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Abstract

Empirical exercises in economics frequently involve estimation of highly nonlinear models.

The criterion function may not be globally concave or convex and exhibit many local

extrema. Choosing among these local extrema is rather challenging. First, the researcher

may not uncover the global extremum. Second, the global extremum in small samples

may not correspond to the asymptotic global extremum. Finally, the global extremum

may not correspond to a consistent root. In this paper, we analyze the sensitivity of

parameter estimates, and most importantly of economic variables of interest, to both

starting values and the type of non-linear optimization algorithm employed. We focus

on a class of demand models for differentiated products that have been used extensively

in industrial organization. We find that convergence may occur at a number of local

extrema, saddles and in regions of the objective function where the first-order conditions

are not satisfied. In the interest of a routine market power analysis exercise, we find

own- and cross-price elasticities that differ by a factor of over 100 depending on the set of

candidate parameter estimates. In an attempt to evaluate the welfare effects of a change

in an industry’s structure, we undertake a hypothetical merger exercise. Our calculations

indicate consumer welfare effects varying between negative one to negative forty million

dollars depending on the set of parameter estimates used.

∗Knittel: Department of Economics, University of California, Davis, CA and NBER. Email: crknit-
tel@ucdavis.edu. Metaxoglou: Bates White LLC. Email: konstantinos.metaxoglou@bateswhite.com.
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1 Introduction

Empirical research in economics often requires estimating highly nonlinear models, where the

objective function may not be globally concave or convex. Obtaining parameter estimates in

these cases requires a set of starting values, a nonlinear search algorithm and a set of convergence

stopping rules. For a common class of demand models used in industrial organization, we find

that convergence can occur at a number of local extrema, saddles and in regions of the objective

function where the first-order conditions are not satisfied. Furthermore, parameter estimates

and measures relevant for economic analysis lack robustness to both the starting values and the

optimization algorithm used by the econometrician.

These results underline the importance of verifying both the first- and second- order condi-

tions for a local optimum, as well as highlight that researchers will often have to choose among

local extrema. Choosing among local extrema is not trivial for a variety of reasons. First,

if the true parameter vector achieves the global extremum, then proofs of consistency require

the researcher to find the global extremum associated with the sample. Unfortunately, there

is no guarantee that one of the local extrema is the global one. Second, there are cases where

the global extremum may not be consistent with little or no statistical guidance as to which

of the local extrema is the consistent one (see Amemiya, 1985). Many consistency proofs are

local in nature; they may say little about the behavior of the objective function outside of this

neighborhood. Finally, even in cases where the global extremum is the consistent root and

we are convinced we have uncovered it for our sample, this root may not remain the global

extremum as the sample changes or grows. The possibility of such a “horse race” implies that

reported standard errors may misrepresent the true uncertainty regarding parameter estimates,

since typical published standard errors ignore issues of multiple extrema and the possibility of a

horse race. Our results suggest that the process a researcher undertakes to estimate the model

can have large effects on the economic consequences of the estimates.

Admittedly, our warnings are not novel; although, our empirical documentation of their

importance may be. The difficulties of uncovering the global extremum of a nonlinear objective

function are widely known and even discussed in first-year econometrics courses. However, to

our knowledge, these difficulties have not been publicized to the extent that they should, at

least in economics. As a profession, we rarely discuss the processes a researcher has undergone
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to find the candidate set of parameters and how the conclusions of the paper change under

alternative sets of parameters; gradients and Hessian eigenvalues are almost never reported.

The purpose of this paper is to convey that an “exhaustive” optimization exercise and clearly

documenting the estimation process are as important to the conclusion of an empirical study

as the identification strategy adopted by the econometrician.

We draw our examples from a specific class of discrete-choice demand models for differ-

entiated products which have been particularly popular following the seminal work by Berry,

Levinsohn and Pakes (1995) (henceforth BLP). The BLP-type random coefficient logit model

allows for more realistic substitution patterns across products compared to the simple logit or

nested logit. Consumer heterogeneity exists not only through a mean-zero logit term, but also

through variation in willingness to pay for particular attributes of the products under consid-

eration. Faced with a price change in their most preferred good, consumers are more likely to

switch to the ones with similar attributes.

Answers to a variety of economic questions use the BLP framework. Estimation of market

power, merger analysis, examining the effects of international trade policies and new product

valuation, to name a few, have extensively drawn their conclusions based on estimation of

BLP-type demand systems.1 More recently, the analysis of dynamic purchase decisions, such

as those associated with durable goods or inventories, rely on BLP-type of models as their

starting point.2

Estimation of a BLP-type model is a non-trivial optimization problem, even in a low-

dimension parameter space. This is primarily due to the highly nonlinear nature of the struc-

tural error inferred by equating observed to estimated market shares of the products under

consideration combined with the empirical approximation of the structural error used in esti-

mation. To highlight these difficulties, we use two different data sets: the data from BLP and

Nevo (2000).3

1New good valuation (Petrin [2004]), Trade Policies (BLP [1999]), Mergers (Nevo [2001a, 2001b]), Construc-
tion of price indices that account for quality changes and product introductions (Nevo [2003]).

2For dynamic extensions of the BLP model see, for example, Melnikov (2004), Hendel and Nevo (2006),
Gowrinsankaran and Rysman (2006) and Hu and Knittel (2007).

3In reported results, we have also analyzed two simulated data sets, where we vary the number of random
coefficients. We find similar results as those reported for the realworld data, although the issues are certainly less
pronounced. The simulated data sets offer the comfort of a known data generating process; the non-simulated
data sets are indicative of the real world challenges.
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For each data set, we analyze ten different algorithms using 50 different starting values for

each algorithm; that is for each data set we estimate the model 500 times. All algorithms

are prone to uncover local minima, saddles and to converge at regions with non-zero gradients.

The parameter estimates across the local minima and converged points vary greatly both within

and across algorithms; more importantly, the variation in parameter values is also economically

important. Elasticity estimates can vary by two orders of magnitude across the sets of esti-

mates implied by different algorithm-starting values pairs. The interquartile ranges of a given

product’s own-price elasticity often do not overlap across the different algorithms. Even when

we focus on the set of starting values that yields the lowest objective function value within each

algorithm across the 50 sets of starting values, the estimated own-price elasticities may vary by

an order of magnitude. We find greater variation for estimated cross-price elasticities.

The variation across algorithms that exists even when we employ 50 starting values makes it

is clear that a “multi-start” approach to estimation (see, Andrews [1997]), where the researcher

uses a single algorithm but many starting values, is not a sufficient estimation strategy, even

when the researcher tries fifty starting values. For the two real-world data sets, we find that one

algorithms does not find our “global” minimum across both data sets; algorithms that perform

well for one data set, may perform very poorly in another.

To further highlight the importance of these issues, we analyze the welfare consequences of

hypothetical mergers. The differences can have equally large effects on the estimated consumer

welfare consequences of a merger; in short, we find anything is possible, from nearly no effect on

consumers to large welfare consequences. Again, this is true even when we estimate the model

50 time for each algorithm and select the best across these 50 starting values.

We stress throughout the paper that the variation we uncover due to multiple extrema is

not captured in typical standard error estimates. Reported standard errors are a function of the

curvature of the objective function at the local extremum and do not account for the presence

of multiple extrema. If consistent estimation requires finding the global minimum and multiple

extrema exist, the small sample global minimum may change as the sample changes. While

this is beyond the scope of the paper, we speculate that this may generate confidence intervals

that are disjoint; at the very least they would be functions of these other local minima.

Part of the variation that we find is also due to the objective function being relative flat
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in some regions of the parameter space. This leads to algorithms stopping at multiple places

around a local extremum. Reported confidence intervals will account for some of this, but not

all. For one, the weak identification literature suggests that “standard” standard errors may

be biased. Second, if algorithms are prone to stop prior to reaching the true extremum, then

reported confidence intervals will not be centered correctly. Therefore, while the confidence

interval may be wide, it will not represent the true confidence interval given the sample.

This paper is related to a small literature analyzing nonlinearities in econometric objective

functions. The spirit of our paper is closest to McCullough and Vinod (2003) which illustrates

the potential problems associated with finding the solution to a maximum likelihood estimator.

The authors have four recommendations for researchers: examine the gradient, the solution

path, the eigensystem and the accuracy of the quadratic approximation. While we do not

focus on standard error calculations, hence do not emphasize the fourth, we illustrate that

verifying the first- and second- order conditions are paramount. McCullough and Vinod also

call for a more through analysis of the eigensystem, focusing on the condition number, the

ratio of the largest to smallest Hessian eigenvalue. A large condition number may indicate

an ill-conditioned Hessian, suggesting inaccurate results. While Shachar and Nalebuff (2004)

and Drukker and Wiggins (2004) ultimately showed that some of the claims regarding the

specific empirical application from McCullough and Vinod were unwarranted, their general

point remains; applied researchers should more thoroughly analyze their proposed solutions

and report this analysis. In our view this advice has been largely ignored.

Unlike McCullough and Vinod, our goal is not to address the accuracy of specific published

results; our paper is not a replication or validation exercise. Our hope is that this work will

move the profession in the direction of discussing some of the issues and difficulties related to

estimating nonlinear models. We focus on one class of models, but believe a number of our

messages apply to nonlinear models in general.

The paper is also related to a literature chronicling some negative properties of GMM

estimators; although we do not work out the econometric theory behind our empirical results.

A number of papers have documented that GMM estimators in over-identified models may

exhibit substantial biases.4 In addition, when instruments are either weak or many, the criterion

4See, for example, Hansen, Heaton and Yaron (1996), Altonji and Segal (1996), Burnside and Eichenbaum
(1996) and Pagan and Robertson (1997).
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function may exhibit regions of plateaus or ridges. This is consistent with some of our results

since, in practice, nonlinear search algorithms may “get stuck” at different points on these

plateaus.5 Finally, because over-identified models require an estimate of the moment weighting

matrix, researchers often rely on a two-step estimator for the weighting matrix. The weighting

matrix in the first step is some positive definite matrix, which yields consistent but inefficient

parameter estimates. The second-step weighting matrix uses the consistent estimates from

the first step to form the final weighting matrix. Given that the initial weighting matrix is

somewhat arbitrary, results may differ across researchers.

2 The Model and Estimation

The starting point of the BLP-type demand model is an indirect utility function. A consumer

i derives utility from a product j in market t:

uijt = xjtβi − αipjt + ξjt + εijt (1)

where pjt is the product’s price, xjt is a vector of product characteristics, other than price, and

ξjt is the unobserved (to the econometrician) product characteristics of product j, (e.g., after-

sale services or unobserved advertising, etc.). The εijt term captures unobserved heterogeneity

in consumers’ tastes.6 Consumer heterogeneity is also captured by the individual-specific co-

efficients associated with the price and other observed characteristics, which may be written

as: "
αi

βi

#
=

"
α

β

#
+ΠDi + Σvi, Di v P ∗D (D) , vi v P ∗v (v) , (2)

where Di is a vector of demographic variables, vi is a random variable capturing other non-

observable characteristics of the consumer and Π and Σ are matrices of parameters. The values

of Π measure the importance of the demographic variables in shaping preferences, “observed

variation”, while Σ captures “unobserved” variation in preferences. Demographics were intro-

duced in Nevo’s work (e.g., Nevo [2001]); BLP captured heterogeneity only through the vs.

5See, for example, Angrist and Kreuger (1991), Bekker (1994), Bound, Jaeger and Baker (1995), Staiger and
Stock (1997), Stock and Wright (2000) and Stock, Wright and Yogo (2002).

6This specification ignores income effects, which may be important depending on the application.
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Finally, to close the model, one typically includes an outside good with associated utility set

to zero, a normalization that is without loss in generality because only relative utilities are

identified.

Following Nevo (2000), we decompose the expression in (1) into a component that is common

across all consumers and a component that highlights their heterogeneity:

uijt = xjtβ − αpjt + ξjt| {z }
δjt(xjt,ξjt;θ1)

+
KX
k=1

Dikπk +
KX
k=1

vikσk| {z }
μijt(xjt,vi;θ2)

+ εijt = Vijt + εijt (3)

Here we also split the parameters into those associated with the linear portion of utility, θ1

and those associated with the nonlinear portion of utility, θ2. Consumers purchase the product

that yields the highest utility among the products available. The purchase decisions are limited

to a single product. The set of consumers that purchase product j is given by:

Ajt (xjt, δjt; θ2) = {(vi, εi0t, ..., εiJt) |uijt ≥ uilt,∀l 6= j} (4)

Therefore, the market share for product j is the probability that Ajt obtains, which under

appropriate independence assumptions may be expressed as:

sjt (xjt, δjt; θ2) =

Z
Ajt

dP ∗ (D, v, ε)

=

Z
Ajt

dP ∗ (ε|D, v) dP ∗ (v|D) dP ∗D (D) =
Z
Ajt

dP ∗ε (ε) dP
∗
v (v) dP

∗
D (D) (5)

For the purpose of estimation, distributional assumptions for ε, v and D are necessary. The

vast majority of the literature assume Extreme Value and standard normal distributions for

ε and v, respectively. Nevo (2001) draws demographics from the empirical distribution of the

Current Population Survey as opposed to a parametric distribution.

Estimation follows Berry (1994). For a given θ2, there is a vector of mean utilities, δ,

that equates implied market shares with actual market shares. We can then decompose this

vector of δs into the mean level of observed quality, xβ − αp, and unobserved quality, ξ.
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Unobserved quality becomes a “GMM-like” structural error term and the econometrician can

readily handle endogenous characteristics. Endogeneity of at least a subset of characteristics is

an issue because unobserved quality is known to the firms and consumers. Therefore, we would

expect any product characteristic that is easily adapted, such as price, to be correlated with

our structural error term.7

Formally, if we define θ = (θ1, θ2), the structural error term is a function of θ. Given an

appropriate set of instruments, parameter estimation is a GMM problem, with the parameter

vector θ solving:

θ̂ = argmin
θ

ξ (θ)0 ZΦ−1Z 0ξ (θ) , (6)

where Φ is a consistent estimate of E [Z 0ξξ0Z]. Given the presence of the logit term, estimates

is aided by explicitly integrated out the ε, yielding:

sjt (xjt, δjt, Pns; θ2) =
1

ns

nsX
i=1

sijt (7)

sijt (xjt, δjt, Pns; θ2) =
exp

h
δjt +

PK
k=1 x

k
jt

¡
σkv

k
i + πk1Di1 + ...+ πkdDid

¢i
1 +

PJ
m=1 exp

h
δmt +

PK
k=1 x

k
mt

¡
σkvki + πk1Di1 + ...+ πkdDid

¢i
The individual market shares sijt are functions of δjt and θ2 only. More precisely, for a given

θ2, there is a δjt that equates observed market shares with predicted market shares for all j

and t. The difference between the δjt and xjtβ defines the structural error term:

ξjt = δjt (St; θ2)− xjtβ (8)

Ideally, we would obtain analytical expressions for δjt; however, the highly nonlinear nature of

the market share function makes this infeasible. BLP’s estimation strategy is to numerically

solve for the vector δ that equates observed and predicted market shares. BLP shows that these

can be found by a contraction mapping, for which the hth iterate is given by:

δ
(h+1)
.t = δ

(h)
.t + lnS.t − lnS (x.t, δ.t, Pns; θ2) (9)

7In principle, if the ξ terms are serially correlated we might worry about other characteristics to also be
endogenous. For example, if Ford vehicles have a history of being unreliable, Ford may endogenously change
their engine characteristics.
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The empirical solution to this fixed point yields an empirical approximation of the nonlinear

market share function used for estimation.

Estimation requires a nonlinear search to find θ1 and θ2 that minimizes the GMM criterion

function in (6). Because the structural error term is linear in θ1, estimation is aided by “condi-

tioning out” θ1 and searching only over δ and θ2. In more detail: a new iterate of θ2 gives rise

to a new vector of mean utilities δ, which implies a new iterate for θ1. The new iterate for θ1

is derived by means of a linear instrumental-variable approach.

3 Computer Code and Search Algorithms

For our optimization exercises, we adapted the code used by Nevo (2000a), written in the

Matlab matrix language developed by Mathworks.8 For a given set of starting values, a few

lines of the main body of the code used by Nevo had to be altered to accommodate the setup of

the search algorithms used. The bulk of the changes automate loops through 50 starting values

and ten algorithms. Given an algorithm, we required a set of starting values and stopping

rules. Convergence to a stationary point was declared on the basis of gradients and Hessian

eigenvalues, once the algorithm under consideration was terminated according to the stopping

rules.

The starting values for the mean utility vector δ are the fitted values of a simple logit

after adding draws from a zero-mean normal distribution with a standard deviation equal to

the standard error of the logit regression, thereby representing the regression error plausibly

obtained by a given researcher. For the vector of coefficients θ2 of variables entering the non-

linear part of the utility function in (3), we use draws from a standard normal distribution; this

represents the fact that little is known about the magnitude of θ2 a priori.

In unreported results, we have increased the variance associated with the mean utility

starting values; our conclusions are magnified. We restrict ourselves to a small region of the

parameter space because our goal here is not to uncover all of the local extrema, but rather

to analyze the range of possible estimates different researchers may obtain, given reasonable

search methods, using the same data and the same model.

8Available at http://www.econ.ucdavis.edu/faculty/knittel/
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We employ ten search algorithms that are either derivative-based or direct-search methods.

The former utilize some information about the steepness and the curvature of the objective

function. The latter are based on function evaluations and are divided into deterministic and

stochastic depending on whether or not they include a random component in their searches.

All the algorithms are coded in Matlab. The codes for five of the algorithms are part of the

Mathworks Optimization and Genetic Algorithm and Direct Search (GADS) toolboxes. The

codes for the remaining algorithms are publicly available from their authors.

Two of our derivative-based algorithms are quasi-Newton, while a third is a conjugate gra-

dient. Judd (1998) and Miranda and Fackler (2002) discuss extensively quasi-Newton methods.

Judd and Venkataraman (2002) outline the ingredients of a conjugate gradient algorithm in a

very informative way. The codes for the quasi-Newton algorithms are available in theMathworks

Optimization Toolbox and on the website maintained by Hans Bruun Nielsen, respectively.9 The

code for the conjugate-gradient algorithm is also available on the website maintained by Hans

Bruun Nielsen. Alexei Kuntsevich and Franz Kappel provide code for our last derivative-based

routine based on Shor’s r-algorithm that comes form the constrained optimization literature

taking into account constraints with the method of exact penalization.10 Burke et al. (2007)

provide a compact self-contained discussion of Shor’s r-algorithm (see Kappel and Kuntsevich

[2000] for additional details).

Our four deterministic direct-search algorithms are all part of the Mathworks Optimization

and GADS toolbox. They include an application of the Nelder-Mead simplex, the Generalized

Pattern Search (GPS), and the Mesh Adaptive Direct Search (MADS). We refer to Lagarias et

al. (1998) for the mechanics of the Nelder-Mead simplex. Torczon (1997) provides a detailed

description of the GPS. Material related to MADS, a generalization of the GPS algorithm, is

available in Audet and Dennis (2006).

Our stochastic direct-search routines include genetic algorithms and a simulated annealing

algorithm. The codes for the genetic algorithms are provided in the GADS toolbox and on the

website maintained by Michael Gordy.11 Our simulated annealing code is our translation of

the code originally developed for the Gauss matrix language by E.G. Tsionas available at the

9Available at http://www2.imm.dtu.dk/~hbn/Software/
10Available at: http://www.uni-graz.at/imawww/
11Available at: https://www.federalreserve.gov/research/staff/gordymichaelx.htm
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Gauss archive of the American University.12 We refer to Dorsey and Meyer (1995) and Goffe

et al. (1994) for a compact discussion of the genetic and simulated annealing algorithms in the

context of econometrics, respectively.

In the results section of the paper, we refer to the ten algorithm we used following the

sequence that they were described above as: Quasi-Newton 1, Quasi-Newton 2, Conjugate

Gradient, Simplex, GPS, MADS, GA Matlab, GA JBES, Simulated Annealing and SolvOpt.

We experimented with a number of stopping rules for the various optimization algorithms

we employed. For the majority of the algorithms, termination was dictated by the change in the

objective function and the parameter vector (in some norm) between two consecutive iterations

of an algorithm on the basis of a specified tolerance, and/or the number of function evaluations.

We used a tolerance of 1E-3 and an upper bound on function evaluations equal to 4,000. Once

again, we distinguish between the notions of termination as dictated by the stopping rules and

convergence due to meeting the tolerance.

The variation across algorithms in the use of convergence criteria in forming stopping rules is

something that we would like to stress; how these rules are used varies across algorithms. As an

example, it took us several rounds of e-mail exchanges with Mathworks before we find out how

the tolerance settings for the objective function and the parameter vector are used to determine

the termination of its quasi-Newton and the simplex optimization routines. The alternative

route to retrieve this information was through cross references in numerous highly convoluted

Matlab routines. Future versions of the paper will include a more thorough description of each

algorithm.

Imposing an upper bound on the number of function evaluations was largely dictated by the

use of direct-search algorithms, notably the Nelder-Mead simplex algorithm, which repeatedly

appeared to “stall”: it continued to move in a small neighborhood of the parameter space,

without appreciable changes in the objective function. As an example, for the first set of

starting values used with the BLP data set the simplex algorithm did not improve upon the

value of the objective function by more than 1E-3 after the first 60 iterations that required 157

function evaluations for the next 7,843 function evaluations.13 However, because the diameter

12Available at: http://www.american.edu/academic.depts/cas/econ/gaussres/optimize/optimize.htm. The
Matlab code is available from the authors upon request.
13We capped the number of function evaluations at 8,000 in this example.
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of the simplex was never less than 1E-3, convergence is never achieved.

In what follows, we assume a simplex algorithm has converged if the objective function

remains unchanged to the third decimal point for at least 200 iterations (which typically cor-

respond to over 800 function evaluations). The bulk of our reported results are broken up by

algorithm, so the reader can see that this assumption does not change the conclusions.14 For the

remaining algorithms, we focus only on those sets of starting values that meet our convergence

criteria and omit those results that are bound by the function evaluation constraint.

4 Results using Real-world Data

In this section, we summarize our demand estimation results using the ten optimization algo-

rithms described above for two real-world data sets. The first consists of the data on automobile

sales used in BLP. The second is the cereal data used in Nevo (2000a). Much of our motivation

for the use of these data was due to the fact that they are publicly available. We are also in

the process of analyzing simulated data.

In the case of the cereal data, our specification of the demand equation is the one used by

Nevo. In the case of the automobile data, our specification of the demand equation is slightly

different from the one used by BLP; for example, we have no interaction between price and

income and a smaller number of automobile characteristics with random coefficients. Recall

that we do not attempt any sort of replication or validation of the optimization approaches

followed by any of the authors.

We present results with respect to the value of the GMM objective function, parameter esti-

mates, own- and cross-price elasticities. We also check how the variation in parameter estimates

affects our conclusions regarding the welfare effects of two hypothetical merger exercises: one

for each data set. We focus only on the sets of starting values for which the various algorithms

converged. Within each of the ten search algorithm, we define the “best” set of parameters as

the set that minimizes the GMM objective function across the 50 sets of starting values. We

14This is why some have recommended that researchers begin with a Simplex method and then switch to a
quasi-Newton method when the simplex method has “stalled.” If we were to adopt this strategy, we are confident
that each of the reported Simplex results would then converge after switching to the Quasi-Newton algorithm.
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define, the “best of the best” set of parameters is the set that minimizes the GMM objective

function across all 500 combinations of starting values and optimization algorithms. Our defi-

nition of best is admittedly somewhat arbitrary because the consistency proofs may be local in

nature.

We start by analyzing the range of the GMM objective function values implied by the sets

of starting values for the parameters that allowed the algorithms considered to converge; we

spend little time on these since they are difficult to interpret. Figures 1 and 2 are whisker plots

of the GMM values across parameter starting values and algorithms.15 We truncate the GMM

values at their 90th and 75pth percentiles for the automobile and the cereal data, respectively.

The GMM values fluctuate substantially across starting values even within an algorithm. Such

a finding is not surprising. In fact, many researchers often try more than one starting value.

However, the GMM values also vary widely across algorithms, even when we focus only on

those GMM values implied by the best set of parameters.

For the automobile data, the lowest value of the GMM objective function for each of the

ten algorithms lies between 99.90 and over 35,000 for those starting values of the parameters

that allowed the algorithms to converge. The number of parameter staring values that led

to convergence is 350. The range of GMM values implied by the best sets of parameters is

between 99.90 and 230.23. Only the MADS algorithm gave rise to a GMM value equal to 99.90

even after using 50 starting values for each algorithm. For the cereal data, the GMM values

lie between 4.56 and 530.12, if we focus only on the best set of parameters for each algorithm.

Once we consider the entire set of parameter staring values that implied convergence, the range

of the GMM values is between 4.56 and 2,241.51. Convergence was achieved for 301 of the sets

of parameter starting values.

One interesting finding in our extensive optimization exercise is that different algorithms

uncover the best of the best set of results across the two data sets. For the cereal data, SolvOpt

finds the global minimum across all 50 starting values, which we believe to be above the typical

number of parameter starting values employed in the majority of the empirical exercises in

15The box represents the 25th and 75th percentiles with a median line. Whiskers extend from the box to the
upper and lower adjacent values and are capped with an adjacent line. The upper adjacent value is the largest
data value that is less than or equal to the third quartile plus 1.5× IQR and the lower adjacent value is the
smallest data value that is greater than or equal to the first quartile minus 1.5 × IQR. Dots represent values
outside these “adjacent values”.
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economics. For the automobile data, SolvOpt is dominated by MADS. Therefore, it is not

enough for researchers to use multiple starting values and one algorithm, even when they use

as many as 50 starting values. For an exhaustive nonlinear search, researchers will need to use

multiple starting values, at least 50, and multiple algorithms. As we will show below, even 20

different sets of starting values and ten algorithms may not be enough.

Focusing only on the value of the GMM objective function may be misleading. If the objec-

tive function is steep around the true parameter values, a local minimum may yield parameter

values that are close to the true values, but have an objective function value that is very dif-

ferent. Therefore, we focus on the economic meaning of the variation in parameter estimates.

Tables 1 and 2 report the best set of parameter value across algorithms for the automobile

and cereal, respectively. The variation in parameter values across the different algorithms sug-

gests economically meaningful differences. For example, for the automobile data, the absolute

value of the coefficient associated with the log of price ranges between 0.57 and 0.90; sometimes

the mean marginal utility for horsepower is positive, while other times it is negative. In the ce-

real data, the coefficient associated with price lies between 17.77 and 62.72 (in absolute value),

although the presence of interaction terms may make this variation somewhat misleading. The

parameter values associated with the interaction term of price and income vary between -0.07

and 588.56.

Furthermore, all of the parameter values seem “reasonable.” This is important because if

only the parameter values associated with the best of the sets of results seemed reasonable,

the researcher may continue to search until he or she found this minimum. For example, if all

but one of the sets of parameters yielded upward sloping demand curves, this would provide an

economic justification for choosing among the candidate set of results.

Taken alone, even the parameter values can be difficult to interpret because monotonic trans-

formations of a particular set of parameters may yield similar behavior and price/demographic

interactions make interpretation difficult.16 To gauge the economic significance of the differ-

ent parameter values, we construct a variety of often-used functions of these parameters. We

focus on three measures: own- and cross-price elasticities, as well as welfare calculations from

16While fixing the variance of the logit error term allows us to identify the parameters, proportional increases
in the remaining parameters are likely to yield similar substitution patterns.
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hypothetical mergers. Analyzing implied price-cost margins we drew largely similar conclusions.

4.1 Own-Price Elasticities

The number of elasticities that we estimate is rather immense. Each data set has over 2,000

product and market combinations. Every combination of parameter starting values and opti-

mization algorithm yields an elasticity matrix for each market. In the case of the cereal data

there are 94 market with 24 products in each market leading to 2,256 market and product

combinations. Each of the 500 pairs of parameter starting values and algorithms implies an

elasticity matrix of dimension 24× 24 for each of the 94 markets. In the case of the automobile
data, there are 20 markets, which may have as many as 150 products, for a total of 2,217

product and market combinations.

To keep the discussion of the own-price elasticity estimates manageable, we begin by focusing

on four products for each of the data sets. These four products have a market share that

corresponds to the first, second, third and fourth (maximum) quartiles of distribution of market

shares. For the purpose of the discussion below, we refer to these products, as products 1 (1st

quartile), 2, 3 and 4 (max), respectively. Subsequently, we provide kernel density plots of the

own-price elasticity estimates for all products.

When we discuss elasticity estimates for the four products, we present results for all starting

values that allowed convergence, as well as for the best set of parameter values for each algo-

rithm. When we present elasticity estimates for all products we focus only on the best set of

parameter values for each algorithm. Recall that we define as best the set of parameter that give

rise to the minium GMM values for the algorithm under consideration. Holding the algorithm

fixed, but looking across starting values, illustrates the importance of trying multiple starting

values. Variation across the best set of results for each algorithm stresses the importance of

trying multiple starting values in combination with multiple algorithms.

In the presence of a globally convex objective function the elasticity estimates for a specific

product would be the same across all sets of starting parameter values that implied convergence.

Furthermore, if the nonlinear search problems were mild enough such that trying many starting

values would suffice to overcome them, the distribution of the estimated elasticities would
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be identical across the ten best sets of estimates. The amount of variation in the estimated

elasticities gauges our concerns for the optimization method employed in our demand estimation

exercise.

4.1.1 Automobile Data

Table 3 lists the own-price elasticity estimates for the products with market shares that corre-

spond to products 1 through 4, as defined in the previous section, across all algorithms. For

each algorithm, we report the range of own elasticities associated with those starting values

that permitted convergence. The table also includes elasticities implied by the best set of pa-

rameters for each algorithm. Recall that MADS achieved the lowest GMM value. Because the

JBES genetic algorithm never converges, we omit discussion of the implied elasticities.

The variation in the estimates of the utility parameters affects the own-price elasticity

estimates for each of the four products significantly. If we focus on parameter staring values

that implied convergence, the own-price elasticity for product 1 varies between -10.11 and

0.12. If we believed a researcher would not trust the positive own-price elasticity, the range is

between -10.11 and -1.78, a difference of over 500 percent. The other three products exhibit even

larger variation. The elasticity estimates for product 2 lie between -20.46 and -0.26. Moving to

products 3 and 4, the corresponding ranges are -12.67 to -0.19, and -16.89 to -0.38, respectively.

To get a feel for whether these extremes are outliers, Figure 3 plots the histogram of elastic-

ities for the 350 parameter starting values that permitted convergence. The figure also reports

the “true” elasticity, where the truth is defined as the elasticity associated with those parameter

values that yield the lowest value for the GMM objective function. For all four products, the

truth lies outside the modal bin, and can be very far from the mode. Furthermore, in each

case, a significant amount of the distribution falls outside what would appear to be reasonable

variation in the estimates. We admit that given these differences do not represent sampling

variation, one could argue that reasonable variation is no variation.

Another way to summarize our findings is to calculate the standard deviation of the own-

price elasticity for each product-market combination for each of the 350 sets of parameter

starting values that allowed convergence. Ideally the distribution of these standard deviations
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should be degenerate with a mass at zero. The mean of this standard deviation is 4.25, its

median is 3.07, while the 25th and 75th percentiles are 2.52 and 3.64, respectively. To put these

numbers in context, the mean elasticity is -3.66.

Next, we focus on the best set of parameter starting values for each algorithm. This mimics

cases where ten researchers opt for a particular algorithm and use 50 different starting values.

The variation remains substantial. For product 1, elasticities vary by more than 100 percent,

from -6.38 to -2.54. The other three products exhibit smaller, but still economically meaningful,

variation: -5.45 to -3.20 (product 2), -7.14 to -4.37 (product 3), -4.64 to -3.95 (product 4). The

mean within-product-market standard deviation among the best set of parameter starting values

is 0.84 representing 23% of the mean elasticity.

Finally, we turn to summaries of the entire set of own-price elasticities. Figure 4 plots kernel

density estimates for the best set of parameters for each of the ten algorithms. Again, absent

nonlinear search problems, we would expect the lines associated with the kernel densities to lie

on top of each other; they do not. We should also note that these densities are likely to mask

meaningful variation in the elasticities across algorithms because it is possible to change the

elasticity of specific products without changing the distribution. The densities exhibit large

fluctuations, with the true density appearing on one extreme. The JBES genetic algorithm

never converges, so we do not place much weight on this algorithm, but the remaining nine

algorithms that do converge, do so at different points in the parameter space.

Much of our discussion above is consistent with a hypothetical setup of ten researchers

using 50 different sets of starting values, but a single algorithm, to solve the same optimization

problem. We speculate that many researchers do not try 50 distinct sets of starting values most

of the times. We have often heard researchers arguing that their estimation process can take

weeks to converge. An estimation exercise that requires computation time worth of a week,

using a single computer would imply almost an entire year to try 50 different sets of starting

values, in the absence of parallel processing. Furthermore, it seems to be the case that the

more complex the model, the larger the number of starting values that the researcher should

employ. This, of course, is unfortunate because computation time and complexity are positively

correlated, implying the more complex the model the more starting values a research should

try.
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To understand the importance of trying many starting values, we replicate the own-elasticity

density plots for all products assuming a researcher using only the first 20 of our starting values.

These results are plotted in Figure 5. The “truth” is never found. Ironically, the variation across

algorithms, with the exception of the simulated annealing, is smaller using only 20 starting

values. This smaller variation is somewhat misleading because the GMM objective function

can only be improved by trying additional starting values, suggesting fewer starting values may

give researchers a false sense of security.

4.1.2 Cereal Data

In general, our findings regarding own-price elasticities for the cereal data are more robust,

although we would argue the variation is still economically significant. Table 4 reports the range

of possible own-price elasticity estimates for four products. We maintain the nomenclature for

product identification that we developed in the previous sections discussing results associated

for the automobile data set. For product 1, the range of elasticities across all sets of parameter

associated with convergence is between -5.77 and -0.42. For product 2, focusing only on the

negative values of elasticities, the range is -17.97 to -1.71. The range for products 3 and 4 is

-7.51 to -0.01, and -2.46 to -0.01, respectively. Assuming a researcher tries 50 starting values, a

single algorithm and reports the results from the best set of parameters, the range is still large,

range from -4.43 to 2.93, -13.08 to -2.62, -2.92 to -1.09 and -1.99 to -0.77 for products 1, 2, 3

and 4, respectively.

The mean standard deviation of the elasticity estimates for a given product-market combi-

nation, is 0.82 among estimates associated with convergence, while the mean elasticity is -3.58.

Using a normal approximation, this suggests that 34 percent of the time the own-price elastic-

ity will vary by over 20 percent. Interestingly, although the four specific products exhibit less

variation compared to the automobile data, their within product-market combination standard

deviations are similar.

Histograms of own-price elasticities are provided in Figure 6. Largely because of two algo-

rithms, the truth always lies in the modal bin. As noted above, SolvOpt finds the truth for each

of the 50 sets of starting values and quasi-Newton 2 does for 32 of 50 sets of starting values.

Because we are unaware how often these algorithms are used, we also provide histograms using
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only the remaining six algorithms that exhibited convergence. Omitting SolvOpt and Quasi-

Newton 2 changes the shape of the histograms considerably. The remaining algorithms rarely

find elasticities economically near the “true” elasticity.

The kernel densities of own-price elasticities across all products for each of the best set of

parameters are plotted in Figure 8. We see large shifts in the distribution of elasticities across

algorithms, although not as dramatic as with the automobile data set, especially among those

algorithms that converged (simulated annealing and the genetic algorithms did not converge).

Given that the results from the individual product estimates and the standard deviations suggest

that for a given product the variation can be considerable, these densities are likely hiding

meaningful variation. This is corroborated by the within product-market standard deviations

discussed above.

4.2 Cross-Price Elasticities

In some respects, analyzing cross-price elasticities is more important than own-price elasticities

because the random coefficient logit is designed to provide more appealing substitution patterns

than the simple and nested logit models. The number of cross elasticities is even more immense

when compared to the number of own elasticities. The are over 230,000 cross elasticities in

the automobile data and over 50,000 in the cereal data. As with our analysis of own-price

elasticities, we first focus on four specific product and then include densities for a large number

of elasticities. The product-specific analysis requires choosing a cross-product. We choose the

product that is the closest substitute using the parameter values that achieve lowest value of

the GMM objective function.

In principle our density plots can include all of the estimated cross elasticities; however, we

have found that the density plots of the entire set of cross-price elasticities hide meaningful

variation in the estimated elasticities, as the following example illustrates. Suppose we are

interested in the cross elasticities of products a, b, c and d and we use ηij to denote the price

cross price elasticity of good i with respect to good j. Furthermore, assume that one combination

of starting values and optimization algorithms implies ηab = 0.05 and ηcd = 0.15, while a second

combination implies ηcd = 0.05 and ηab = 0.15. The density plots will not reveal the meaningful

variation in these cross elasticities due to the different combinations of starting values and
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algorithms. To alleviate similar problems, we focus on a subset of the cross elasticities, chosen

independent of the results, keeping this subset the same across the the pairs of starting values

and optimization algorithms. For the cereal data, we choose the product with the highest

average cross-price elasticity across all markets.

For the automobile data, this is more difficult since the products change across markets

(time periods). Our subset of elasticities is somewhat arbitrary, but we stress it is identical

across all sets of parameters. We choose our subset as follows: We first define a product

number from 1 to the JM in each market using the product numbers from the original data

sources. For each product within the market, we calculate the cross-price elasticity each of these

JM products (one of which is the own-price elasticity). For each product i in market κ, this

gives us ηκi1, ..., η
κ
ij, ..., η

κ
iJM
. We then choose the η··j which has the highest average cross-price

elasticity across all markets, κ, and products i (ignoring the own-price elasticities within this

calculation). This is identical to how we choose the cross elasticities for the cereal data, but

because the products change across markets in the automobile data, the interpretation is not

as clean.

4.2.1 Automobile Data

Similar to own-price elasticities, cross-price elasticities can differ by an order of magnitude across

the sets of parameters associated with convergence, sometimes two (Table 5). For product 1,

the cross-price elasticity with its closest substitute ranges from 0.010 to 1.33 (the entries in

Table 5 have been multiplied by 10). If we restrict ourselves to the best set of parameters

for each algorithm, the elasticity ranges by a factor of four: 0.05 to 0.21. For product 2, the

range across all parameters associated with convergence is 0.01 to 2.15; for the best set of

parameters the range is 0.08 to 0.26. Product 3 exhibits the most variation. For the set of

parameters associated with convergence, the range is 0.003 to 15. If we move to the best set

of parameters, the range becomes 0.06 to 0.20. For product 4, the ranges are 0.013 to 0.87

and 0.08 to 0.20 across all sets of parameters associated with convergence and the best sets of

parameters, respectively.

While Table 5 points to substantial variation, it is still possible that the true elasticity is

found most of the time. Figure 9 plots the histogram of possible cross-price elasticities for each
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of the four products. For visual ease, we truncate the horizontal axes of the graphs at unity.

In some ways, the results for cross-price elasticities are even more dramatic compared to own-

price elasticities. In each case, the truth is outside the mass (thick portion) of the distribution.

Furthermore, the range of this thick portion of the distribution is large; it is from almost zero

to just under 0.20 for three of the four products.

Figure 10 provides kernel density plots for the large set of cross-price elasticities described

above using the best set of parameters. As with the histograms, the best of the best set of

parameter values imply larger cross-price elasticities. This is more easily seen in the density

plots for elasticities below 0.05 (Figure 11) and above 0.05 (Figure 12). In both cases, more of

the distribution for the truth is to the right.

Finally, we calculate the within product-market standard deviation in the cross-price elas-

ticities. We calculate the standard deviation across all routines that converged and across the

best sets of parameters for each algorithm (ignoring those algorithms that never converge).

The average cross-price elasticity across the over 230,000 elasticities and those routines that

converged is 0.06. The average within product-market standard deviation in these estimates is

0.17, while the median is 0.04 with an interquartile range is 0.03 to 0.05. Therefore, it is not

uncommon for estimates to vary by plus or minus 100 percent within a given product.

4.2.2 Cereal Data

The cereal data also exhibit large variation in their cross-price elasticities. As Table 6 illustrates,

for each of the products 1 through 4, it is possible to estimate a zero cross-price elasticity, or an

elasticity that, in some cases, exceeds 1.5 (the entries in Table 5 are multiplied by 10). This is

true even when we choose the best set of parameters implied by all 50 starting values. Product

1 exhibits the smallest variation among the four products: 0.20 to 0.36. The elasticities for

product 2 lie between 0 and 0.35. For product 3, the range of elasticities is 0.07 to 0.52. Finally,

product 4 has cross elasticities that range from 0.03 to 0.21. This variation seems to be larger

than that of the automobile data.

Figure 13 shows that there is a significant mass of cross-price elasticities ranging from zero

to over 0.5, especially in cases where the truth is at the high end of the distribution. Similar
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to the own-price elasticities, the spike at the truth is driven by two of the ten algorithms.

When we omit these algorithms from the histograms, we see that we are more likely to estimate

elasticities significantly far from the truth, than the truth itself (see Figure 14).

When we plot the distribution of a large number of cross-price elasticities, as we did with

the automobile data, the cereal data appear to exhibit even more variation across the best set

of results for each algorithm (Figure 15). This finding may not be surprising given the variation

in the nonlinear parameters reported in Table 2. For example, the standard deviation of the

random coefficient term associated with price varies from 0.67 (Conjgrad) to 3.31 (SolvOpt).

The price-income interaction term varies between -0.56 and 588. These terms will drive differ-

ences in estimated cross-price elasticities. Similarly, the nonlinear parameters associated with

other characteristics also vary by over 100 percent. For example, the mushy-income interaction

term ranges from 0.75 to 2.22.

Figures 16 and 17 focus on different ranges of the cross elasticities.

The within product-market standard deviation in the cross-price elasticities show similar

patterns to the automobile data. The average cross-price elasticity across the over 50,000

elasticities and among those routines that converged, is 0.15. The average within product-market

standard deviation for these estimates is 0.50, while the median is 0.20 with an interquartile

range of 0.13 to 0.41. As a percentage of the average cross-price elasticity, this variation is

even larger once compared to the variation in the automobile data; here, it is not uncommon

for estimates to vary by plus or minus 300 percent within a given product. These ranges are

similar even among the best outcomes for each algorithm (also ignoring those best outcomes

that did not converge). The mean cross-price elasticity is 0.13, while the mean within product-

market standard deviation is 0.19, with 0.13 as the median. Therefore, even if researchers try

50 starting values, but using one algorithm, a significant amount of variation is still present.

4.3 Merger Results

Estimation of a BLP-type demand model yields a system of equations that amounts to a

matrix of price derivatives for each product. Using information on the ownership structure of

the market, a researcher can exploit the first-order conditions under an assumed conduct mode
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to yield estimates of marginal cost. For example, under static Bertrand-Nash behavior and

constant marginal costs, the first-order conditions associated with the firms’ profit-maximization

problems imply:

p−mc = Ω (p)−1 s (p) ,

where p is the price vector, s(·) is the vector of market shares and mc denotes the corre-

sponding marginal costs. The dimension of these vectors is equal to the number of the products

available in the market, say J . The Ω matrix is the Hadamard product of the (transpose) of

the matrix of the share price derivatives and an ownership structure matrix. The ownership

structure matrix is of dimension J × J, with an (i, j) element equal to 1 if products i and j

are produced by the same firm and zero, otherwise. Because prices are observed and demand

estimation allows us to retrieve the elements of Ω, marginal costs are directly obtained using

the expression in ().

A simple change of 1s and 0s in the ownership structure matrix accompanied with a series of

assumptions discussed below allows the econometrician to draw inferences regarding the welfare

effects associated with a change in the industry’s structure, as the one implied by mergers among

competitors.17 We analyze the range of possible welfare calculations for a hypothetical merger

for both the automobile and the cereal data sets on the basis of post-merger equilibrium prices.

Using the automobile data, we assume GM and Chrysler merge. In the case of the cereal data

set, we assume Kellogg’s and General Mills merge. The vector of post-merger prices p∗ is the

solution to the following system of non-linear equations:

p∗ − cmc = Ω̂post (p∗)−1 ŝ (p∗) . (11)

The elements of Ω̂post reflect changes in the ownership structure implied by the hypothetical

merger. To solve for the post-merger prices, we keep the share-price derivatives and shares at

their use pre-merger levels instead of solving the above system of non-linear equations in (11).18

Thus, we avoid dealing with issues related to the numerical instabilities of Newton routines used

in the fsolve routine of Matlab for the solution of nonlinear equations, as well as with issues

17Exercises for evaluating the welfare effects associated with the introduction of new goods are performed in
a very similar manner.
18This approximation is also discussed in Nevo (1997)
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related to potentially multiple equilibria; we have found that these issues affect post-merger

prices. Although we agree that the discussion of both issues is important, it is beyond the scope

of this paper.

With the post-merger prices in hand, we can estimate expected consumer welfare changes

due to the mergers under consideration. A consumer’s expected change in utility due to a

merger may be evaluated as the change in her logit inclusive value (McFadden [1981], Small

and Rosen [1981]). Therefore, the compensating variation for individual i is the change in her

logit inclusive value divided by the marginal utility of income. When prices enter the utility

function linearly, which holds in our case, the compensating variation is given by:

CVi =
ln
hPj=J

j=0 exp
¡
V post
ij

¢i− ln hPj=J
j=0 exp

¡
V pre
ij

¢i
αi

, (12)

where V pre
ij and V post

ij are defined in (3) using the pre- and post-merger prices. Integrating over

the density of consumers yields the average change in consumer welfare from the merger.19

4.3.1 Automobile Data

The automobile data set is a repeated cross-section of virtually all cars sold in the US between

1971 and 1990 at an annual frequency. We assume that the GM and Chrysler merger takes

place in the beginning of our sample, namely 1971. Therefore, we have an annual estimate

of the merger’s impact on prices. We report the average of the price impact across all years.

The average price change across all optimization routines that achieved convergence is $265,

with a median of $0. The average within-product standard deviation in this estimated price

change is $1,020 across all sets of parameters associated with convergence. The median of the

standard deviations is zero, given all of the zero predicted price changes and the 75th percentile

is $427. Therefore, it is not uncommon to see variation in the estimated price changes of over

100 percent.

Figure 19 plots the price change densities for each of the best sets of parameters, conditional

on a product having a price change. Large differences are observed across the distributions,

19Nevo (2000b) contains a typo in the reported formula; the paper omits the exp () operators.
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which translate into large differences in the merger effects on the consumers. Figure 20 plots the

histogram of welfare changes assuming there are 265 million consumers. Even when we ignore

uncertainty due to sample variation, the predicted consumer effects vary from near zero to over

$40 million, with a large mass above $20 million. Given that there may be no statistical or

economical way to choose among local minima, depending on which side of the merger one lies,

a compelling argument can be made on her behalf. We take some comfort observing that the

truth lies somewhat in the middle of this distribution; however, accounting for the uncertainties

with respect to non-linear search issues and sampling error implies that we may learn very little

about a given market following the merger counterfactual.

4.3.2 Cereal Data

In the cereal data, the average price change across all routines achieving convergence is 1.86

cents per serving, with a median of 1.62 cents per serving. The average within-product standard

deviation in this estimated price change is 11.04 cents across all sets of parameters associated

with convergence. Outliers drive this high mean as the median is 1.38 cents, nearly 100 percent

of the typical price change. Across the best set of parameters, the average price change is

1.76 cents. The median price change is lower (1.61) cents, while the mean and median within-

product standard deviation are 0.24 and 0.16 cents, respectively. The 75th-percentile standard

deviation is 0.32 cents. Therefore, even among the best set of parameters, it is not uncommon

to see price changes for a particular product vary by more than 50 percent.

Figure 21 plots the price change densities for each of the best sets of parameters, including

all products for which a price change due to the merger takes place. As with the previous sets of

results associated with own- and cross-price elasticities, the cereal data do not exhibit as much

variation as in the automobile data. We do, however, observe large differences in the estimated

welfare effects, especially when we omit the two algorithms that clearly outperform the others.

Figure 22 plots the histogram of welfare changes assuming there are 265 million consumers for

all algorithms. Figure 23 omits the algorithms 3 and 5. While there is considerable variation,

the results are not as striking as with the automobile data.
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5 Gradients and Eigenvalues

Any discussion of the first- and second-order conditions for a minimum has been carefully

postponed to this point. We should have probably begun our analysis with this discussion

because it would allow us to rule out certain candidate sets of parameter estimates. Our timing

of the presentation has been deliberate for a number of reasons. To the best of our knowledge,

first- and second-order conditions are rarely discussed by empirical economists in their work.

Additionally, we want to stress the point that optimization algorithms may stop at points in

the parameter space where these conditions are not satisfied. Finally, and most importantly,

for both the cereal and the automobile data sets the “global” minimum found and discussed

above does not meet these conditions.20

5.1 Automobile Data

Among the 500 combinations of starting values and optimization algorithms, 350 achieved

convergence. Among these 350 combinations, 111 have gradients for which the ∞− norm is

below 30, 92 have gradients with ∞− norm below 20 and 59 have gradients with ∞− norm

below 10.21 We realize that these are fairly lenient standards for a zero gradient, but any

∞− norm gradient cut-off will illustrate our message.

Using 30 as the∞−norm gradient cut-off, we find that only 19 of the 500 sets of parameters

corresponds to points that meet both the first- and second-order conditions. Most interestingly,

these results do not include the “global” minimum, implying that this point is not a minimum.

Despite trying 500 different starting value and algorithm combinations and having 350 of them

“converge", we know that we have not found the global minimum. Table 7 lists the values of

the GMM objective function and parameter estimates for these 19 sets of results. It would

appear that these results correspond to roughly 11 unique local minima. We note that we are

20To analyze the first- and second-order conditions, we calculate numerical gradients and hessians using the
Matlab routines fminunc.m and eig.m, respectively. Although fminunc is an optimization routine it provides
gradients and hessians as by-products.
21Among the entire set of 500 starting value and algorithm combinations, 152, 126 and 87 have gradient
∞− norm below 30, 20 and 10, respectively.
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restricting ourselves to a fairly small neighborhood of starting values; there are probably other

local minima to be uncovered if we expand this neighborhood.

Figures 24 and 25 provide kernel density plots of own- and cross-price elasticities that

correspond to the sets of parameter estimates associated with the 11 local minima. If anything,

it appears that the variation across these sets of results is even larger compared to the variation

when focusing on the best set of results for each algorithm. Figure 26 is a histogram of consumer

welfare changes from the hypothetical merger between Chrysler and GM discussed above. Again

the variation is large; the consumer welfare effects vary between -$2.13 million and -$15.35

million. Therefore, even if the a researcher was diligent and checked her first- and second-order

conditions, it is conceivable that she could converge on any one of the sets of parameters.

5.2 Cereal Data

Among the 301 combinations of parameter starting values and algorithms that implied conver-

gence, 142 have gradients with∞− norm below 30, 126 have gradients with∞− norm below

20 and 113 have gradients with ∞− norm below 10.22 Only 37 starting value and algorithm

pairs with a gradient ∞− norm below 30 meet the second-order conditions. Once again, the

“global” minimum discussed above is not a true minimum; it meets the first-order conditions,

but the associated Hessian contains negative eigenvalues. Once again, we are left knowing that

a lower point in the GMM objective function still exists.

The parameter estimates associated with the 37 local minima are listed in Table 8. It is

more difficult to point out the number of distinct local minima that these estimates represent,

so we plot the kernel densities associated with the implied own- and cross-price elasticities. The

kernel density plots of the own elasticities are suggestive of two distinct local minima (Figure

27). However, when we plot the kernel densities of the cross-price elasticities in Figure 28, there

is much more variation. Our take-away from Figures 27 and 28 is that the objective function

contains plateaus or ridges that affect cross- but not own-price elasticities.

The welfare effect of the hypothetical merger between Kellogg’s and General Mills evaluated

at the 37 sets of parameters corresponding to local minima do not exhibit the degree of variation

22Across all 500 pairs, 156 have gradients below 30, 137 have gradient ∞ − norm below 20 and 118 have
gradient ∞− norm below 10.
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we experienced with the automobile data. Figure 29 shows that the welfare effects vary by 50

percent, as opposed to over 700 percent for the automobile data set.

5.3 Discussion of Eigenvalues

Given our fairly lenient standards for zero gradient norms, an obvious concern regarding our

Hessian eigenvalue calculations is that while locally a given eigenvalue may be negative, perhaps

small movements around the point under consideration would yield positive eigenvalues. If this

were the case, for example, the lowest point for the cereal data may indeed be a minimum. In

support of this argument, parameter estimates associated with values of the GMM objective

function in the neighborhood of 14.9 have all of their Hessian eigenvalues positive. Against the

same argument, none of the 82 starting value and algorithm pairs that implied values for the

objective function around 4.56, the lowest value of the objective function we uncovered, have

all of their Hessian eigenvalues positive. The sensitivity of the Hessian eigenvalues to very small

movements around the proposed minimum is more worrisome, we would argue. This sensitivity

may also imply that certain points with a near-zero gradient norm may have all positive Hessian

eigenvalues in only a small neighborhood. Therefore, a researchers may wrongly stop at a point

that isn’t truly a minimum because her tolerance for a zero gradient is too large.

6 Conclusions

Empirical industrial organization has been increasingly relying on highly nonlinear structural

models. Researchers are often concerned about econometric issues, such as endogeneity and

the variation in the data that can, in principle, identify the parameters of interest. However,

the actual process of finding the extremum of the underlying objective function involved in

the empirical exercise undertaken is rarely discussed, and if it is, is often relegated to a terse

footnote.

In this paper, we show that an econometrician’s search for the extremum can have large

consequences on the conclusions drawn for variables of interest in economic analysis. We believe

that these issues deserve as much attention as the identification strategy. For a common class
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of demand models for differentiated products, we show that depending on the search algorithm

of the researcher, a wide range of policy implications exist. Furthermore, parameter estimates

of “converged” routines may not satisfy the first- and second-order conditions for an extremum.
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Figure 1: GMM objective values for converged algorithms using the automobile 
data. This truncates the upper 10% of the converged GMM objective values.

The box represents the 25th and 75th percentiles with a median line. Whiskers 
extend from the box to the upper and lower adjacent values and are capped with 
an adjacent line. The upper adjacent value is the largest data value that is less 
than or equal to the third quartile plus 1.5 X IQR and the lower adjacent value is 
the smallest data value that is greater than or equal to the first quartile minus 
1.5 X IQR. Dots represent values outside these “adjacent values”.
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Figure 2: GMM objective values for converged algorithms using the cereal data
This truncates the upper 25% of the converged GMM objective values. 
Algorithms 6 (JBES Genetic Algorithm) and 7 (Simulated Annealing) never 
converge. Algorithm 8 (MADS) converges twice, but at objective values above the 
75th percentile. 

The box represents the 25th and 75th percentiles with a median line. Whiskers 
extend from the box to the upper and lower adjacent values and are capped with 
an adjacent line. The upper adjacent value is the largest data value that is less 
than or equal to the third quartile plus 1.5 X IQR and the lower adjacent value is 
the smallest data value that is greater than or equal to the first quartile minus 
1.5 X IQR. Dots represent values outside these “adjacent values”.
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Figure 3: Histogram of candidate set of own-price elasticities for four products
for the automobile data. The truth is defined as the set of parameter estimates 
that lead to the lowest GMM objective value. 

The average within-product-market standard deviation in the estimated 
elasticities across all converged results is 4.25; the median is 3.08. The average 
own-price elasticity is -3.66. Among the ‘‘best’’ sets of parameter values, 
the mean standard deviation is 0.84, the median is 0.81, and the mean 
own-price elasticity is -4.11.
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Figure 4: Density estimates of the own-price elasticities across all products in
the automobile data, using the “best” set of parameters for each algorithm.

0
.2

.4
.6

.8
D

en
si

ty

-10 -8 -6 -4 -2 0
Own-Price Elasticity

Quasi-Newton 1 Simplex

SolvOpt Conjugate Gradient

Quasi-Newton 2 JBES GA

Simulated Annealing MADS

GPS Matlab GA

The “Truth”

                                 37



Figure 5: Density estimates of the own-price elasticities across all products in
the automobile data, using the “best” set of parameters for each algorithm. 
This assumes the research tries 20 starting values, instead of 50.
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The “Truth” is not found. Minimum GMM obj function is 134.7, compared to 99.9
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Figure 6: Histogram of candidate set of own-price elasticities for four products
for the cereal data. The truth is defined as the set of parameter estimates 
that lead to the lowest GMM objective value. 

The average within-product-market standard deviation in the estimated 
elasticities across all converged results is 4.42; the median is 1.88. The average 
own-price elasticity is -4.92. Among the ‘‘best’’ sets of parameter values, 
the mean standard deviation is 2.66, the median is 1.17, and the mean 
own-price elasticity is -4.86.

Truncates at -8.

Truncates at -8.
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Figure 7: Histogram of candidate set of own-price elasticities for four products
for the cereal data without using algorithms 3 and 5. The truth is defined as the 
set of parameter estimates that lead to the lowest GMM objective value. 

The average within-product-market standard deviation in the estimated 
elasticities across all converged results is 4.42; the median is 1.88. The average 
own-price elasticity is -4.92. Among the ‘‘best’’ sets of parameter values, 
the mean standard deviation is 2.66, the median is 1.17, and the mean 
own-price elasticity is -4.86.
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Figure 8: Density estimates of the own-price elasticities across all products in
the cereal data, using the “best” set of parameters for each algorithm.

For the JBES GA and Simulated Annealing algorithms, the best set of parameters 
do not meet the convergence criteria.

The “Truth”
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Figure 9: Histogram of candidate set of cross-price elasticities for four products
in the automobile data. The cross product is chosen as the product that is the 
closest substitute. The truth is defined as the set of parameter estimates that lead 
to the lowest GMM objective value. All graphs are truncated above by 1.00.
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Figure 10: Density estimates of the cross-price elasticities across all products in
the automobile data for the product that has the highest average cross-price
elasticity. These results use the “best” set of parameters for each algorithm and
truncate at zero and above at .1. 
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Figure 11: Density estimates of the cross-price elasticities across all products in
the automobile data for the product that has the highest average cross-price
elasticity focusing on the elasticities ranging from 0 to .05. These results use the 
“best” set of parameters for each algorithm. 
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Figure 12: Density estimates of the cross-price elasticities across all products in
the automobile data for the product that has the highest average cross-price
Elasticity focusing on the elasticities ranging from .05 to .1. These results use the 
“best” set of parameters for each algorithm.
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Figure 13: Histogram of candidate set of cross-price elasticities for four products
in the cereal data. The cross product is chosen as the product that is the 
closest substitute. The truth is defined as the set of parameter estimates that lead 
to the lowest GMM objective value.

These graphs truncate the larges 10 percent. 
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Figure 14: Histogram of candidate set of cross-price elasticities for four products
in the cereal data without using algorithms 3 and 5. The cross product is chosen 
as the product that is the closest substitute. The truth is defined as the set of 
parameter estimates that lead to the lowest GMM objective value.
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Figure 15: Density estimates of the cross-price elasticities across all products in
the cereal data for the product that has the highest average cross-price
elasticity. These results use the “best” set of parameters for each algorithm and
truncate at zero and above the 90th percentile. 
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Figure 16: Density estimates of the cross-price elasticities across all products in
the cereal data for the product that has the highest average cross-price
elasticity focusing on the elasticities ranging from 0 to .25. These results use the 
“best” set of parameters for each algorithm. 
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Figure 17: Density estimates of the cross-price elasticities across all products in
the cereal data for the product that has the highest average cross-price
elasticity focusing on the elasticities ranging from .25 to .52. These results use the 
“best” set of parameters for each algorithm. 
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Figure 18: Histogram of candidate set of price changes for four products in the 
automobile data. The truth is defined as the set of parameter estimates that lead 
to the lowest GMM objective value. 
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Figure 19: Density estimates of the estimated price changes following the merger
for the automobile data. These results use the “best” set of parameters for each 
algorithm and truncate at zero and above .80 percentile (roughly the 90th

percentile). 
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Figure 20: Histogram of estimated change in total welfare from hypothetical
merger using the automobile data. The range across eight “best” estimates is -4.67
to -9.94. 
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Figure 21: Density estimates of the estimated price changes following the merger
for the cereal data. These results use the “best” set of parameters for each 
algorithm and truncate below the 5th and above the 95th percentile. 

0
10

20
3
0

4
0

5
0

D
en

si
ty

0 .01 .02 .03 .04
Estimated Price Changes from Merger (Cents per Serving)

Quasi-Newton 1 Simplex

SolvOpt Conjugate Gradient

Quasi-Newton 2 GA

Simulated Annealing MADS

GPS Matlab GA

The “Truth”

                                 54



0
.5

1
1.

5
2

D
en

si
ty

-10 -8 -6 -4 -2 0
Change in Consumer Welfare (millions of dollars)

Figure 22: Histogram of estimated change in total welfare from hypothetical
merger using the cereal data. The range across eight “best” estimates is -6.16
to -7.05. This truncates the results at -10.
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Figure 23: Histogram of estimated change in total welfare from hypothetical
merger using the cereal data. The range across eight “best” estimates is -6.16
to -7.05. This truncates the results at -10.

The “truth”

                                 56



0
.2

.4
.6

.8
D

en
si

ty

-10 -8 -6 -4 -2 0
Own-Price Elasticity

Minimum 1 Minimum 2

Minimum 3 Minimum 4

Minimum 5 Minimum 6

Minimum 7 Minimum 8

Minimum 9 Minimum 10

Minimum 11

Figure 24: Density estimates of the estimated own-price elasticities for the 11
unique local minima for the automobile data. 
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Figure 25: Density estimates of the estimated cross-price elasticities for the 11
unique local minima for the automobile data. These are truncated at 0.1.
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Figure 26: Histogram of estimated change in total welfare from hypothetical
merger using the automobile data for the 11 unique local minima. The range is 
from -$‘ million to -$15.35 million.
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Figure 27: Density estimates of the estimated own-price elasticities for the 37
local minima for the cereal data. These are truncated at 0.1.
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Figure 28: Density estimates of the estimated cross-price elasticities for the 37
local minima for the cereal data. These are truncated at 0.52 (90th percentile).
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Figure 29: Histogram of estimated change in total welfare from hypothetical
merger using the cereal data for the 37 local minima. The range is from -$10.00
million to -$15.50 million.
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