Kocherlakota, 2004). In contrast, the LP approach is extremely general and valid by
construction for any possible preference and technology specifications, as it convexifies the original
problem by allowing for any possible lotteries over allocations. The price of this generality is that
the LP method suffers from the “curse of dimensionality” due to the need to use discrete grids for
all variables. We develop computational methods to minimize this deficiency.

3.1 Exogenously Incomplete Markets Regimes

3.1.1 Autarky

In this regime there is no interaction with a financial intermediary i.e. the agent is assumed to have
no access to credit or savings / storage. The timeline is as follows. The agent starts the current
period with initial capital k carried over from last period which he invests into production. At this
time the agent also decides on his effort level z. At the end of the period output q is realized, the
agent decides on the next period capital level, k0, and consumes c = (1 − δ)k + q − k0. Capital,
k is the state variable in the recursive formulation of the agent’s optimization problem. This is a
trivial problem and can be solved by standard non-linear dynamic programming techniques. To
be consistent with our solution methods used for the endogenously incomplete regimes where such
techniques may be inapplicable due to non-convexities introduced by the incentive and truth-telling
constraints, we reformulate the problem as a linear program with respect to the joint probabilities
of obtaining allocations (q, z, k0) given the state k.

The agent’s problem, given his current capital level, k is represented recursively as:13

V (k) = max
π(q,z,k0|k)

X
QxZxK0

π(q, z, k0|k)[u((1− δ)k + q − k0, z) + βV (k0)] (1)

The policy variables π(q, z, k0|k) represent the solution to the above maximization problem and
determine the optimal effort and investment level z and k0. The maximization in (1) is subject to
a set of constraints on the choice variables π. First, we need to ensure that for each k ∈ K, the π0s
are Bayes consistent with the production function (the probability distribution over outputs):X

K0
π(q, z, k0|k) = P (q̄|z̄, k)

X
Q×K0

π(q, z̄, k0|k) for all (q̄, z̄) ∈ Q× Z (2)

The choice variables π must also form a valid probability function, i.e. we must have that, given
k, π(q, z, k0|k) ≥ 0 for all (q, z, k0) ∈ Q× Z ×K 0 and adding-up:X

QxZxK0
π(q, z, k0|k) = 1 (3)

we have chosen general functional forms sacrificing analytical tractability. We are well aware of the limitations of
this approach and the fact that our computed examples do not constitute proofs. We have tried our best to check
robustness by using numerous parameter specifications and initial conditions. The full set of numerical computations
is readily available from the authors.
13Here and everywhere later in the paper we use notation K0, B0, etc. to denote the set of next period values. In

terms of values, these sets coincide with K,B, etc.
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3.1.2 Saving and/or Borrowing

In this financial environment the agent is assumed to be able to either only save (which we call
the saving only, (S) regime) or both borrow and save/lend (called the borrowing and lending, (BL)
regime) through a competitive financial intermediary. Clearly then the agent has more opportuni-
ties for smoothing consumption than under autarky. Still, his consumption smoothing ability is
restricted as the standard “deposit” or “debt”-like contracts that this regime features do not allow
state-contingent repayments. More specifically, if the agent borrows (saves) an amount b, next
period he has to repay (collect) an amount Rb (where R is the gross interest rate) independently of
the state of the world. Default is ruled out by assuming that the bank refuses to lend if a borrower
who is at risk of not repaying14. By shutting down all contingencies in the debt contracts we aim
for better differentiation with the endogenously constrained contingent transfer regimes described
next. Finally, to be consistent with the other regimes, b is assumed to take values on the finite
discrete set (grid), B.

The basic setting of the S and BL regimes is similar to the autarky regime. The main difference
is that, in addition to all he could do before, the agent can now hold debt b and carry debt b0 in the
next period (a negative value of b represents savings). The timeline is as follows: the agent starts
with capital k carried from last period and uses it in production together with effort z. In the end
of the period output q is realized, the agent repays Rb and borrows (rolls-over) or saves b0. He also
puts aside next period’s capital, k0 and consumes c = (1− δ)k + q + b0 −Rb− k0. Thus, the agent
can use debt/savings to smooth consumption over time on top of what he could do under autarky.
In the saving only regime b is constrained to be non-positive, i.e. the upper bound of the grid B is
zero - the agent can only accumulate and run down a buffer stock. The two assets k and b can be
freely converted into one another each period when a decision of how much capital to carry over
and invest in production is made. Under the BL regime the upper bound of the set B is positive.

Given the above, the problem of an agent with current capital stock k and debt/savings level b
can be written recursively as:

V (k, b) = max
π(q,z,k0,b0|k,b)

X
QxZxK0xB0

π(q, z, k0, b0|k, b)[U((1− δ)k+ q + b0 −Rb− k0, z) + βV (k0, b0)] (4)

subject to the Bayes consistency and adding up constraints analogous to (2) and (3) and subject
to π(q, z, k0, b0|k, b) ≥ 0 for all (q, z, k0, b0) ∈ Q× Z ×K 0 ×B0.

3.2 Full Information and Endogenously Incomplete Markets Regimes

3.2.1 Full Information

In this regime the assumption is that the principal observes and can contract upon the agent’s effort,
z as well as investment, k and k0. We write the corresponding dynamic principal-agent problem
as an extension of Phelan and Townsend (1991) adding capital accumulation. As is standard in
such settings (see Spear and Srivastava, 1987; Doepke and Townsend, 2005) to obtain a recursive
formulation of the mechanism design problem we need an additional state variable - promised utility
(i.e. discounted future utility), w.

The optimal contract for an agent with current promised utility w and firm size k consists of
effort and investment levels, z, k0, next period’s promised utility w0, as well as a transfer, τ between
the principal and the agent (a positive value of τ is taken to mean that the direction of the transfer

14Technically this is achieved by assigning a very low utility value for the borrower so default is never optimal for
the agent.
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is from the principal to the agent). The timing of events is the same as above with the addition
that the transfer occurs after output is observed.

The principal’s objective function, V (w, k) when contracting with an agent (w, k) represents the
expected value of output net of transfers to the agent, plus the discounted value of future outputs
and transfers. As above, we write the problem as an linear program using the joint probabilities,
π(τ, q, z, k0, w0|w, k) of an allocation (τ, q, z, k0, w0) occurring:

V (w, k) = max
{π(τ,q,z,k0,w0|w,k)}

X
T×Q×Z×K×W

π(τ, q, z, k0, w0|w, k)[q − τ + (1/R)V (w0, k0)] (5)

The maximization in (5) is subject to the familiar Bayes consistency and adding up constraints on
the probabilities π:X
TxK0xW 0

π(τ, q̄, z̄, k0, w0|w, k) = P (q̄|z̄, k)
X

TxQ×K0xW 0
π(τ, q, z̄, k0, w0|w, k) for all (q̄, z̄) ∈ Q× Z (6)

X
T×Q×Z×K×W

π(τ, q, z, k0, w0|w, k) = 1 (7)

and non-negativity: π(τ, q, z, k0, w0|w, k) ≥ 0 for all (τ, q, z, k0, w0) ∈ T ×Q× Z ×K ×W.
Finally, because of the extra state there is an additional constraint, namely the promise keeping

constraint, which ensures that the agent’s expected utility equals his current utility promise, w.
Notice that by varying the initial value of w one can trace the whole Pareto frontier of expected
utilities for the principal and the agent (see section 6 for computed examples). The promise keeping
constraint is: X

T×Q×Z×K×W
π(τ, q, z, k0, w0|w, k)[U(τ + (1− δ)k − k0, z) + βw0] = w (8)

The optimal FI contract consists of maximizing (5) subject to the constraints (6), (7) and (8).
As mentioned above, we also need to characterize the set of utility promises W 15. Similarly

to Phelan and Townsend (1991) the grid of promised utilities we use has a lower bound, wmin
corresponding to the lowest possible consumption for the agent, cmin (obtained by choosing the
lowest possible τ and highest k0) and the highest possible assigned effort, zmax promised forever
and an upper bound, wmax corresponding to the highest possible consumption, cmax and lowest
possible effort promised with certainty forever:

wFI
min =

U(cmin, zmax)

1− β
and wFI

max =
U(cmax, zmin)

1− β

We solve the above dynamic linear program numerically. The solution is a vector of probabilities
π∗(τ, q, z, k0, w0|w, k) representing the optimal contract between the bank and the agent. Typically
most of the π0s are zeros. We know by theory that the optimal solution under full information
features full consumption insurance and no intertemporal tie-ins. We chose not to solve the simpler
problem that arises after imposing these equilibrium properties on π(.) in order to be able to
measure any numerical distortions introduced by the grids and thus obtain a valid benchmark for
the asymmetric information regimes below where such simplification is not possible.

15In principle, some values in this set may be infeasible. The set of feasible values is determined along with iterating
on the value function using the methods proposed by Abreu, Pearce and Stacchetti (1990).
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3.2.2 Moral Hazard With Observed Investment

Under this regime we deviate from the first best world of the full information and assume that
while the principal can still observe and control capital and investment (k and k0) he can no longer
observe (or verify) agent’s effort, z. Note that with capital observed and controlled, it can serve in
a sense as collateral on a loan. The transfer back to the bank can tax what is left of capital after
production, and this may happen when output is low, i.e. the project is not successful. All other
assumptions regarding the timing, preferences, technologies, etc. used in the previous section are
kept unchanged.

The unobservability of effort implies that the principal must now induce effort from the agent as
the contract between the two parties is subject to moral hazard. Technically this is achieved by re-
quiring that the optimal contract, π(τ, q, z, k0, w0|w, k) satisfy an incentive compatibility constraint
(ICC) in addition to (8)-(10). The ICC states that, given agent’s state (w, k), a recommended
effort level, z̄, and known and enforced capital level k0 and transfer τ, the agent must not be able
to achieve higher expected utility by deviating to any effort level ẑ different from z̄. In our notation
this requires that for all (z̄, ẑ) ∈ Z × Z :X

T×Q×W 0×K0
π(τ, q, z, k0, w0|w, k)[U(τ + (1− δ)k − k0, z̄) + βw0] ≥

≥
X

T×Q×W 0×K0
π(τ, q, z, k0, w0|w, k)P (q|ẑ, k)

P (q|z̄, k) [U(τ + (1− δ)k − k0, ẑ) + βw0] (9)

For details on the derivation of the ICC in our linear programming framework see Prescott and
Townsend (1984a,b) and Phelan and Townsend (1991). The critical term in the above inequality

is the “likelihood ratio”, P (q|ẑ,k)
P (q|z̄,k) present on the r.h.s. since if the agent deviates he changes the

probability distribution of output and the contract joint probabilities π must be adjusted to preserve
Bayes rule consistency.

Apart from the added constraint (9), the moral hazard setting also differs from the full infor-
mation case in the set of feasible promised utilities. Specifically, the lowest possible promise under
moral hazard can no longer be the value wFI

min from the FI regime. Indeed, if the agent is assigned
minimum consumption forever he would not supply any effort level above the minimum possible.
Thus, the range of promised utilities for the MH setting is:

wMH
min =

U(cmin, zmin)

1− β
and wMH

max =
U(cmax, zmin)

1− β

The formal derivation of the expression for wMH
min follows Phelan and Townsend (1991). The

basic intuition is that the principal cannot promise a little bit higher consumption in exchange for
much higher effort such that agent’s utility falls below wMH

min since this is not incentive compatible.
The reason is that if the agent does not follow the principal’s recommendations but deviates to
zmin the worst punishment he can receive is cmin forever.

The (constrained) optimal contract in the moral hazard regime with observed k is the solution
to the linear program in (7)-(11). We know by theory (e.g. see Townsend, 1982) that the optimal
contract features incomplete consumption insurance and intertemporal tie-ins, i.e. the optimal
dynamic contract is not simply a repetition of the optimal one-period contracts.

3.2.3 Moral Hazard with Unobserved Investment

Now suppose there are two sources of asymmetric information in the financial environment. First,
let the effort exerted by the agent be still unobservable by the principal. In addition, assume that
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the principal also cannot observe the capital level, k that the agent has and also the level of capital
investment planned for next period. Thus, within each period there is both the adverse selection
problem of unobserved information about the agent (his ”type”, k) as well as the moral hazard
problem of two unobserved actions, namely z and k0.

Assume that the agent sends a message about his capital level k to the principal who offers a
contract conditional on the agent’s message which consists of a transfer τ, recommended effort, z
and investment, k0 as well as future promised utility. Doepke and Townsend (2005) have shown
that the revelation principle still applies in this asymmetric information setting, thus we continue
to restrict attention to direct mechanisms.

Due to the physical linkage between time periods and the dynamic adverse selection problem
caused by the unobservable state k, we follow the approach of Fernandes and Phelan (2000) and
use as a state variable a function (vector) of utility promises, w rather than the scalar w from the
MH regime. The reason why utility promises now cannot be independent of k in general is that
the incentives of agents coming with different k0 in the next period are different (see Kocherlakota,
2004). Thus, to induce incentive compatibility, the principal needs to offer an optimal schedule of
promises one for each possible firm size, w ≡ {w(k1), w(k2), ...w(k#K)} ∈W where k1, k2, etc. are
the elements of the grid K16. Note that this introduces a much higher number of state variables
into the problem which is exponentially increasing in the number of points in the capital grid. The
setW is endogenously determined and iterated upon together with the value and policy functions
(see Abreu, Pierce and Stachetti, 1990).

We study two different scenarios regarding investment. First, we study the case where capital
depreciates fully during the production process within the period, i.e. δ = 1 or we can interpret k as
“materials”. This case is easier to analyze because time periods are linked only through the choice
of k0 last period similar to the setups in Fernandes and Phelan (2000) and Doepke and Townsend
(2005). Matters become more complicated when capital is allowed to depreciate incompletely, i.e.
δ < 1 (e.g. “machines”). In this case the level of k0 chosen would be dependent on the level
of capital k with which the period started, creating an additional interdependence between time
periods. Writing the optimal contracting problem in recursive form now is considerably harder
than in the full-depreciation case as one has to control for joint deviations in reporting the state k,
as well as the action k0, within each period. We manage to resolve this problem by judicious usage
of extra state variables and utility bounds (see Prescott, 2003).

The computational methods we propose in this section require separability in consumption and
leisure, U(c, z) = u(c) − d(z)17. Notice that this is not needed in the MH, FI or the exogenously
incomplete regimes. The separability allows to split each time period into two separate stages and
use dynamic programming not only across but also within time periods. We emphasize that this
is just a computational construct (no economic content is implied) that helps us keep the curse of
dimensionality in check as the resulting two stage problems are of lower dimensionality.

The two sub-periods used in the computation are as follows. The first stage is up to the
moment of output realization and includes the announcement of k by the agent, the principal’s
recommendation on effort, z, the agent’s effort supply and production and the realization of the
output q. The second stage includes the transfer τ, the announcement of the promised utility vector,
w0, as well as the investment recommendation, k0, agent’s consumption and investment. As a purely
mathematical artifact, to tie the two sub-periods together, we use an extra variable that we call
interim utility, representing the expected utility for the agent from the end of sub-period 1 onwards.

16We use bold font to denote vector variables. The notation #X means ”the number of elements of vector X”.
17Our methods allow the functions u and d to take any form although in our simulations we use standard concave

u and convex d.
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Full Depreciation We start with the case of full depreciation. The first sub-period problem, Pro-
gram UC1 for computing the optimal contract between the bank and an agent who has announced
k and is promised w is:

Program UC1:

V (w, k) = max
{π(q,z,wm|w,k)}

X
Q×Z×Wm

π(q, z, wm|w,k)[q + Vm(wm)] (10)

In this first stage, the choice variables are the probabilities over allocations (q, z, wm) ∈ Q×Z×Wm.
The set of interim utilities, Wm is a discrete finite set with lower and upper bounds consistent with
those on W. The function Vm(wm) will be defined in the second stage problem (see below).

The optimization proceeds subject to a number of constraints. First, we must ensure that the
optimal contract delivers the promised utility, w(k):X

Q×Z×Wm

π(q, z, wm|w,k)[−d(z) + wm] = w(k) (11)

Notice that the utility from consumption as well as discounted future utility are implicitly kept
track of through wm

18. Second, effort is unobservable so the optimal contract must satisfy incentive
compatibility. That is, for all (z, ẑ) ∈ Z × Z :

X
Q×Wm

π(q, z, wm|w,k)[−d(z) + wm] ≥
X

Q×Wm

π(q, z, wm|w,k)[−d(ẑ) + wm]
P (q|ẑ, k)
P (q|z, k) (12)

Third, since the state k is also private information, agents would also need incentives to reveal
it. On top of that, they can presumably consider joint deviations in their announcements about k
and effort, z. Such behavior is ruled out by the following truth-telling constraints that must hold
for all k̂ 6= k and δ(z) ∈ Z :

w(k̂) ≥
X

Q×Z×Wm

π(q, z, wm|w,k)[−d(δ(z)) + wm]
P (q|δ(z), k̂)
P (q|z, k) (13)

In words, any agent who actually has capital k̂ but considers announcing k should find such
deviation unattractive. Notice that to rule out joint deviations in k and z, (13) is required to
hold regardless of whether the agent decides to follow the effort recommendation, z or considers
a deviation to another effort level, δ(z) where δ(z) denotes all possible mappings from Z to Z.
There are (#K−1)#Z#Z such constraints in total. As before, the utility obtained when the agent
considers a deviation in either his announcement of k or his action is weighed by the likelihood

ratio, P (q|δ(z),k̂)P (q|z,k) to preserve Bayes consistency. Finally, the contract must satisfy the familiar Bayes

consistency, adding up and non-negativity constraints for π(q, z, wm).
To solve Program UC1, we first need to compute the function Vm(wm) giving the principal’s

value at an interim utility wm. Thus, we compute, for each wm ∈Wm the following:
Program UC2:

Vm(wm) = max
{π(τ,k0,w0|wm)}

X
T×K0×W0

π(τ, k0,w0|wm)[−τ + (1/R)V (k0,w0)] (14)

18Remember that the interim utility is an artifact of the computation algorithm and hence not a part of the optimal
contract.
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The maximization in (14) is subject to the following constraints. First, we impose the definition
of interim utility:

wm =
X

T×K0×W0
π(τ, k0,w0|wm)[u(τ − k0) + βw0(k0)] (15)

Next, obedience in the investment decision must be ensured by providing incentives that the agent
does not deviate from the recommended value, k0 to some alternative value, k̂0. Due to our timing
assumptions this has to be true for any value of the transfer τ , i.e. we must have that for all τ ∈ T,
k0, k̂0 ∈ K 0, k̂0 6= k0 :X

W0
π(τ, k0,w0|wm)[u(τ − k0) + βw0(k0)] ≥

X
W0

π(τ, k0,w0|wm)[u(τ − k̂0) + βw0(k̂0)] (16)

Finally, adding up and non-negativity must hold for π(τ, k0,w0|wm). There are no Bayes consistency
constraints since production occurs in the first sub-period.

Incomplete Depreciation We now generalize the model to include the possibility of incomplete
depreciation, δ < 1. This creates an extra link between the two sub-periods featured in our com-
putational algorithm by making the interim principal’s value, Vm also dependent on k since capital
does not expire in production. Similarly, the interim utility variable should now take into account
that the agent might have deviated in his announcement of k when entering the second stage, i.e.
we need to define it as the vector wm = {wm(k1), wm(k2), ...} ∈Wm by the same logic as for the
vector of promises, w. The setWm is endogenously determined during the value function iteration,
similarly to the setW.

As in the previous section, start with the first sub-period problem where a principal faces an
agent with promised utility vector w who has announced capital k.

Program UC3:

V (w, k) = max
{π(q,z,wm|w,k)}

X
Q×Z×Wm

π(q, z,wm|w,k)[q + Vm(wm, k)] (17)

As usual, the maximization is subject to several constraints. First, promises should be kept and
incentives for following the effort recommendation must be given, corresponding to the constraints
(11) and (12) only replacing wm with wm(k) and π(q, z, wm|w,k) with π(q, z,wm|w,k). Second,
truth-telling needs to be induced, taking into account any possible joint deviations in effort which is
again same as (13) above, only replacing wm with wm(k̂) and π(q, z, wm|w,k) with π(q, z,wm|w,k).
The interim utility the agent expects must be consistent with his true type (k̂) based on which
he makes decisions in sub-period 2. The rest of the constraints are the familiar Bayes consistency,
adding up and non-negativity.

Now move on to the second sub-period, after the output realization. The state variables are
different from the δ = 1 case, namely the vector of interim utilities, wm as well as the announce-
ment k. The fact that the state wm is now a vector introduces extra truth-telling and obedience
constraints in the second sub-period program The reason is that now we need to ensure that, in
the second stage, when deciding on k0 the agent cannot get more than his interim utility, wm(k)
for any announcement k. Due to the higher dimension of the state space, we need to compute a
higher number of linear programs as the second-stage Program UC4 below has to be computed for
all possible (k,wm) ∈ K ×Wm.

Program UC4:

Vm(wm, k) = max
{π(τ,k0,w0|wm,k)},{v(k,k̂,k0,τ)}

X
T×K0×W0

π(τ, k0,w0|wm, k)[−τ + γV (k0,w0)] (18)
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Notice that in addition to the familiar probability objects, π(τ, k0,w0|wm, k) to solve the problem

computationally we now need to add more choice variables - v(k, k̂, k0, τ). These variables, which
we call utility bounds, specify the maximum expected utility that an agent of type k̂ could obtain
by not announcing his capital stock truthfully (report k instead) who receives transfer τ and an
investment recommendation k0 (see Prescott, 2003 for details). This translates into the constraint:X

W0
π(τ, k0,w0|wm, k)[u(τ + (1− δ)k̂ − k̂0) + βw0(k̂0)] ≤ v(k, k̂, k0, τ) (19)

for all possible combinations τ, k0, k̂0, k̂ 6= k, and k̂0 6= k0. To obtain the total utility, wm(k̂) that an
agent can obtain in this second sub-period by reporting k when the true state is k̂, we add up the
bounds v(k, k̂, k0, τ) over all possible τ, k0 ∈ T ×K 0 resulting in the constraint:X

T×K0
v(k, k̂, k0, τ) ≤ wm(k̂) (20)

The two sets of constraints in (19) and (20) rule out any joint deviations in the report k and the
action k0. By definition, the interim utility must satisfy:

wm(k) =
X

T×K0×W0
π(τ, k0,w0|wm, k)[u(τ + (1− δ)k − k0) + βw0(k0)] (21)

Finally, the probabilities π must satisfy non-negativity and adding up as usual.

4 Numerical Implementation

In this section we discuss the numerical computation of studied regimes. As already mentioned,
we employ the linear programming (LP) approach pioneered by Phelan and Townsend (1991) to
solve for the optimal financial contracts. The linear programming approach has the advantage
to be virtually always valid19 by construction as it convexifies the original problem by allowing
for any possible lotteries over allocations. Unfortunately, this parsimony does not come without
a cost - the LP approach requires using discrete grids for the state and control variables and the
number of unknowns and constraints can increase rapidly with the grid size (see more on this below)
demanding high memory requirements and computing time especially for the UC regime. Still, we
show that by judicious formulation of the linear programs one can minimize these deficiencies.

4.1 Recursive Techniques

To speed-up the computation, the recursive problems for each regime defined in the previous section
are (whenever possible) solved using policy function iteration (see Judd, 1998). We start with an
initial guess for V 20 and iterate until convergence on the Bellman operators defined in the recursive
problems above. At each iteration, for the given current value function V, we solve a linear program
in the unknowns π. In the unobserved capital regime there are actually two layers of such linear
programs corresponding to the two sub-problems. The actual coding of the linear programs was
done in Matlab and the specialized LP software CPLEX21.

19That is, for any preferences and production functions given as functions or in table form.
20Typically we use a vector/matrix of zeros or the value function obtained from a ”nearby” parametrization. The

LP algorithms we use are very robust, so the initial guess does not affect the results only the time to convergence.
21All matrices of coefficients on the objective and constraints are created in the comparatively simple and highly

efficient matrix language Matlab using built-in functions for Kronecker products and other matrix operations while
the actual solving of the linear programs is done using the CPLEX compiled C++ library. All computations were
performed on a 2.2Ghz dual core machine with 2GB RAM running Windows XP.
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Remember that in the UC regime the promised utilities set,W is endogenously determined and
has to be solved for as well together with V . Using theoretical considerations coming from incentive
compatibility, we restrict attention to only non-decreasing promise vectors w(k). More specifically,
we “discretize” the functional set W by starting with a broad dense set W0 consisting of linear
functionsw(k) with intercepts that take values from the gridW = {wmin, w2, ...wmax} defined above
and varying slopes. We initially proceed iterating on the UC dynamic programming problem using
value function iteration and iterate towards the feasible promise set W∗ ⊂W together with the
value function iteration by dropping all infeasible vectors w at each iteration thereby “shrinking”
the set W based on the theory developed in Abreu, Pierce and Stachetti (1990). Once we have
successively eliminated all vectors inW0 for which the linear program has no feasible solution, i.e.
we have converged to the feasible promises set W∗, we switch to policy function iteration22 and
continue iterating on the Bellman equation till convergence in V.

4.2 Functional Forms, Grids and Parameters

Below we describe the functional forms used in the numerical computations. Agent preferences are
of the CES type:

u(c) =
c1−σ

1− σ
− κzθ

As discussed above, our LP-based numerical methodology does not require separable preferences
in consumption, c and effort, z but separability has been commonly used in the existing literature
and it simplifies the analysis in the unobserved k case. The production function, interpreted as the
probability of obtaining output level q ∈ {q0, q1, ..q#Q}, given effort z and capital, k is:

p(q = q0|z, k) = min{0.99,max{0.01, 1− (
kρ + zρ

2
)1/ρ}}

p(q = qi|z, k) = (
1− λ

1− λ#Q−1
)λi−1min{0.01,max{0.01, (k

ρ + zρ

2
)1/ρ}} for i = 1, ..#Q

where the lowest output case q = q0 will be interpreted as ”project failure”. Notice that the
probability of obtaining any output level is bounded away from zero independently of the levels
of k and z - the standard ”full support” assumption needed to make the moral hazard problem
non-trivial by ensuring that the principal cannot learn the input levels with certainty observing q
only.

The above formulation allows for different specifications of the production technology through
the parameter ρ. When ρ = 1 we have essentially a perfect substitutes technology, when ρ→ 0 we
obtain a Cobb-Douglas specification and when ρ→ −∞ the inputs are perfect complements. The
weighting parameter λ ∈ (0, 1) ensures that the probabilities defined above sum up to 1.

The grids used in the computations are defined in Table 1 below. For simplicity and to allow
easier interpretation of the results we assume two output levels (low and high), q0 and q1 with
q0 < q1. Effort takes 3 values

23. The grid on capital is of size #K = 11.
In the simulations and empirical exercises below we use two different parametrizations for the

grid bounds corresponding for the cases of full or incomplete depreciation. The reason for this is
to avoid corner solutions like zero investment which arise when using the same grid bounds.

22We have also checked our results against proceeding with value function iteration all the way and they are
identical.
23The lowest value is set to be slightly higher than zero for technical reasons.
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Table 1 - Grids

Grid Size Range (δ = 1) Range (δ < 1)

Q 2 {0.1, 3} {0.1, 0.5}
K 11 [0,1] [0,1]
Z 3 [0.01,1] [0.01,1]
B 21 S: [-5,0], BL: [-5,5] S: [-1,0], BL: [-1,1]
T 31 (86 if δ < 1) [0,3] [0,1]
W 21 (plus 20 slopes for UC) [wmin, wmax] [wmin, wmax]
Wm 31 (630 if δ < 1) [wmin, βwmax + u(tmax)] [wmin, βwmax + u(tmax)]

To get a better idea of the size of the resulting problems and the amount of computation
required, we report in Table 2 below the number of linear programs computed at each iteration
and the number of variables and constraints per linear program that need to be solved for in the
various regimes. The number of programs is closely related to the number of state variables while
the number of variables and constraints is related to the product of the grid dimensions of some
combination of k0, z, q, τ, b0, w0 depending on the regime. For example, there are only #Z×#Q+1
constraints in the exogenously incomplete regimes but many more in the private information ones.
Remember also that the total number of linear programs computed in the UC regime equals the
number in stage 1 plus #K times the number in stage 2 (e.g. 7,161 programs for the full depreciation
case).

Table 2 - Problem Dimensionality

# lin. programs # variables (π) #constraints

Autarky 11 66 7
Saving / Borrowing 231 1386 7
Full Information 231 42,966 8

Moral Hazard, δ = 1 231 42,966 14
Moral Hazard, δ < 1 231 119,196 14

Unobserved k, δ = 1, stage 1 6,930 186 284
Unobserved k, δ = 1, stage 2 21 410,130 188
Unobserved k, δ < 1, stage 1 6,930 3,780 284
Unobserved k, δ < 1, stage 2 6,930 1,137,780 95,548

The biggest computational difficulties arise from increasing #K and #Z because of the expo-
nential increase in the number of variables or constraints which this leads to. That is why we keep
these dimensions relatively low while increasing #T would be relatively “cheap” computationally.
In practice, the number of variables that we solve for is slightly lower than the numbers reported
in the table above because we drop from the computation any allocations that result in negative
consumption, i.e. we assign probability zero to their corresponding probabilities, π. Because of
the huge dimensionality and computational time requirements for the unobserved capital case with
incomplete depreciation we only report results for the full depreciation baseline at the moment.

The following table lists the baseline parameters used in the various simulations, estimation and
testing exercises described in the next sections. We have also performed various robustness checks
for the preference and technology parameter values (shown in the parentheses) the results of which
are not reported here for lack of space but available upon request.
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Table 3 - Baseline Parameter Values

Parameter Value(s)

depreciation rate, δ 1 (full depreciation), .05 (inc. depreciation)
agent’s discount factor, β 0.95
principal’s discount factor, γ 0.95

risk aversion, σ 0.5 (0, 2)
effort curvature, θ 2

preference parameter, κ 1
technology parameter, ρ 0 (-1, 1)

probability scaling factor, λ 0.5

5 Computational Results and Examples

This section describes a representative set of computational results obtained from the different
regimes. Our numerical approach allows us to look at the model implications from many possible
angles in both static and dynamic sense. Given the goals of the paper, we concentrate on the
behavior of investment, capital stock (firm size) and consumption smoothing. We also study several
financial aspects of the optimal contracts - firm size growth, cash flow sensitivity and growth
variance.

We begin by looking at the implications of the various regimes with regards to five “stylized
facts” about firm dynamics as listed in Cooley and Quadrini (1999). We show that our dynamic
model is capable of matching most of these facts but we also find that the restrictions they put on
the model implications seem in general too weak to be able to distinguish between financial regimes.
Because of this, we extend our analysis to search for other testable predictions of the model regimes
that could be used as a basis of an empirical methodology to differentiate the regimes and hence
give insights as to identifying the major sources of financial constraints in given data. Specifically,
we characterize the optimal allocations and contracts in the studied information regimes focusing
on their implications for consumption smoothing.

Next we turn to the dynamics implied by the model. We show how the numerically derived
policy and value functions can be used to compute the distributions (histograms) of consumption,
output, capital stock, investment, effort, and financial flows (saving, borrowing or transfers) over
time. The expected time paths of those variables are generated and compared. We show that the
model regimes differ with regards to the speed with which these time paths evolve in a way that
can be potentially used to distinguish among them in the data.

5.1 Computation

To compute the per-period and dynamic implications of the model we use the policy functions,
π∗(.) which solve the dynamic programs from section 3. Using these policy functions, and the
discrete and recursive structure of our model we construct the Markov state transition matrices
corresponding to each regime. Formally, denote by s ∈ S the current state (s = k in the autarky
regime, s = (k, b) in S, BL, s = (k,w) in the MH regime, etc.). The next period state, s0 is
determined by summing over the optimal contract allocation probabilities π integrating out all
non-state variables such as τ, z, q. Take the MH regime for example. The transition probability of
going from state (w, k) to state (w0, k0) next period is:

Pr t(w
0, k0|w, k) =

X
Q×Z×T

π∗(τ, q, z, k0, w0|w, k)
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We can use the above state transition probabilities to form the Markov state transition matrix for
each regime,M of dimension #S×#S that can be used to completely characterize the dynamics of
the model. In particular, we can use this matrix to compute cross-sectional distributions over states
starting from an arbitrary initial state distribution24 represented by the vector v0 = {v01, v02, ...v0#S}.
The state distribution at time t is then:

vt = (M 0)tv0 (22)

where t =∞ gives the long run distribution over states for a given regime.
Next, the probability distribution over states from (22) can be used in conjunction with the

policy function, π∗ to compute cross-sectional distributions (histograms), Ht(x) for any contract
element (e.g. x = c, z, τ, q, etc.) or functions thereof at any given time period t. For example, in
the MH regime, the distribution of k0 in period t over the possible values k0i ∈ K 0 can be computed
as:

Pr t(k
0 = ki|v0) =

X
j=1..#S

vtj
X

Q×T×Z×W 0
π(k0 = ki, τ, q, z, w

0|sj)

We also use the state distribution, v and the Markov matrix, M to compute the matrix of
transition probabilities, Pt(x, x

0) between any contract element values, x e.g. the probability that
firm’s size changes from ki to kj for any i, j ∈ {1, ..#K} at any time period (see Lehnert, Ligon
and Townsend, 2003). Assuming a large number of agents we can interpret, for instance, Ht(k

0
j)

as the fraction of firms observed with next period capital stock equal to k0j ∈ K 0 at time t and
correspondingly, Pt(k

0
i, k

0
j) as the number of firms transitioning from capital stock ki to kj . Using

cross-sectional or panel (transitions) data on any observable dimension of the model we can then
estimate the various regimes and test whether we can statistically distinguish across them (see more
on this in the next section).

Due to space constraints we are able to present visually in the figures and discuss in the text
only a relatively small fraction of the whole set of results we have computed. Admittedly, because
of the computational nature of the paper, it is impossible to exhaust all possibilities and we are well
aware of the limitations of this approach and the fact that the computed examples we present do
not constitute proofs. We should stress, however, that we have tried our best to check robustness
of the reported results by using numerous parameter specifications and initial conditions. The full
set of numerical computations is readily available from the authors.

5.2 Matching Stylized Facts on Firm Growth and Finance

In this section we compare the implications of the information regimes we study with several stylized
empirical facts and regularities about firm size, growth and finance. The list of facts presented
below is taken from Cooley and Quadrini (1999) who find the following empirical regularities of
firm dynamics and financial behavior25:

Fact 1 - Firm growth decreases with firm age and size
Fact 2 - The variability of firm growth decreases with firm age and size
Fact 3 - Small firms invest more.
Fact 4 - Small firms take on more debt.

24The initial distribution may come from suitable data on k, b if available or can be parametrized and estimated.
The promise variable w could also be mapped out from the expected consumption policy function which is monotonic
in w (see fig. 7).
25We omit some of the reported regularities which our model currently does not allow to match or verify.
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Fact 5 - The investment of small firms is more sensitive to cash flows even after controlling
for their future profitability.

In order to compare the predictions of our model with the above facts26 we map the model
variables into their real world counterparts. We interpret agent’s capital, k as the firm size. This
implies that firm growth is given by the ratio k0/k while investment is i = k0 − (1 − δ)k. Cash
flow in our setup is naturally matched to output q. Sensitivity of investment to cash flows will be
measured by the difference in expected investment when q is high, E(i(q1)) and expected investment
when output is low, E(i(q0)). Notice that this is equivalent to looking at the difference E(k

0(q1))−
E(k0(q0)) which is what we actually use in the reported results on fact 5. Also, note that studying
firm growth k0/k as a function of firm size is the same (up to a constant) as studying relative
investment i/k as a function of firm size since i/k = k0/k − (1− δ) so Facts 1 and 3 can be looked
at together for the purposes of our model. Firm growth variability is measured by the growth
variance, var(k

0

k ).
Figures 1-4 display the behavior of the expected values27 of the following financial indicators

defined above: firm growth, sensitivity to cash flows, growth variance, and for the BL regime only,
relative indebtedness, E(b0/k). The results were computed for both the cases of full and incomplete
depreciation (δ = 1 and δ = 0.05) using the policy functions and transition matrices as described
above. We compute the financial variables listed above for each of the regimes and plot them as
function of firm size, k.

Figure 1 shows that virtually all regimes, from autarky to full information, match qualitatively
facts 1 and 3. This suggests that using these facts as a basis to distinguish between our alternative
models of firm financing may be of limited usefulness. However, there are noticeable quantitative
differences between the predicted lines for the different regimes that could be potentially used for
testing the regimes against each other. First, notice that, as expected, autarky is farthest from the
first best, followed by S, BL, etc. The MH regime produces lines that are very close to those for full
information as well as to those of the UC regime. While all lines on fig. 1 are downward sloping
they differ in their slopes with the autarky line being flattest and that for full information steepest
with the rest of the regimes falling in between. Intuitively, the less constrained the regime, the
higher its ability to adjust in an incentive feasible way the firm size. This is a testable implication
of our model that can be used on real data.

Figure 2 shows a similar picture to fig. 1 - all regimes exhibit decreasing variance of firm size
growth as a function of k matching fact 2. Once again, however, there are potentially large quanti-
tative differences across the various financial environments with the exogenously incomplete regimes
displaying markedly higher growth variability especially at lower capital levels. The intuition is
that, being more constrained, these regimes have a harder time smoothing out the output fluctu-
ations compared to the FI, UC and MH regimes where the output contingent insurance transfers
from the bank help serve this role.

The empirical fact from the above list that produces distinctly different results across the regimes
is the diminishing cash flow sensitivity of investment (fact 5) exhibited on fig. 3a. We find this
regularity to hold to some extent for the exogenously incomplete regimes when δ < 1 (see also fig.

26Currently we explore only the facts with regards to firm size and not firm age. In principle we can account for
firm age as well by assuming that one of the capital states (e.g. k = 0) is interpreted as ”being out of business”. This
would enable us to study firm entry, aging and exit. This research is still to be completed.
27In these figures the expectation is taken over an underlying normal distribution of w or b over their corresponding

grids in addition to over any lotteries inherent in the optimal contracts. Using uniform distribution over w and b
or putting all mass at a particular value of the state variable (done as robustness checks) produces qualitatively
indistiguishable results.
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16a where the lines are plotted for different parametrization) but it does not hold in the MH or FI
environments and also when capital depreciation is full (fig. 3b). Within the model’s framework,
this finding is consistent with the hypothesis that, on average, firms in the real world are more
likely to behave as if facing constrained means for insurance limited to saving and/or borrowing.
Comparing the regimes, notice that the level of cash flow sensitivity decreases with relaxing the
exogenous or incentive constraints as intuition suggests. This is another testable implication of our
structural model. Finally, fig. 4 shows that fact 4 is matched as well by the BL regime, namely
small firms in the model do take relatively more debt as measured by the debt-asset ratio, E(b0/k).

Overall, the model is shown to be successful in matching the firm growth and finance empirical
regularities from the Cooley and Quadrini list that we can map into our setting. However, this
success should be taken with a some caution. The finding that most of the facts are matched (at
least qualitatively) by financial environments filling the whole spectrum from autarky (no access to
financial markets) to complete markets suggests that perhaps this list of facts is not too demanding
to model theoretically and unfortunately it seems not to provide us with much insight into what
types of theoretical models of firm finance under incomplete markets one has to use to match real
data. Still, there are significant quantitative differences across the regimes and in section 7 we test
whether those can be used as a basis to statistically test and distinguish between the competing
models of incomplete financial markets.

5.3 Solution Properties - Consumption and Investment

Figures 7a-7d depict the expected values of consumption, effort and investment for the different
regimes computed at initial capital level of 0.5 for both the full and incomplete depreciation base-
line parametrizations. The discussion below outlines the differences across the compared financial
environments and the underlying optimal allocations with the goal of providing reference points in
terms of the following empirical testing section.

Consumption Smoothing and Insurance
Compare first the degree of consumption smoothing (insurance) achieved in the different regimes

(fig. 7a-b). Look at the spread in expected consumption between the high and low output states
plotted as a function of b or w. We see a lot of variation in consumption in the autarky regime
since the only channel available to smooth consumption is investment (k0) . In the saving only
regime the consumption differential is reduced at least in half with the agent employing saving as
a second smoothing instrument Moving to the BL regime the maximum consumption differential
is reduced even further on average as the agent can borrow (the smoothing is more limited if the
agent starts with a lot of debt, i.e. high b). The consumption smoothing is almost perfect in the
UC and MH regimes. The latter occurs because we found that most of incentive provision occurs
through promised utility i.e. high output is rewarded and low output is punished via next period’s
promise, w0 rather than consumption. The consumption smoothing dimension suggests that the
various regimes provide household firms with varying ability to smooth output shocks across states
of the world and time.

The differential degree of consumption smoothing across the studied financial regimes provides
a potential instrument that can be used to empirically distinguish them in cross-sectional data
on consumption, c and cash flow (output), q where we would expect to distinguish between the
exogenously incomplete vs. the endogenously constrained regimes. We perform such an exercise in
section 7 below.

Investment and Effort

21



Now look at the graphs of next period’s capital, k0 and effort, z as function of the states, b
or w (fig. 7c-d). Notice that under FI the principal can implement high effort and investment
even at the lowest promise (which implies low c as well) but this is impossible in the UC and MH
cases because of incentive reasons. Fig. 8 shows that investment is depressed in the UC and MH
regimes relative to the first best due to the information asymmetry. The exogenously incomplete
regimes achieve lower levels of effort and investment on average compared to the full information
case although this is not so clear in the figure since there is no natural mapping between b and w.
As economic intuition suggest, effort is decreasing with higher w but increasing with higher b (less
savings and more debt). The next period’s capital stock and hence investment (given we hold k
constant along the lines) is generally (weakly) decreasing in both w and b apart at the lower bound
as resources are used for either higher consumption (in the case of w) or paying back the debt (in
the case of b).

5.4 Solution Properties - Welfare

Notice that the studied information regimes can be ranked in terms of Pareto efficiency. The autarky
regime is clearly characterized with lowest welfare, followed by the saving only and borrowing
regimes which allow for non-contingent intertemporal consumption smoothing but no additional
insurance across states apart from self-insurance. In turn, if β = 1/R as in our baseline, the
moral hazard regime with unobserved capital (UC) Pareto dominates the BL regime as the optimal
allocation achieved by the latter is incentive and truth-telling compatible since it can be achieved
by simply allowing the agent to borrow and lend through the principal i.e. implementing the values
of b through the transfer τ.

In general, given that in our model the agent has incomplete control over his income (output
is stochastic) the bank can provide higher utility for the firm by providing extra insurance. The
results of Allen (1985) and Cole and Kocherlakota (2001) stating that no additional insurance
on top of self-insurance can be provided by the principal do not apply in our setting because of
the incomplete control assumption (see Abraham and Pavoni, 2005). The moral hazard regime
with observed k (MH) is in turn Pareto superior to the UC regime as the truth-telling constraints
are relaxed by the observability of capital and investment. Finally, the full information regime
dominates all others as it achieves the first best, complete markets allocation.

These Pareto rankings are illustrated on fig. 5 (for the incomplete depreciation baseline) and
fig. 6 (for the full depreciation baseline). We plot the agent’s and principal’s utility levels and
resulting Pareto frontiers for the studied regimes. Note that quantitatively there is a relatively
large gap between the A and S exogenously incomplete regimes and the endogenous ones28 while
relatively small welfare gaps among the rest of the regimes. Even at high promised utility for the
agent there are perceptible differences in the regimes which can look small on the graph because of
its scale but can be significant in terms of consumption equivalents.

The increasing portion of the utility possibility frontier for the MH and UC regimes (familiar
from Phelan and Townsend, 1991) is due to the fact that at very low promised utility the agent’s
incentives to exert effort and invest are limited which results in low value for the principal. Notice
that no such feature is present under full information. The BL and S frontiers are downward sloping
as higher initial savings (lower debt) with the principal (which map onto the vertical axis since the
bank is risk neutral) correspond to higher agent’s present value utility.

28The relatively small gap between the FI and MH regimes is due to the low risk aversion level in our parametrization
and widens when using higher σ.

22



5.5 Dynamics

In this section we present some of the dynamic features of the financial environments we study. As
in the per-period results above, we focus on the behavior of consumption and investment as two
dimensions of the model most likely to be present in data and also capturing well the theoretical
differences across the financial regimes.

We start by looking at the evolution of the cross-sectional distributions of consumption, c
and next period capital, k0 over time (100 periods) for the various regimes we study under the
incomplete depreciation baseline parametrization (fig. 8-11)29. The figures are plotted for uniform
initial distribution over the states but we have verified that our discussion below is not sensitive
to this. We see that in the more constrained regimes (A and S) consumption and investment tend
to converge faster to what looks like a stationary distribution. Autarky seems to converge within
10 periods while S takes around 50. The less constrained regimes like BL and MH do not exhibit
convergence within the first 100 periods reported on the figures.

Notice that in our simulations the A and S exogenously incomplete regimes converge quickly
to non-degenerate stationary distributions. That is, while there is a lot of mobility inside the dis-
tribution by agents going from one consumption realization to another, the overall cross-sectional
consumption distribution and hence its variance may be observed not to vary over time. This
observation is relevant in view of the literature on testing the full vs. partial insurance hypotheses
(e.g. Blundell, Pistaferri and Preston, 2002). Observing time varying variance in the consumption
distribution is certainly a sufficient condition to reject the full insurance hypothesis but, as our
results show, the opposite is not true: observing zero time variation in the cross-sectional con-
sumption variance is perfectly consistent with partial insurance as well as observing non-zero time
variation is.

We investigate further the dynamics generated by the different regimes by looking at the
population-weighted expected time paths (empirical means) of c and k0 starting from uniform initial
state distribution. For example, to compute the time path of investment, k0 we sum, for each t,
over all possible values of k0 ∈ K 0 weighted by the corresponding fraction of agents with next period
capital at this value:

Et(k
0) =

X
j=1..#K0

k0jHt(k
0
j)

The results are exhibited on fig. 12 and 13 for the incomplete and full depreciation baselines.
All regimes were initialized at uniform initial distribution over the states. Once again we see the
paths for the highly constrained autarky (A) and saving only (S) regimes converging relatively fast
while the rest of the regimes still exhibit drift in the empirical mean after 100 periods confirming
our results from the cross-sectional distributions (fig. 8-11).

We use the above findings as yet another possible basis to distinguish between the financial
environments we study. In section 7 we take two cross-sectional distributions of consumption
(conditional on output) lying either one period apart (i.e. corresponding to short run dynamics)
or 50 periods apart (corresponding to longer run dynamics). The simulations results from fig. 8-13
suggest that the ability to distinguish across the regimes should differ with the length of the time
period from which data is drawn.

29To save space we omit the FI regime where the distribution is stationary after time 0 at our baseline β = 1/R
and looks similar to the MH results.
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6 Empirical Implementation

In this section we use our solution methodology to generate simulated data and perform estimation
and model selection tests of the different information regimes.

6.1 Methodological Issues

Initial Conditions
When estimating dynamic models an important issue is initial conditions. In terms of our

model these are the initial values for the state variables, some of which can be unobservable to
the econometrician. Specifically to our setting, to initialize the model and generate transitional
dynamics we need to know (or estimate) the initial values of the state variables (capital, k for
autarky, (k, b) for savings or borrowing, and (k,w) for the endogenous regimes). While k or b are
likely to be observable so they can be taken from the data, the initial promise values, w being a
purely mathematical object summarizing history, are clearly not observable. Thus, to initialize the
model they can be estimated as if drawn from some known distribution. In section 7 below we
adopt this approach and show how to estimate the parameters of the distribution. Notice, however,
that if we are interested in the long-run distributions or transitions generated by the information
regimes we do not need to estimate the initial distribution over states but only the preference,
technology, etc. parameters.

The possibility of unobservable initial conditions is related to the more general issue of het-
erogeneity in unobservables. As written, our structural models have exact predictions about the
distributions and transition probabilities for consumption, investment, cashflow, etc. at any point
of time. However, we are well-aware that these models are at best crude, simplified versions of
reality and stand no chance of perfectly matching any real dataset. Hence, to fit real data we
must either introduce a source of heterogeneity in unobservables into the model, e.g. heterogeneity
in the initial promises and/or treat the data as if there is measurement error in the observables.
For example, we can think of initial promises as originating from a known parametric distribution
(properly discretized and normalized to fit our grid) the parameters of which we will structurally
estimate together with the rest of the model parameters. Estimation strategies based both on
unobserved heterogeneity and measurement error are presented below.

Identification
Unfortunately, due to the analytical complexity of our setting, we are unable to provide theoret-

ical identification proofs. In fact, as Honore and Tamer (2005) find, point identification could fail
in structural models like ours. We are well aware of this limitation of our numerical approach. To
address it we propose a “second best” solution in the form of numerical identification. Specifically,
what we do is as follows:

(1) take a baseline model regime parametrized by a vector of parameters, φbase

(2) generate simulated data from the baseline model from (1)
(3) estimate the baseline model using the data in (2) using maximum likelihood and obtain

estimates, φ̂base

(4) if the estimates from (3) are the same or close in numerical sense (e.g. norm) to the
baseline φbase, report success, else report failure.

Steady States vs. Transitions
All of the model regimes described in section 3 have implications for both transitional dynamics

and long-run distributions. This needs to be reflected in the estimation strategy. If a stationary
distribution exists and is independent of initial conditions and if we believe that the actual data
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reflects a steady state we can estimate the models to match the simulated stationary distribution
with the actual empirical distribution disregarding transitional dynamics and initial conditions. If,
however, we are dealing with actual data that is more likely to correspond to a transition process
(as would be natural to assume if the data comes from a developing economy) then the model
regimes need to be estimated using both their cross-sectional and intertemporal implications. We
ficus on the latter case which we find both empirically more plausible in our developing economy
setting and also technically more challenging.

6.2 Maximum Likelihood Estimation

In Paulson, Townsend and Karaivanov (2006) we have successfully employed maximum likelihood
estimation (MLE) in a static environment of occupational choice under financial constraints. In
the current dynamic context we use MLE to fit data on cross-sectional frequencies of c, q, k and/or
state transition probabilities (e.g. k to k0 or k to k0 conditional on q) with data simulated from
the studied regimes30. The baseline “data” used in the estimation results in this paper (see next
section) is drawn from one of our models (moral hazard) but in future research we plan to apply
the methods developed here to real data from one of the datasets mentioned in the introduction.

More specifically, denote the data used in the MLE (e.g., the joint empirical distribution of
c, q) by m̂ij where

PJ
j=1 m̂ij = 1 for all i = 1..I. Here, the subscript j refers to data frequencies in

mutually exclusive cells (e.g. if there are #C grid points31 for c and #Q grid points for q we have
J = #C ×#Q) while the subscript i refers to different sets of data frequencies (e.g. i = 1, ..#K
could denote the frequency distributions of going from a given firm size ki today to firm size k0j ,
j = 1, ..#K tomorrow).

Suppose our structural model is parametrized by the parameter vector φ that we are interested
in estimating. The elements of φ can include preference or technology parameters, or distributional
parameters (e.g. mean, variance) for initial promises or measurement error (see section 7.1). Let the
counterparts of the data m̂ij in the estimated model be mij(φ), where once again,

PJ
j=1mij(φ) = 1

for all i.
The fact that we have frequencies over data cells as our objects of interest allows us to write

the log-likelihood function in explicit form. The maximum likelihood estimator, φMLE is given by:

φ̂MLE = argmax
φ

n
IX

i=1

⎡⎣J−1X
j=1

m̂ij lnmij(φ) + (1−
J−1X
j=1

m̂ij) ln(1−
J−1X
j=1

mij(φ))

⎤⎦ (23)

where n is the overall sample size. The minimization above can be done by any optimization
algorithm robust to local minima, e.g. pattern search, genetic algorithms, or simulated annealing
(Goffe, Ferrier and Rogers, 1994).

6.3 Testing and Distinguishing Between Competing Models

The estimation method proposed above can be used to construct a formal statistical test to evaluate
the relative goodness of fit of our competing information regimes relative to the baseline data. It

30In general, the MLE approach proposed here can be used on any data in the form of probabilities/ fractions
- that is any one-time or repeated cross-sectional joint distibutions of model variables or transitional probabilities.
Any real data can be put in this form by sorting the observations in appropriately chosen “bins” and then using the
frequencies over those bins to perform the MLE.
31Notice that the requirement to use grids in our linear programming computational algorithm turns out to be

well-suited for our estimation approach.
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is crucial to point out that the different models we study are non-nested in statistical sense. For
our purposes we say that model A nests model B, if, for any possible allocation that can arise in
model B, there exist parameter values such that this is the allocation in model A (see Paulson et
al., 2006 for more details).

We use the results of Vuong (1989) to construct asymptotic test statistics to distinguish between
competing non-nested models. Vuong (1989) proposes a test based on the maximum likelihood
method described above. A very attractive feature of this test is that it does not require that either
of the compared models be correctly specified. This property is appealing given the fact that we
are studying models that are clearly simpler than reality32.

Suppose the values of the estimation criterion function being minimized (i.e. minus the log-
likelihood) for the two models are given by L1n(φ̂

1) and L2n(φ̂
2) where n is the sample size and φ̂1

and φ̂2 are the parameter estimates for two competing non-nested models (model 1 and model 2
respectively). The null hypothesis, H0 of the Vuong test is that the two models are “asymptotically
equivalent” relative to the true data generating process. Define the “difference in lack-of fit”
statistic:

Tn = n−1/2
L1n(φ̂

1)− L2n(φ̂
2)

σ̂n

where σ̂n is a consistent estimate of the asymptotic variance
33, σn of L

1
n(φ̂

1)−L2n(φ̂2) (the likelihood
ratio). The main result of Vuong (1989) is:

Proposition E1 (Vuong, 1989)

Under some regularity assumptions and if the models are non-nested, then Tn is distrib-
uted N(0, 1) under H0.

7 Estimation and Model Selection Results

In this section we use the MLE and testing methods from the previous section to test across the
competing theoretical regimes on basis of the dimensions suggested by the simulation results: (1)
firm growth and finance; (2) consumption smoothing and (3) short vs. long run dynamics. We
emphasize that the results exhibited below should be treated just as examples illustrating the way
to use the proposed estimation and testing methodology and are not calibrated (for the moment)
to fit real data.

We take as a baseline the implications of the moral hazard model with observed investment
from section 3.2. (MH). The first step in our empirical strategy is to generate “data” from the
model that we will use in the estimation. Remember that in our MLE methodology we need to
use probabilities over cells as a basis for the estimation34. Thus, regarding firm dynamics (1), we
generate data on the joint distribution of (k, k0) and (k, k0, q). The idea is that using the joint
distributions of capital today and tomorrow (conditional or unconditional on output) should help

32A further advantage of this test (not utilized here but very useful for numerical work) is that the method used
to estimate the competing models need not optimize the selection criteria used for model selection (see Rivers and
Vuong, 2002).
33In the case of MLE, a consistent estimate of σn is given by the sample analogue of the variance of the LR statistic

(see Vuong, 1989, p. 314).
34In principle we could employ a GMM or minimum χ2 techniques to estimate on the basis of any moments on the

data instead of proxying them with frequency distributions but then testing across the non-nested regimes becomes
computationally infeasible (see Rivers and Vuong, 2002), so we choose to stick to the (admittedly somewhat limited)
MLE approach.
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us distinguish the regimes based on the stylized facts from section 5.1. which involve only k, k0 (and
in the case of fact 5, q). Similarly, to test the consumption smoothing dimension (2) as a basis of
distinguishing between the regimes, we use the cross-sectional joint distribution of (c, q). Finally,
our results above imply that the endogenous regimes have different implications about consumption
and investment dynamics compared to the exogenous regimes. We test this dimension based on
data on the (c, q) cross-sectional distribution in two consecutive periods (for short run behavior)
versus (c, q) cross-sections 50 periods apart (for longer run behavior).

7.1 Generating Baseline Data

We use the two baseline parametrizations exhibited in table 3. However, because of the high
computational time requirements of the MLE procedure (we need to compute and iterate on the
linear programs at each parameter vector during the grid search and estimation) we reduce some of
the grid sizes to #K = 5,#T = 19, #W = 5, #B = 5 (for S) and #B = 9 (for BL)35. Consumption
is also gridded up, using #C = 10 values on [0, 1.2] or [0, 3.5] respectively for the δ = .05 and δ = 1
cases.

To initialize the baseline MH model from which we draw the data used in the estimations, we
assume that the initial distribution over states (k,w) is uniform in firm size and normal in w, i.e.
w˜N(μw, γ

2
w) for each value of k. To generate the baseline data we pick μw equal to the average of

the grid W i.e. we set the baseline distributional parameters as (μw, γw) = (19.99, 8) for the case
of incomplete depreciation and (34.64, 15) for the case δ = 1. We then draw n = 1, 000 random
observations from N(μw, γ

2
w) (200 for each k) and generate the distribution over the initial state

space, D0(k,w). We then compute the MH regime at the baseline parameter values and use its
Markov transition matrix to simulate n values for c, q, k0.

At this stage we also allow for additive measurement error in the observables - consumption
c and/or firm size k and k0. Output, q is assumed to be observed without error since it can take
only 2 values. The measurement errors εi, i = 1, ..n applied to all observables are assumed to be
drawn from the normal distribution N(0, γ2me) where the standard deviation, γme is estimated. For
example, if the true value of consumption (i.e. the value simulated from the MH model at the initial
state (ki, wi) is ci, the “observed” data value we use in the estimation is c̃i = ci+εi and similarly for
k, k036. Finally, we use those values to create the distributions used in the estimation, i.e. H0(c̃, q)
- the observed distribution over (c, q), H0(k̃, k̃

0) - the observed distribution of transitions from firm
size k at t = 0 to size k0 at t = 1, etc.

7.2 Results

This section contains the results from the estimation and model selection tests of the studied regimes
using the methods outlined above. The parameters we estimate are the three distributional para-
meters for promises and measurement error (μw, γw and γme) as well as three structural parameters:
the preference curvature parameters, σ and θ and the technology parameter, ρ. In the case of the
saving only and borrowing regimes instead of the promise distribution parameters we estimate the
mean, μb and variance, γ

2
b of the distribution of the state variable b (assumed unobserved but

drawn from a normal distribution). We perform all estimation and testing exercises for two cases
of measurement error (ME) used to generate the baseline data (“low ME” i.e. γme = .1 or “high

35We can handle much larger problems at the cost of additional computational time.
36Applying the measurement error can in some times lead to “truncation” if the resulting value falls outside our

grid so we lose some information in the estimation procedure.
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ME” i.e. γme = .5). As we will see, the magnitude of measurement error affects significantly our
ability to distinguish between the studied information regimes.

For each information regime we start at some initial parameter vector and then follow the
same procedure described above to simulate data from the model: draw initial states, generate the
observables, apply measurement error, generate the frequency distributions of interest. We then
use the likelihood function in (23) to compute the criterion value and use an optimization routine37

to solve for the estimates φ̂ maximizing the likelihood between the baseline data and the currently
estimated model regime. The first of the estimated regimes is always the MH regime itself to see if
we can recover the actual parameters used to generate the data (see our “numerical identification”
discussion above). Finally, we use the Vuong test to see if we can distinguish between the data
generating and the estimated model regimes as well as between all possible pairs of estimated
regimes.

7.2.1 Firm Growth and Finance - Incomplete Depreciation

In this first set of results, we focus on estimation and testing the implications of the models related
to firm growth and financing. That is, the data we generate and use to estimate the model consist
of the distributions of capital today and tomorrow, k, k0 potentially conditional on cashflow, q, i.e.
the joint distributions (k, k0) and (k, k0, q) in the initial period as explained in the discussion at the
beginning of section 6. The tables below contain the estimation and model selection results. We
first report the case of incomplete depreciation (δ = 0.05) where the regimes compared are MH, FI,
A, S and BL and then the case of complete depreciation where the moral hazard with unobserved
capital regime (UC) is also included.

Table 2a - Estimation results based on the (k,k’) distribution (incomplete
depreciation)

Model μ̂w γ̂w γ̂me σ̂ θ̂ ρ̂ LL Value

Low Measurement Error

MH (“identification”) 20.0625 7.9375 0.1020 0.5000 2.0625 -0.0625 -2727.4

FI 20.0000 9.0000 0.1050 0.5000 2.1875 0.0000 -2749.3

Autarky (A) n.a. n.a. 0.5948 0.0000 0.0433 3.0050 -3029.1

Saving Only (S) -0.4000# 0.1917# 0.6410 0.0000 0.0766 3.1875 -2977.4

BL -0.0024# 0.2581# 0.4480 1.1000 4.2000 2.8750 -2947.4

baseline values 19.999 8 0.1 0.5 2 0

High Measurement Error

MH (“identification”) 20.0000 8.0000 0.6182 0.5005 2.2500 -0.1250 -3114.9

FI 20.0625 7.9375 0.6289 0.5000 1.9844 0.2188 -3115.7

Autarky (A) n.a. n.a. 0.6538 0.5035 0.8487 3.4661 -3143.8

Saving Only (S) -0.1595# 0.0926# 0.6566 0.0777 0.1014 2.7349 -3133.4

BL -0.1501# 0.2000# 0.6268 0.9904 1.8107 -2.9959 -3117.9

baseline values 19.999 8 0.5 0.5 2 0

Note: # - for the S and BL regimes the first two columns report μ̂b and γ̂b. This applies to all
tables below.

37We first perform a grid search over the parameter values to prevent getting stuck at local extrema and then use
the Matlab routines patternsearch and fminsearch to optimize the likelihood.
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Table 2b - Vuong Test p-values based on the (k,k’) distribution

γme=.5⇓ \ γme=.1⇒ MH FI A S BL

MH n.a. .0022***(MH) .0000***(MH) .0000***(MH) .0000***(MH)

FI .7800 (draw) n.a. .0000***(FI) .0000***(FI) .0000***(FI)

A .0005***(MH) .0007***(FI) n.a. .0000***(S) .0000***(BL)

S .0126**(MH) .0097***(FI) .1321 (draw) n.a. .0017***(BL)

BL .5049 (draw) .6133 (draw) .0031***(BL) .0197** (BL) n.a.

Note: The abbreviations in the parentheses denote the better fitting regime. *** - significant
at 1%; ** - significant at 5%; * - significant at 10%; “draw” denotes the tested regimes cannot be
statistically distinguished from each other relative to the data. The p-values in the part of the table
above the main diagonal read by rows correspond to the case γme = .1 while those in the part of
the table below the main diagonal read by columns correspond to the case γme = .538. The same
comments apply to all similar tables below.

We see from table 2a that the MH baseline parameters are identified quite well in the low
measurement error (ME) case validating our numerical procedure although, as expected, not so well
in the high ME case. In terms of the log-likelihood values the regimes follow a natural ordering:
the MH as the data generating one is highest, followed by the FI, then BL, S and finally A.
Interestingly, the same ordering is preserved using other types of data e.g. the (c, q) distribution,
although with high measurement error the likelihood values sometimes get very close to each other.
The parameter estimates differ across the estimated regimes as the MLE is trying to fit the data as
well as possible but they are generally similar between the FI and MH regimes which appear to be
“close” to each other in terms of their investment implications. In terms of testing, we find that the
low ME specification distinguishes among all regimes on basis of (k, k0) very strongly, while with
higher measurement error we cannot distinguish between MH, FI and BL (and separately, between
A and S). This suggests that in terms of firm size and growth implications (facts 1-3 from Cooley
and Quadrini, 1999) the moral hazard regime seems to be close to the full information or borrowing
and lending but distinguishable in data from the saving only or autarky models.

Below we re-do the estimation and testing exercises using the additional information on cashflow,
q to try address stylized fact 5 from our list.

38For example, the value in the row labeled “FI” and column “A” (above the main diagonal) is the p-value of
comparing the full information regime with autarky for γme = .1 while the value in the row labeled “A” and column
“FI” (below the diagonal) is the p-value of comparing autarky to full information under γme = .5. Each comparison
is bilateral and symmetric which is why every pair of regimes is tested only once.
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Table 3a - Estimation results based on the (k,q,k’) distribution (incomplete
depreciation)

Model μ̂w γ̂w γ̂me σ̂ θ̂ ρ̂ LL Value

Low Measurement Error

MH (“identification”) 20.1875 8.2500 0.1000 0.5000 2.0313 0.0000 -3165.1

FI 19.9766 8.7188 0.1366 0.5039 1.9961 -0.0547 -3221.4

Autarky n.a. n.a. 0.7039 0.1000 8.1000 0.2188 -3617.2

Saving Only -0.4000# 0.2000# 0.6374 0.1313 1.2000 2.3984 -3480.3

BL -0.1521# 0.2161# 0.5276 0.6000 1.3750 -0.9063 -3441.7

baseline values 19.9999 8 0.1 0.5 2 0

High Measurement Error

MH (“identification”) 19.0000 9.0000 0.6414 0.5000 2.0156 -0.0469 -3581.3

FI 19.9688 8.0625 0.5684 0.5000 1.9844 -0.0625 -3595.2

Autarky n.a. n.a. 0.6845 1.1125 1.4917 -3.4563 -3741.2

Saving Only -0.1651# 0.0000# 0.6619 0.4537 2.0753 -2.7498 -3679.6

BL 0.0000# 0.1377# 0.6559 0.5000 2.0000 -3.8203 -3630.3

baseline values 19.9999 8 0.5 0.5 2 0

Table 3b - Vuong Test p-values based on the (k,q,k’) distribution

γw=.5⇓ \ γw=.1⇒ MH FI A S BL

MH n.a. .0000***(MH) .0000***(MH) .0000***(MH) .0000***(MH)

FI .2392 (draw) n.a. .0000***(FI) .0000***(FI) .0000***(FI)

A .0000***(MH) .0000***(FI) n.a. .0000***(S) .0000***(BL)

S .0000***(MH) .0000***(FI) .0005***(S) n.a. .0854* (BL)

BL .0000***(MH) .0138** (FI) .0000***(BL) .0015***(BL) n.a.

The above results are qualitatively similar in terms of likelihood ordering and estimated to those
in tables 2a-b. Notice the worse likelihood values as we now use more information to estimate (more
probability terms in (23)). Compared to the (k, k0)-based results, when including more information
(q) the Vuong test statistics become stronger and we can distinguish most regimes but we still
cannot distinguish MH from FI when ME is high.

We visualize the above results on fig. 14-16 which plot firm size growth, growth variance and
cash flow sensitivity as functions of firm size at the parameter estimates reported above for both
the low and high measurement error parametrizations. We see that the MH and FI regimes are
very close in terms of their financial implications and also how the higher measurement error blurs
the distinction between the regimes.

7.2.2 Firm Size and Finance - Full Depreciation

We now look at the case of full depreciation which allows us to compute, estimate and test the UC
regime together with the others. Because of computational speed this is not feasible for the more
realistic incomplete depreciation scenario discussed above.
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Table 4a - Estimation results based on the (k,k’) distribution (δ = 1 case)

Model μ̂w γ̂w γ̂m σ̂ θ̂ ρ̂ LL Value

Low Measurement Error (γm = .1)

MH (“identification”) 34.8900 15.0156 0.0969 0.5000 2.0000 0.0938 -2526.4

FI 17.1875 30.0000 0.1176 0.5000 2.0000 -2.0000 -2554.9

Autarky n.a. n.a. 0.1961 1.1000 0.7000 4.9375 -2601.6

Saving Only 0.0000# 0.2500# 0.2300 1.1000 1.2000 5.1250 -2591.4

BL 0.3594# 0.8781# 0.2361 1.6000 3.7500 7.0000 -2583.3

Unobserved k (UC) n.a. n.a. 0.1088 0.5156 1.7578 -2.8438 -2542.5

baseline values 34.6401 15 0.1 0.5 2 0

High Measurement Error (γm = .5)

MH (“identification”) 30.6153 11.8672 0.6169 0.5017 2.1137 -0.0312 -2982.8

FI 33.2247 15.8548 0.6208 0.5171 1.2070 0.4999 -2982.6

Autarky n.a. n.a. 0.6167 1.1000 0.7000 10.000 -2990.0

Saving Only -0.5317# 0.1855# 0.6182 2.8500 9.2000 9.6875 -2983.3

BL 0.4683# 0.1855# 0.6182 2.3500 9.2000 9.6563 -2983.8

Unobserved k (UC) n.a. n.a. 0.6224 0.1352 5.0156 -5.5938 -2982.3

baseline values 34.6401 15 0.5 0.5 2 0

Table 4b - Vuong Test p-values based on the (k,k’) distribution (δ = 1 case)

γm=.5⇓ \ γm=.1⇒ MH FI A S BL UC

MH n.a. .000∗∗∗(MH) .000∗∗∗(MH) .000∗∗∗(MH) .000∗∗∗(MH) .011∗∗(MH)
FI .972 (draw) n.a. .000∗∗∗(FI) .000∗∗∗(FI) .002∗∗∗(FI) .062∗ (UC)
A .149 (draw) .028∗∗(FI) n.a. .035∗∗(S) .002∗∗∗(BL) .000∗∗∗(UC)
S .918 (draw) .809 (draw) .061∗(S) n.a. .101 (draw) .000∗∗∗(UC)
BL .832 (draw) .660 (draw) .064∗(BL) .564 (draw) n.a. .000∗∗∗(UC)
UC .911 (draw) .935 (draw) .142 (draw) .827 (draw) .734 (draw) n.a.

As we see from table 4a, the unobserved capital regime (UC) fits in terms of likelihood very
close to the MH regime, and close to the full information regime. The likelihood ordering of the
remaining regimes is the same as in the δ = 0.05 case. The estimates it produces are also similar
to the baseline values used to generating the data indicating that it may be difficult in practice to
distinguish between the moral hazard regimes with observed and unobserved k . This is confirmed
to some extent in table 4b where we see that, for low measurement error, we can distinguish but
only at 5% or 10% between MH and UC and UC and FI respectively. For high measurement error
it seems that the distinction between the regimes is so blurred that we can only distinguish autarky
from the other exogenously incomplete regimes.
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Table 5a - Estimation results based on the (k,q,k’) distribution (δ = 1 case)

Model μ̂w γ̂w γ̂m σ̂ θ̂ ρ̂ LL Value

Low Measurement Error (γm = .1)

MH (“identification”) 36.7338 15.0000 0.1039 0.5000 2.0234 -0.0313 -2976.3

FI 34.1713 17.7266 0.1937 0.5068 2.5859 -0.0313 -3059.4

Autarky n.a. n.a. 0.9031 0.1000 10.000 0.7344 -3868.4

Saving Only -1.0000# 0.2873# 0.4402 0.0375 6.0000 0.2402 -3184.6

BL -1.0000# 0.4367# 0.5517 0.9750 4.0000 0.0000 -3165.3

Unobserved k n.a. n.a. 0.1020 0.5469 4.1375 -0.2813 -3018.1

baseline values 34.6401 15 0.1 0.5 2 0

High Measurement Error (γm = .5)

MH (“identification”) 34.6400 14.5000 0.5898 0.5000 2.2188 0.3125 -3514.9

FI 34.6400 14.9688 0.6168 0.5000 2.4375 0.0000 -3522.9

Autarky n.a. n.a. 0.8521 0.1000 10.000 0.7344 -3952.3

Saving Only -1.0000# 0.0250# 0.6550 0.4750 8.1000 0.2344 -3530.4

BL -1.0000# 0.2414# 0.6335 0.2188 10.000 -0.3750 -3528.4

Unobserved k n.a. n.a. 0.6224 0.1352 5.0156 -5.5938 -3528.7

baseline values 34.6401 15 0.5 0.5 2 0

Table 5b - Vuong Test p-values based on the (k,q,k’) distribution (δ = 1 case)

γm=.5⇓ \ γm=.1⇒ MH FI A S BL UC

MH n.a. .000∗∗∗(MH) .000∗∗∗(MH) .000∗∗∗(MH) .000∗∗∗(MH) .000∗∗∗(MH)
FI .168 (draw) n.a. .000∗∗∗(FI) .000∗∗∗(FI) .000∗∗∗(FI) .025∗∗ (UC)
A .000∗∗∗(MH) .000∗∗∗(FI) n.a. .000∗∗∗(S) .000∗∗∗(BL) .000∗∗∗(UC)
S .199 (draw) .475 (draw) .000∗∗∗(S) n.a. .075∗ (BL) .000∗∗∗(UC)
BL .173 (draw) .592 (draw) .000∗∗∗(BL) .885 (draw) n.a. .000∗∗∗(UC)
UC .156 (draw) .596 (draw) .000∗∗∗(UC) .906 (draw) .980 (draw) n.a.

Once again, adding more data based on which to estimate and test the regimes strengthens
the Vuong test results - notice that now we distinguish MH from UC at the 1% level for the low
γm case. With higher measurement error we still cannot distinguish between the data generating
regime (MH) and the other regimes with the exception of autarky. This is in contrast to our findings
for the incomplete depreciation case. Intuitively, the full depreciation breaks the link between firm
size today and tomorrow, k and k0 thus effectively less information is available to base the tests on
relative to before.

7.2.3 Consumption Smoothing

We now estimate and try to distinguish between the studied regimes based on data on the degree
of consumption smoothing they provide to the households as embedded in the (c, q) cross-sectional
distribution at the end of the initial period. The results reported below are based on the incomplete
depreciation parametrization.
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Table 6a - Estimation Results based on the (c,q) distribution (incomplete
depreciation)

Model μ̂w γ̂w γ̂me σ̂ θ̂ ρ̂ LL Value

Low Measurement Error

MH (“identification”) 20.1250 8.0625 0.1029 0.5000 1.9844 -0.0002 -2540.8

FI 19.9688 7.8438 0.1234 0.5000 1.9893 -5.0313 -2580.0

Autarky n.a. n.a. 0.2303 0.5104 1.6691 -4.8840 -2728.4

Saving Only -0.3685# 0.3738# 0.2449 0.1625 2.1000 -0.0156 -2597.6

BL -0.3725# 0.3919# 0.2450 0.1625 0.1000 -0.0156 -2594.1

baseline values 19.999 8 0.1 0.5 2 0

High Measurement Error

MH (“identification”) 20.0000 7.8594 0.4917 0.5000 2.0313 -2.2500 -2749.5

FI 20.0000 6.5313 0.5400 0.5039 2.0000 -0.9063 -2756.1

Autarky n.a. n.a. 0.6182 0.4994 1.9265 -4.5210 -2795.6

Saving Only -0.4000# 0.0000# 0.6235 1.1000 2.0000 -10.0000 -2772.8

BL -0.1500# 0.0000# 0.5963 0.5000 2.0000 -7.0000 -2762.4

baseline values 19.999 8 0.5 0.5 2 0

Table 6b - Vuong Test p-values based on the (c,q) distribution

γw=.5⇓ \ γw=.1⇒ MH FI A S BL

MH n.a. .0004***(MH) .0000***(MH) .0000***(MH) .0000***(MH)

FI .1114 (draw) n.a. .0000***(FI) .2105 (draw) .3148 (draw)

A .0000***(MH) .0000***(FI) n.a. .0001***(S) .0000***(BL)

S .0009***(MH) .0298** (FI) .0002***(S) n.a. .3468 (draw)

BL .0140** (MH) .3037 (draw) .0000***(BL) .0247** (BL) n.a.

As in the results based on firm growth and finance (k, k0, q) the likelihood values are ordered
MH, FI, BL, S and A from the highest to the lowest indicating that the relative closeness of the
regimes to the data generating MH model is robust and not influenced by the particular choice of
data to match upon. In terms of parameter estimates we observe similar patterns as before with
the baseline parameters recovered very well with low ME and slightly worse with γme = .5. The FI
and MH regimes produce estimates close to each other. The exogenously incomplete regimes seem
to require a higher value for the measurement error variance (higher γ̂me) than the baseline to fit
the data best.

In terms of distinguishing between regimes, the low measurement error results allow the base-
line MH regime to be distinguished with high accuracy from all other alternatives based on its
consumption smoothing implications but this is not the case for the high ME specification where
we cannot distinguish between the moral hazard and the full information regimes. The FI regime
also seems to be indistinguishable from the borrowing and lending one in both measurement error
specifications and the saving only regime in the low ME case. These results are generally weaker in
terms of ability to distinguish than their counterparts when using the (k, k0) or (k, k0, q) distribution
data. Part of the reason is the less data frequencies being fitted (19 in the (c, q)-based results vs.
24 in the (k, k0)-based results and 49 in the (k, q, k0) case). Once again however, autarky is strongly
distinguished from all other regimes even if γme is high.
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7.2.4 Short vs. Longer Run Dynamics

In the following set of results we estimate and test between the regimes on basis of their implications
about shorter and longer run behavior of consumption and cashflow over time. Specifically, we now
use two cross-sections of (c, q) as the frequency data on basis of which we perform the estimation
(i.e. 2(#Q×#C − 1) = 38 frequencies). In tables 7a-b below the cross-sections are taken at times
t = 0 and t = 1 (i.e. two neighboring periods, corresponding to short run dynamics) while in tables
8a-b the (c, q) cross-sections are taken at t = 0 and t = 50 corresponding to longer run dynamics.
All results below apply to the incomplete depreciation parametrization.

Table 7a - Estimation results based on the (c,q) distributions at t = 0 and t = 1

Model μ̂w γ̂w γ̂me σ̂ θ̂ ρ̂ LL Value

Low Measurement Error

MH (“identification”) 20.0000 8.0938 0.1005 0.5000 1.9961 -0.0488 -5060.9

FI 20.0000 4.9688 0.2071 0.5000 2.1230 -4.5000 -5172.1

Autarky n.a. n.a. 0.2561 0.4009 1.8137 -4.5084 -5636.2

Saving Only -0.3980# 0.0762# 0.3250 1.2500 4.0000 -6.2813 -5474.1

BL -0.3707# 0.1103# 0.2754 0.6875 2.0000 -7.1563 -5378.5

baseline values 19.9999 8 0.1 0.5 2 0

High Measurement Error

MH (“identification”) 20.0156 8.0938 0.4921 0.5000 1.9824 -0.5000 -5577.7

FI 22.0000 2.5469 0.5352 0.5000 2.0898 -4.6797 -5588.1

Autarky n.a. n.a. 0.6000 0.4766 2.0151 -4.5775 -5689.5

Saving Only -0.1762# 0.1966# 0.6394 0.4418 1.8207 -3.0389 -5657.0

BL -0.2856# 0.0000# 0.5754 0.4848 1.6457 -3.3044 -5616.9

baseline values 19.9999 8 0.5 0.5 2 0

Vuong test p-values (c,q at t = 0 and t = 1)

γw=.5⇓ \ γw=.1⇒ MH FI A S BL

MH n.a. .0000***(MH) .0000***(MH) .0000***(MH) .0000***(MH)

FI .0774* (MH) n.a. .0000***(FI) .0000***(FI) .0000***(FI)

A .0000***(MH) .0000***(FI) n.a. .0000***(S) .0000***(BL)

S .0000***(MH) .0000***(FI) .0000***(S) n.a. .0000***(BL)

BL .0000***(MH) .0032***(FI) .0000***(BL) .0000***(BL) n.a.

As we found above, the regimes different from the data generating baseline (MH) seem to require
larger measurement error (the estimate γ̂me is higher by about 0.1-0.15) in order to fit the data.
We find that adding the time dimension strengthens the ability to distinguish between any pair of
regimes relative to the single (c, q) cross-section. Still, MH and FI are only distinguishable at the
10% level for the high measurement error case. The ordering of the regimes in terms of likelihood
remains the same as before.
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Table 8a - Estimation results based on the (c,q) distributions at t = 0 and t = 50

Model μ̂w γ̂w γ̂me σ̂ θ̂ ρ̂ LL Value

Low Measurement Error

MH (“identification”) 20.1250 8.0000 0.1001 0.5000 2.0022 0.1250 -5064.8

FI 19.9375 5.6875 0.2055 0.5000 2.0000 -4.5156 -5181.0

Autarky n.a. n.a. 0.2374 0.4747 1.8402 -4.9832 -5795.8

Saving Only -0.4000# 0.2485# 0.2817 1.2500 1.9375 -9.6250 -5458.6

BL -0.4000# 0.2406# 0.2900 0.5375 1.8250 -6.0000 -5433.8

baseline values 19.999 8 0.1 0.5 2 0

High Measurement Error

MH (“identification”) 20.0000 8.1875 0.4998 0.5000 2.0001 -0.1729 -5586.6

FI 19.6875 8.5469 0.5317 0.5059 1.9775 -1.1250 -5602.2

Autarky n.a. n.a. 0.5942 0.4919 1.8088 -2.8045 -5702.8

Saving Only -0.1534# 0.2117# 0.6138 0.4665 2.0187 -2.7014 -5694.3

BL -0.1552# 0.0000# 0.5622 0.4642 1.9501 -3.2052 -5684.1

baseline values 19.999 8 0.5 0.5 2 0

Vuong test p-values (c,q at t = 0 and t = 50)

γw=.5⇓ \ γw=.1⇒ MH FI A S BL

MH n.a. .0000***(MH) .0000***(MH) .0000***(MH) .0000***(MH)

FI .0184** (MH) n.a. .0000***(FI) .0000***(FI) .0000***(FI)

A .0000***(MH) .0000***(FI) n.a. .0000***(S) .0000***(BL)

S .0000***(MH) .0000***(FI) .3465 (draw) n.a. .0197** (BL)

BL .0000***(MH) .0000***(FI) .0814* (BL) .1569 (draw) n.a.

Compare the short run results in table 7 to those where we use data generated further apart in
time (table 8). Using the (c, q) cross-section at t = 50 instead of that at t = 1 helps in distinguishing
the MH and FI regimes much better (now at 2%) but, interestingly, seems to blur the distinction
between the exogenously incomplete A, S and BL regimes for the high ME specification. Regarding
parameter estimates similar patterns to the previous case emerge.

8 Conclusions

We have formulated and solved numerically a range of multi-period financial market regimes
with exogenous or endogenous asset structure that allow for moral hazard and unobservable cap-
ital/investment. We have characterized the optimal allocations implied by the regimes from both
within-period and dynamic perspective. The paper develops methods based on mechanism design
and numerical linear programming that can be used to structurally estimate, compare and dis-
tinguish between the different information regimes. We have shown that such models can match
stylized facts from the empirical firm dynamic literature as listed by Cooley and Quadrini (1999).
The compared regimes were also demonstrated to differ significantly with respect to their qualita-
tive and/or quantitative implications for investment, consumption, financial flows, and insurance
in cross-section, transitions, and long-run outcomes.

In terms of extensions, notice that we can easily incorporate limited enforcement in our for-
mulation by simply requiring that the minimum possible promise, wmin be equal to the agent’s
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discounted value under autarky (given k) or, if the agent’s saving or borrowing cannot be con-
trolled by the bank, his value under the saving only or borrowing settings exhibited above. We can
also look at a regime with observed effort but unobserved investment, k, i.e. such that only the
truth-telling constraints are present but not the incentive compatibility ones. Such a setting creates
an adverse selection problem (through the unobserved agent type, k) but it is not the typical one
studied in the literature since there is also the investment, k0 which is an unobserved action linking
two neighboring time periods together.
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Fig. 7d − Investment and Effort, inc. depreciation baseline, k=0.5
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Fig. 8 − Distributions of c and k’ over time: A, inc. depreciation baseline
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Fig. 9 − Distributions of c and k’ over time: S, inc. depreciation baseline



0 0.5 1
0

0.5

1

c

T=0

0 0.5 1
0

0.5

1

k’

T=0

0 0.5 1
0

0.5

1

c

T=1

0 0.5 1
0

0.5

1

k’

T=1

0 0.5 1
0

0.5

1

c

T=5

0 0.5 1
0

0.5

1

k’

T=5

0 0.5 1
0

0.5

1

c

T=10

0 0.5 1
0

0.5

1

k’

T=10

0 0.5 1
0

0.5

1

c

T=50

0 0.5 1
0

0.5

1

k’

T=50

0 0.5 1
0

0.5

1

c

T=100

0 0.5 1
0

0.5

1

k’

T=100

Fig. 10 − Distributions of c and k’ over time: BL, inc. depreciation baseline
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Fig. 11 − Distributions of c and k’ over time: MH, inc. depreciation baseline
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Fig. 14a − Growth, E(k’/k), estimated parameters, low meas. error
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Fig. 14b − Growth, E(k’/k), estimated parameters, high meas. error
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Fig. 15a − Growth Variance, Var(k’/k), estimated parameters, low meas. error
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Fig. 15b − Growth Variance, Var(k’/k), estimated parameters, high meas. error
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