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1 Introductory Remarks
• In the last few weeks, you studied the Solow model in great details. The Solow model is a very

important tool to understand the determinants of long term growth. It’s main conclusion – that
long term growth in standards of living across countries and over time cannot be accounted for
simply by the accumulation of physical capital– is a key message.

• But the Solow model makes some important simplifying assumptions along the way. One
of the most striking simplification is that aggregate consumption is simply a linear function
of aggregate output, so that the fraction of output devoted to investment (=saving in a closed
economy) is also constant.

• This is really a strong assumption. An entire body of literature on consumption behavior (which
we will study in more details in the second part of this course) emphasizes that household
consumption is much more complex than simply a fixed proportion of income. In fact, Milton
Friedman in 1976 and Franco Modigliani in 1985 both won the Nobel Prize in Economics in
part for their analysis of aggregate consumption and saving behavior.

• So today, we add one layer to the model we’ve been working with: we allow households to make
optimal consumption/saving decisions at the microeconomic level, given the environment
they are facing. As a result, the evolution of the capital stock will reflect the interactions between
utility-maximizing households (supplying savings) and profit-maximizing firms (demanding
investment). In this model, the saving rate may not be constant anymore.

• This model was originally developed by Frank P. Ramsey, a precocious mathematician and
economist who died at age 26! (1903-1930).1 The original Ramsey problem was a planning
problem (i.e. the allocation of resources chosen optimally by a planner that tries to maximize
the utility of households). The model was later extended by David Cass and Tjalling Koopmans
in 1965 (in separate contributions) to a decentralized environment where households supply
labor, hold capital and consume optimally, given prices and wages, while firms rent capital,
hire labor to maximize profits, given prices and wages; and markets clear.2 The two approaches
are identical, because there are no market imperfections, so the first welfare theorem holds: the
competitive, decentralized equilibrium is a solution to the planner problem. Historically the
model is often referred to as the Ramsey-Cass-Koopmans model.

• Today we will look at the competitive equilibrium. You will see the corresponding planner’s
problem later with David Romer.

• Extending the model in this direction achieves three purposes:

1. (least important). it will provide a check on the Solow model. We want to know if the
insights from that model will survive once we allow for more complex and endogenous
saving behavior. If they did not, then we would have to conclude that the assumption of a
constant saving rate is quite important. As it turns out, we will see that in some important
way, Solow’s insights survive.

1Ramsey wrote only three papers in economic theory, all of which are foundational papers, one on subjective utility, on on
optimal taxation and one on applying calculus of variation to the question of consumption and saving. Had he lived longer, he
would have easily won the Nobel prize in Economics himself.

2Koopmans also received a Nobel prize in 1975 for his contributions to the “theory of optimal allocation of resources.”
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2. it allows us to address welfare issues. This is a major benefit of having a fully microfounded
approach: the utility of the household is well specified and can be evaluated along a number
of alternative scenarios. In the Solow model, we can only look at aggregate variables
(output, consumption etc...) but we cannot specify what is desirable from the point of
view of aggregate welfare.

3. from a methodological point of view, this allows us to introduce important new tools.
Namely, in today’s lecture we will introduce the techniques for dynamic optimization in
continuous time. These are valuable and very powerful tools. Infinite horizon (and later
Overlapping Generation) models come up in all kinds of models all over economics, so
they should be part of your standard toolkit.

2 The Ramsey-Cass-Koopmans Model

2.1 Firms
• There is a large number of identical firms, with access to a production function Y (t) =
F (K(t), A(t)L(t)) with the same properties as in the Solow model (i.e. constant returns to
scale, ∂F/∂K > 0 and ∂2F/∂K2 ≤ 0, limK→∞ ∂F/∂K = 0 and limK→0 ∂F/∂K = ∞,
and F (0, AL) = 0,∀AL).

• Technology is the same as in the Solow model and grows exogenously at rate Ȧ(t)/A(t) = g

• To simplify things a little, we assume there is no depreciation: δ = 0.

• Firms hire workers at real wage W (t) at time t and rent capital at rate r(t) to maximize profits

• Firms rebate profits (if any) to households (i.e. the owners of the firm)

• K(0), A(0) and L(0) all given and all > 0.3

2.2 Households
• There is a large number of identical, infinitely lived, households. The size of each household

grows at rate n. Denote H the number of households. Population L(t) also grows at rate n and
the size of each household is L(t)/H .

• Because each household is small, they take wages and interest rates as given.

• Each member of the household supplies 1 unit of labor inelastically (so # workers = #people
= L(t))

• Each household initially holds K(0)/H units of capital.

• Each household receives income from the following sources:

– labor income (wages of the household members),
– capital income (from renting out capital to the firms)

3Note that here, unlike in the Solow model, we have to be concerned with what happens if the households decide to consume
everything, leaving no capital behind. From that point on, the assumptions on the production function would imply that there is
no output ever again since C < 0 cannot happen. As we will see these paths are obviously not optimal.
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– profits from the firms (rebated to the households), if any.

• Each household has to decide how much to consume and how much to save (in the form of
capital accumulation).

• How do they choose between various consumption sequences? By maximizing lifetime utility:

U =

∫ ∞
t=0

e−ρtu(C(t))
L(t)

H
dt (1)

Note the various elements in this expression:

– integral of some flow utility defined over consumption per worker u(C(t)). Here, C(t)
denotes consumption per worker, so aggregate consumption is C(t)L(t).

– multiplied by the number of people in the household L(t)/H
– discounted at rate ρ.

• We specialize the flow utility u(C(t)) to:

u(C(t)) =
C(t)1−θ

1− θ
; θ > 0 ; ρ− n− (1− θ)g > 0 (2)

– θ is the coefficient of relative risk aversion, defined as −Cu′′(C)/u′(C). The coefficient
or relative risk aversion tells us how the household is going to rank different lotteries.

– θ plays another role: it is also the inverse of the instantaneous elasticity of intertemporal
substitution (IES). The intertemporal elasticity of substitution between two points in time
t and s > t is defined as σt,s = −d ln(Cs/Ct)/d ln(u(Cs)/u(Ct)). If you take the limit
of this expression as s→ t you get σ = −u′(C)/Cu′′(C) = 1/θ. The IES tells us how
willing the household is to shift consumption from one period to another.

– Here risk considerations are irrelevant since the environment is deterministic, so what
matters is the IES. A low θ means a high IES: marginal utility fall more slowly and the
household is more willing to substitute consumption over time. When θ is high, the IES
is low: marginal utility falls rapidly and the household is less willing to substitute.

– Because the coefficient of relative risk aversion is constant, these preferences are called
Constant Relative Risk Aversion, or CRRA.

– The assumption ρ − n − (1 − θ)g > 0 ensures that lifetime utility is well defined. To
see this, note that along a balanced-growth-path where consumption per capita grows at
rate g the integrand term in U grows at rate −ρ+ n+ (1− θ)g. We want that term to be
negative so that the integral converges. If this is not satisfied, the maximization problem
is not well-defined.

2.3 The Behavior of Firms
• Firms take input prices as given and choose how much labor to hire and how much capital to

rent to maximize profits π(t):

π(t) = Y (t)−W (t)L(t)− r(t)K(t)

where W (t) is the real wage and r(t) is the rental rate of capital.
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• Capital: Since firms pay a price r(t) for renting a unit of capital and there is no depreciation, they
will equate the return to capital and the marginal product of capital: r(t) = ∂F (K,AL)/∂K.
Since ∂F (K,AL)/∂K = f ′(k) where f(k) ≡ F (k, 1) and k = K/AL, firms will rent capital
up to the point where:

f ′(k(t)) = r(t) (3)

• Labor. Similar reasoning tells you that firms will hire workers up to the point where the real
wage W (t) equals the marginal product of labor ∂F (K,AL)/∂L. To express the marginal
product of labor in terms of f(.), observe that

∂F (K,AL)

∂L
=

∂

∂L
ALf(K/AL)

= Af(k)−ALf ′(k)
(

K

AL2

)
= A [f(k)− kf ′(k)]

This expression tells us that the wage per effective unit of labor w(t) ≡W (t)/A(t) satisfies:4

w(t) = f(k)− kf ′(k). (4)

f(k) = kf ′(k) + FL(K,AL)/A = kf ′(k) + w

• This expression also tells us that the firm does not generate any pure profits. This was to be
expected given that the production function exhibits constant returns to scale.

2.4 The Behavior of Households
Until now, everything was more or less straightforward. We are now gearing up to the big challenge:
how to characterize optimal consumption paths? To simplify things, let’s first normalize H to 1 (this
is without consequence).

2.4.1 The Problem that Households Face

The problem that the household solves is therefore:

max
{C(t)}

U =

∫ ∞
t=0

e−ρtu(C(t))L(t)dt

subject to the following dynamic budget constraint:

Ḃ(t) = r(t)B(t) +W (t)L(t)− C(t)L(t) (5)

where we define B(t) as family wealth (i.e. the stock of saving of the household at time t). One
way to think about this is as follows: suppose there are financial intermediaries in this economy.
These financial intermediaries operate costlessly and competitively (these are strong assumptions!).
Households deposit their wealth with these financial intermediaries. The intermediaries can then

4Note that we could have obtained this result more directly by observing that F has constant returns to scale, so that by
Euler’s Theorem:

F (K,AL) = K∂F (K,AL)/∂K +AL∂F (K,AL)∂(AL)

dividing by AL and rearranging gives: (where we use the fact that ∂F (K,AL)/∂L = A∂F (K,AL)/∂(AL))
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purchase capital that is rented out to firms, or -conceivably- make loans to other households.
Renting capital to firms or lending to household must generate the same return r(t) since there is no
uncertainty (otherwise arbitrage opportunities would arise), and this return to capital is paid back to
the households in the form of capital income.

Of course, in equilibrium, we will need to have B(t) = K(t), since in a closed economy, the
stock of savings by households must be equal to the stock of physical capital, but conceptually, it is
clearer if we think of B(t) as the result of saving decisions by the household and K(t) as the result of
rental decisions by the firms. The reason that this separation makes sense here, is that it allows us to
think about what happens if the household wants to borrow (i.e. B(t) ≤ 0).

The household takes B(0) = K(0) > 0 as given, and also takes as given the path of rental rates
{r(t)} and the path of wages {W (t)}.

Now, if the household could borrow unlimited amounts, then there would be an easy solution to
its maximization problem: just borrow an infinite amount and never repay (i.e. simply roll over the
debt, principal and interest, permanently into the future). Such a path amounts to a ‘Ponzi scheme’,
where you keep borrowing in order to fund current consumption and roll over existing debt. Clearly
we want to rule out such paths: it is unlikely that anyone would be willing to take the other side of
that trade. So we are going to impose a No-Ponzi Condition (NPC) on the problem:

lim
t→∞

e−R(t)B(t) ≥ 0 (6)

where R(t) =
∫ t
0
r(u)du is the continuously compounded interest rate between time 0 and time t.

R(t) tells you how much you would earn if you invest $1 at time 0 and keep re-investing the interest
between 0 and t.

Condition (6) simply says that it is not possible for the household’s debt to grow faster asymptoti-
cally than the real interest rate. You should convince yourself that it does not prevent the household
from borrowing (even asymptotically).

2.4.2 The Intertemporal Budget Constraint

From the dynamic budget constraint (5), we can derive an intertemporal budget constraint. To see
this, let’s take the dynamic budget constraint (5) and pre-multiply each side by e−R(t), then integrate
between time t and time T > t:∫ T

t

e−R(s)Ḃ(s)ds =

∫ T

t

e−R(s)r(s)B(s)ds+

∫ T

t

e−R(s)(W (s)− C(s))L(s)ds

We can use the Integration by Part formula to replace the left hand side with∫ T

t

e−R(s)Ḃ(s)ds = B(T )e−R(T ) −B(t)e−R(t) +

∫ T

t

e−R(s)r(s)B(s)ds

where we use the fact that dR(s)/ds = d(
∫ s
0
r(u)du)/ds = r(s).

Substituting this expression into the budget constraint and canceling terms, we obtain:

B(T )e−R(T ) −B(t)e−R(t) =

∫ T

t

e−R(s)(W (s)− C(s))L(s)ds
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Now, take the limit as T →∞ to obtain:

lim
T→∞

B(T )e−R(T ) = B(t)e−R(t) +

∫ ∞
t

e−R(s)(W (s)− C(s))L(s)ds

The NPC condition (6) implies that the term on the left hand side is positive, so the right hand side
must also be positive:

B(t) +

∫ ∞
t

e−R(t,s)(W (s)− C(s))L(s)ds ≥ 0 (7)

where we define R(t, s) =
∫ s
t
r(u)du as the continuously compounded return between time t

and time s > t.5

This is the intertemporal budget constraint faced by the household. It has a simple interpretation:
the present value of consumption has to be smaller than total wealth, defined as the present value of
future labor income plus current assets.

2.4.3 An Alternative Formulation of the Household Problem

It is easier to work with variables expressed per units of effective labor (the lower case variables)
rather than the variables themselves. So we now transform the problem from one of choosing {C(t)}
into one of choosing {c(t)}, where c(t) = C(t)/A(t).

Observe that we can write

u(C(t)) =
(A(t)c(t))(1−θ)

1− θ
= A(0)1−θe(1−θ)gtu(c(t))

where we use the fact that A(t) = A(0)egt.
Then we can write the welfare of the household as:

U =

∫ ∞
t=0

e−ρtu(C(t))L(t)dt

= A(0)1−θL(0)

∫ ∞
t=0

e−(ρ−n−(1−θ)g)tu(c(t))dt

∝
∫ ∞
t=0

e−βtu(c(t))dt

where β = ρ− n− (1− θ)g > 0 by assumption. It follows that maximizing U over {C(t)} is the
same thing as:

max
{c(t)}

Ũ =

∫ ∞
t=0

e−βtu(c(t))dt

Similarly, one can show that the dynamic budget constraint can be rewritten as:6

ḃ(t) = (r(t)− g − n)b(t) + w(t)− c(t)
5Observe that R(t, s) = R(s)−R(t).
6To see this, observe that Ḃ(t)/A(t)L(t) = ḃ(t) + (g + n)b(t).
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The initial condition B(0) = K(0) > 0 translates directly into an initial condition for b(0) =
k(0) > 0.

Lastly, the No-Ponzi condition (6) can be expressed as:

lim
t→∞

e−R(t)+(n+g)tb(t) ≥ 0

So to recap, the statement of the problem we want to solve is:

Definition 1 (The Household Problem) The household solves the following problem

max
{c(t)}

Ũ =

∫ ∞
t=0

e−βtu(c(t))dt (8)

subject to:

ḃ(t) = (r(t)− g − n)b(t) + w(t)− c(t) (9a)
c(t) ≥ 0 (9b)

b(0) > 0, {r(t), w(t)} given (9c)

lim
t→∞

e−R(t)+(n+g)tb(t) ≥ 0 (9d)

In this problem, c(t) is the control variable, while b(t) is the state variable.

2.5 The Maximum Principle
To begin with, let’s just state the main theoretical result. Then, we will work backwards and look at
the intuition behind that result in a simple and tractable case.7

Proposition 1 (Maximum Principle) Consider the Household Problem in definition 1 above. Let
c∗(t) be a consumption sequence that solves this problem. Then there exists a co-state variable
λ(t) ≥ 0 such that the Hamiltonian

H(c(t), b(t), λ(t)) = u(c(t)) + λ(t)[(r(t)− g − n)b(t) + w(t)− c(t)] (10)

is maximized at c∗(t) given λ(t) and b(t):

∂H
∂c

(c∗(t), b(t), λ(t)) = 0 (11)

at all times. Furthermore, the co-state variable satisfies the following differential equation:

λ̇(t) = βλ(t)− ∂H
∂b

(c∗(t), b(t), λ(t)) (12)

Finally, the co-state variable λ(t) satisfies the Transversality Condition (TC):

lim
t→∞

b(t)λ(t)e−βt ≤ 0 (13)

7This is a heuristic presentation of the Maximum Principle. For a more detailed treatment, please refer to Atle Sierstad
& Knut Sydsaeter, Optimal Control Theory with Economic Applications, North Holland, Amsterdam, 1987, or a similar
textbook.
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The Maximum Principle gives a set of necessary conditions that any solution must satisfy. Note
that it does not establish existence (it assumes that a solution exists). The conditions stated above are
also not sufficient. Some additional conditions also need to hold (akin to second order conditions) for
sufficiency.

The Maximum Principle can look a bit daunting, but if you look more closely, you will see that
there are a number of familiar elements here. First observe that the co-state variable λ(t) is similar in
many ways to a Lagrange multiplier associated with the budget constraint of the household (9b),
while the Hamiltonian in (10) itself looks like a static Lagrangian.

This is an important insight: the Maximum Principle turns a complex dynamic problem into a
static one. The Hamiltonian compares the gain from additional consumption today (u(c(t))) versus
the loss in terms of capital accumulation ḃ(t). It assigns a ‘weight’ λ(t) to that loss. In that sense λ(t)
can be interpreted as the shadow value of wealth b(t) (in utility terms).

If we know what the shadow value of wealth λ(t) is, then condition (11) tells us that we should
simply choose c(t) so as to solve this static problem, trading-off a higher utility now and a lower
wealth in the future. At the optimum, we should be indifferent. Of course the dynamic dimension of
the problem has not really disappeared. Rather, it is summarized by condition (12) that tells us how
the co-state variable needs to evolve. We will see in the following section where this equation comes
from, but we can already provide some intuition for it. Let’s rewrite (12) as:

β =
λ̇(t) + ∂H

∂b (c
∗(t), b(t), λ(t))

λ(t)
(14)

Now remember that λ(t) can be interpreted as the shadow price of wealth. If we think of λ(t) as
an asset price, then the right hand side of (14) can be interpreted as the return on that asset. It has two
components: a yield, coming from the increased value of the Hamiltonian ∂H/∂b, and a ‘capital
gain’ coming from the change in the value of the co-state variable itself. Equation (14) tells us that
this return should equal β, the discount rate of the household. So the Maximum Principle tells us that
the dynamic evolution of the co-state variable needs to ensure that the shadow value of wealth evolves
in line with other asset prices in the economy.

Finally, the Transversality Condition (13) simply says that it does not make sense to accumulate
large amounts of wealth. b(t)λ(t) can be interpreted as the quantity of wealth b(t) times its price (in
utility terms) λ(t). So it represents the shadow value of total wealth. If the limit term in (13) was
strictly positive, it would mean that this wealth (measured in utility terms) would grow faster than
the discount rate. This is not optimal: the household would be better off consuming more today and
holding less wealth in the long run.

2.6 Applying the Maximum Principle to the Household Problem
We start by writing the necessary first-order condition associated with (11):

u′(c(t)) = c(t)−θ = λ(t)

This equation has an important interpretation. It tells us that the co-state variable λ(t) is simply the
marginal utility of consumption, along the optimal plan. So the shadow value of wealth is simply the
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marginal utility.

Next, we substitute λ(t) in the differential equation (12), observing from (10) that ∂H/∂b =
λ(t)(r(t)− g − n):

λ̇(t) = βλ(t)− λ(t)(r(t)− g − n)

from which we conclude that:

λ̇(t)

λ(t)
= −θ ċ(t)

c(t)
= β − (r(t)− g − n)

Re-arranging terms and substituting for β, we obtain:

ċ(t)

c(t)
=

r(t)− g − n− β
θ

=
r(t)− ρ− θg

θ

One can then obtain the growth rate of consumption per worker:

Ċ(t)

C(t)
=
ċ(t)

c(t)
+ g =

r(t)− ρ
θ

(15)

Equation (15) is a key equilibrium condition. It characterizes the slope of the optimal consumption
profile Ċ(t)/C(t) at every instant. It is called the Euler equation.

Interpretation.

• Consumption per workerC(t) grows or decline depending on the difference between the interest
rate r(t) and the discount rate ρ.

• This reflects the effect of the two forces that shape consumption/saving decisions. On the one
hand the household is impatient and wants to consume now. On the other hand, postponing
consumption today means more consumption tomorrow.

• A higher interest rate makes savings more desirable. Therefore consumption tomorrow will be
higher than today’s consumption and consumption growth increases.

• When the interest rate r(t) equals the discount factor ρ, the two forces balance out and the
household will choose to leave consumption unchanged.

• Observe the role of θ: as θ increases the IES is smaller and consumption growth is less responsive
to the interest rate. This is because if the intertemporal elasticity of substitution is lower, the
household is less willing to adjust consumption in response to a change in the interest rate.

• The Euler equation only pins down the ‘slope’ of consumption. The level of consumption will
be determined by the intertemporal budget constraint (7).

• The population growth rate n does not enter into these expressions. Can you explain why?8

8Think about the effect of a higher population growth rate on preferences and on wealth accumulation.
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Consider now the Transversality Condition (13). We can rewrite the differential equation for λ(t)
(12) and integrate it between 0 and t to obtain:

λ(t) = λ(0)e−R(t)+(ρ+θg)t

If we substitute this expression in the Transversality Condition, we obtain:

lim
t→∞

b(t)λ(t)e−βt = lim
t→∞

b(t)e−R(t)+(n+g)t ≤ 0 (16)

This expression has a very simple interpretation. As we will see a bit later, the term in the
exponent is asymptotically negative. In other words, the interest rate r(t) will settle to a value higher
than n+ g.9 Condition (16) states that it is optimal for the household not to accumulate extremely
large amounts of wealth. To see this, observe that if the limit was strictly positive, aggregate wealth
holdings B(t) would be growing faster than the compound interest rate R(t). Households would
have to keep saving more than the interest income they earn on their wealth. In the limit, this cannot
be optimal and the household would prefer to consume more.

Taken together, the No-Ponzi condition (6)) and the Transversality Condition (16) imply that the
optimal consumption plan satisfies:

lim
t→∞

e−R(t)+(n+g)tb(t) = 0 (17)

A direct consequence is that the Intertemporal Budget Constraint (7) will hold with equality in
equilibrium:

B(t) +

∫ ∞
t

e−R(t,s)(W (s)− C(s))L(s)ds = 0

2.7 Closing the Ramsey-Cass-Koopmans Model
Applying the Maximum Principle to the Household Problem, we have shown that the optimal con-
sumption/saving problem satisfies the following two equations:

ċ(t)

c(t)
=

r(t)− ρ− θg
θ

ḃ(t) = (r(t)− g − n)b(t) + w(t)− c(t)

From the household’s perspective, the rental rate r(t) and the wage w(t) are exogenous. But we
know that in equilibrium, they must satisfy the firms’ first order condition, equations (3) and (4).
Finally, remember that equilibrium on the asset market requires that family wealth equals the stock of
capital: b(t) = k(t). Substituting these expressions we obtain the following dynamical system:

ċ(t)

c(t)
=

f ′(k(t))− ρ− θg
θ

k̇(t) = f(k(t))− c(t)− (g + n)k(t)

This is a dynamical system in (c(t), k(t)), with initial condition k(0) > 0 and terminal condition:

lim
t→∞

e−
∫ t
0
f ′(k(s))ds+(n+g)tk(t) = 0

9This will be the case precisely when the condition we imposed so that utility would be finite, i.e. β > 0 holds
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3 Some Intuition for the Maximum Principle
In this section, we consider a slightly simpler set-up where we can relatively easily gain some intuition
for the Maximum Principle. These derivations follow closely Obstfeld’s ‘guide for the perplexed.’
The simpler problem is as follows

Definition 2 (A Stationary Household Problem (SHP)) Consider a household solving the follow-
ing stationary problem

max
{c(t)}

Ũ =

∫ ∞
t=0

e−βtu(c(t))dt

subject to:

ḃ(t) = (r − g − n)b(t) + w − c(t) (18a)
c(t) ≥ 0 (18b)
b(0) > 0, given (18c)
lim
t→∞

e−(r−n−g)tb(t) ≥ 0 (18d)

This problem assumes that the rental rate r(t) and the wage w(t) in equations (18) are constant,
instead of time-varying.10

3.1 A recursive representation
The first thing to observe is that the stationary problem has a lot of structure. In particular, it is
stationary: nothing changes if we write the problem starting from some time t, with initial condition
b(t) instead of time 0 with initial condition b(0). This implies that the problem is also nicely recursive.
This will allow us to break it up in smaller problems that are easier to solve.

To see this more formally, define J(b(0)) the maximand of the stationary household problem.
This is called the value function of the problem. It is a very important object since it encodes the
maximal utility that can be achieved by the household.11

Associated with J(b(0)), there is a feasible consumption sequence {c∗(t)} (possibly not unique)
that delivers that utility, and an associated path for {b∗(t)}. By definition of the optimum:

J(b(0)) =

∫ ∞
0

e−βtu(c∗(t))dt

Now suppose that the optimal plan has been followed from time 0 to some time T > 0. The
associated wealth at that time is b∗(T ). Suppose a new household head is appointed at time T and
decides to solve the problem as of time T , that is to maximize

max
{c(t)}

Ũ =

∫ ∞
T

e−β(t−T )u(c(t))dt

10Note that this implies that R(t) = rt.
11The general problem is not stationary since r(t) and w(t) are exogenous to the household and evolve over time. So in full

generality we would want to write the value function as J(b(t), t). This complicates matters somewhat and since this is not
essential to the intuitions here, this is why I present the derivations for a stationary problem instead.
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given b∗(T ), and constraints (18) from T onwards . It should be quite obvious that this new head of
household will decide to carry on with the initial optimal plan. That is, it’s optimal consumption will
be c∗(t) from T onwards. [Can you think of a proof of that result?]

The fact that the household wants to follow with the initial plan is at the heart of the notion of
time-consistency (a time-inconsistent plan is a plan devised by the household at time 0 that the
household at time T would rather not follow.)

The implication is that we can rewrite the value function as

J(b(0)) =

∫ T

0

e−βtu(c∗(t))dt+ e−βTJ(b∗(T ))

This implies that we can think of the original problem as a finite horizon problem where we have
to choose consumption c(t) between 0 and T so as to maximize:

J(b(0)) = max
{c(t)}

∫ T

0

e−βtu(c(t))dt+ e−βTJ(b(T ))

where b(T ) is the level of family wealth that results from the consumption decisions, and subject
equation (18).

This is Bellman’s principle of dynamic programming. It means that the problem can be thought of
as choosing consumption over some interval of time (here [0, T ]), then we can rely on the continuation
of the program and the fact that it follows the same structure.

3.2 A discrete time approximation and the Hamilton-Jacobi-Bellman equa-
tion

Now to make some progress on the optimal consumption-saving choice, we are going to make the
time-interval [0, T ] very small, so small in fact that we will only have to choose consumption at
one instant of time. To do this, it is best to proceed by way of a discrete-time approximation of the
problem, then take the continuous-time limit as the discretization step becomes infinitesimal.

Let’s carve time into tiny slices of length h. We assume that over these tiny intervals the control
variables and the state variables (as well as the exogenous variables) are constant. We can then
consider at discrete times t = 0, h, 2h, ....

The discretized stationary household problem consists in maximizing:

max
{c(t)}

∑
t=0,h,2h,...

e−βtu(c(t))h

subject to:
b(t+ h)− b(t) = [(r − g − n)b(t) + w − c(t)]h

with b(0) given as before. In the above expressions, t increases in increments of h, and c(t) is the
(constant) value of consumption over the time interval [t, t+ h). Observe that the integral has been
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replaced by a summation, since variables are constant over intervals of lenght h.

The idea is now to write the Bellman equation between time t and time t+ h:

J(b(t)) = max
c(t)

u(c(t))h+ e−βhJ(b(t+ h))

Now, we are going to expand this expression when h becomes infinitesimal. To do this, observe
that we can write the following expressions (all resulting from first-order Taylor expansions):

eβh = 1− βh+ o(h)

J(b(t+ h)) = J(b(t)) + J ′(b(t))(b(t+ h)− b(t)) + o(h)

Substituting these expressions in the Bellman equation we obtain:

βJ(b(t)) = max
c(t)

u(c(t)) + J ′(b(t))[(r − g − n)b(t) + w − c(t)] (19)

Equation (19) is called the Hamilton-Jacobi-Bellman equation. This equation has a couple of
very useful interpretations.

• A Hamiltonian interpretation. Recall the definition of the Hamiltonian in the Maximum
Principle. One can see that the term on the right is simply the Hamiltonian, evaluated at
λ(t) = J ′(b(t)):

H(c, b, J ′(b)) = u(c) + J ′(b)[(r − g − n)b+ w − c]

The household needs to choose whether to consume today (which generates utility u′(c)) or
to save and therefore increase b. Not surprisingly, the shadow price of increasing wealth is
J ′(b), i.e. the increment in overall utility. The Hamilton-Jacobi-Bellman equation can then be
rewritten as:

βJ(b(t)) = max
c(t)
H(c(t), b(t), J ′(b(t)))

• An asset return interpretation. We can rewrite the Hamilton-Jacobi-Bellman equation as:

β =
maxc(t) u(c(t)) + J ′(b(t))ḃ(t)

J(b(t))

the term on the left hand side is the discount rate for the stationary household problem. The
term on the right can be interpreted as the return on the optimal plan. It has two components.
The first component is the current utility from consumption. This is like the yield or dividend
on an asset. The second component, J ′(b)ḃ, can be thought of as a capital gain. It reflects the
change in the state variable and how it affects the value function. The total return to the optimal
plan (the sum of the dividend and capital gain divided by the value of the asset J(b(t))) must
equal the discount rate.
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3.3 Optimality Conditions
The Hamilton-Jacobi-Bellman equation (19) gives us (11), the first condition from the Maximum
Principle: given b(t) and λ(t) = J ′(b(t)), the optimal consumption plan satisfies:

∂H(c(t), b(t), λ(t))/∂c(t) = 0.

For the Stationary Household Problem, the associated (necessary) optimality condition is:

u′(c(t)) = J ′(b(t))

This equation states that the marginal value wealth (also equal to the shadow price of wealth) is
equal to the marginal utility of consumption. This is an intuitive result: an increase in consumption
yields a bit more utility today. But it also means less asset accumulation and therefore a decline in the
value of the program by J ′(b)

It may look as if this equation is not terribly useful since we don’t know what J ′(b) is. To make
progress, let’s use the Envelope Theorem.12 That theorem tells us that we can take a derivative of the
Hamilton-Jacobi-Bellman equation (19) with respect to b to obtain:

βJ ′(b(t)) = J ′′(b(t))ḃ(t) + J ′(b(t))(r − g − n)

Finally, recall that λ(t) = J ′(b(t)) so that by the chain-rule theorem, λ̇(t) = J ′′(b(t))ḃ(t).
Substituting into the above expression yields

βλ(t) = λ̇(t) + λ(t)(r − g − n)

This is precisely the differential equation (12) for the co-state variable derived in the Maximum
Principle, since

∂H
∂b

= λ(t)(r − g − n)

Finally, one can check also that J ′(b(t)) = λ(t) satisfies the Transversality Condition (13).

12According to the Envelope Theorem we don’t need to worry about the effect of changes in b(t) on c(t) at the optimum.
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