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Abstract

This paper provides a framework relating the vertical transmission of characteristics across

generations - such as the transmission of culture, language, norms and values - to differences in

income per capita across countries. We propose a novel way to measure cultural barriers using

genetic distance, i.e. coancestor coefficients from population genetics. Our econometric method-

ology addresses the problem of spatial correlation inherent in having pairwise income differences

as our dependent variable. We find a significant effect of genetic distance on income differences,

even when controlling for geographical distance, differences in latitude, and other cultural and

geographic distance measures. These results hold not only for contemporary income differences,

but also for income differences measured as of 1500 and 1700. We uncover similar patterns of

coefficients for the proximate determinants of income differences (differences in human capital,

institutions, investment rates and population growth). Our results suggest an important role

for vertically transmitted characteristics in the diffusion of development.
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1 Introduction

What explains the vast differences in income per capita that are observed across countries? What

prevents poor countries from reaching the level of income of rich ones? In recent years a large

empirical literature has addressed these questions using cross-country regressions, in which the

level of development, measured by income per capita, is regressed on a set of determinants.1 In

this paper we propose a complementary approach. Our goal is to identify the determinants of

differences in income per capita. Rather than addressing the question "what makes a country

richer or poorer?" we address the related question "what barriers account for the income gap

between two countries?".2 We use income differences between pairs of countries as our dependent

variable in order to investigate what measures of distance between countries are empirically relevant

to account for differences in development.

Countries can be distant or close to each other along multiple dimensions. Measures of geo-

graphical distance (geodesic distance, differences in latitude, etc.) are relatively straightforward

and easy to measure. By contrast, differences along cultural and historical dimensions have proven

more elusive to define and measure, and have not been studied systematically. How can we tell

whether two populations are close or far in terms of their long-term cultural and societal character-

istics? Direct measures of language, religion, habits, values, etc., have been proposed and used by

scholars, but a metric summarizing overall distance between populations along those dimensions

has so far been lacking.

In this paper we propose a novel way of measuring overall distance in long-term historical and

cultural characteristics, by exploiting the fact that the bulk of those characteristics are transmitted

1Recent contributions to this literature include Hall and Jones (1999), Acemoglu, Johnson and Robinson (2001),

Easterly and Levine (2003), Alcalá and Ciccone (2004), Rodrik, Subramanian and Trebbi (2004), Glaeser, La Porta,

Lopez-de-Silanes and Shleifer (2004) among others.

2There is a voluminous literature on cross-country income convergence, dating back to Baumol (1986). In the

neoclassical literature, convergence occurs because the marginal return to capital is higher in countries farther from

their steady-state, which depends, among other things, on the level of technology (the "A" parameter). These theories

say little about what factors affect the level of technology or its growth rate. In contrast, we seek to characterize

the factors that prevent or facilitate the diffusion of productivity-enhancing innovations across countries. In this

respect, our paper is closer to the approach in Barro and Sala-i-Martin (1997), where technological diffusion drives

convergence. A recent analysis of policy-induced constraints on the diffusion of technology is provided by Parente and

Prescott (2002). However, we go beyond this by considering more broadly the barriers to the diffusion of fundamental

technological and institutional characteristics in the long run, i.e. the prime determinants of development.
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"vertically" across generations.3 Hence, on average, the distance between two populations in the

set of vertically transmitted characteristics (culture, habits, etc.) is a function of the distance in

time from the two populations’ last common ancestors.4. By looking at how populations differ in

various DNA neutral markers, geneticists have provided estimates of genetic distance ("coancestor

coefficients") that capture this degree of genealogical relatedness between populations.5 A lower

genetic distance means that two populations share more recent common ancestors, have had less

time to diverge in their vertically transmitted characteristics, and are therefore more likely to share

similar languages, habits, norms, preferences, traditions, and so on.6 In this paper, we will use

measures of genetic distance provided by Cavalli-Sforza et al. (1994) in order to capture the overall

distance of populations in long-term vertically-transmitted characteristics, and will show how this

distance can help explain differences in income per capita.7

Our approach does not imply that the vertical transmission of long-term characteristics is

itself genetic. In fact, our approach is consistent with the view, shared by most geneticists and

anthropologists, that the strong link between genetic distance and many important characteristics

in human populations is mainly due to cultural (non-genetic) transmission across generations.8

3Evolutionary models of cultural transmission have been developed, by Cavalli-Sforza and Feldman (1981) and

Boyd and Richerson (1985). Economic models of cultural transmission from parents to children have been provided

by Bisin and Verdier (2000, 2001). Galor and Moav (2003) present an innovative theory of long-term economic growth

in which a key role is played by evolutionary changes in preference parameters that are genetically transmitted across

generations. For an in-depth discussion of these issues, see also Galor (2005).

4That is, how far two populations are from their "concestors," to use Richard Dawkins’ (2004) terminology.

5"Neutral" genetic markers are those that have no effect on selective fitness. Ideally, measures of human genetic

distance are calculated using neutral genetic markers. The classical reference on the neutral theory of molecular

evolution is Kimura (1968). A recent textbook reference on human evlutionary genetics is Jobling et al. (2004).

6As we will see, in general the relationhsip between genetic distance and distance in the set of verticall-transmitted

characteristics should not be expected to hold exactly, but on average. It is possible for two populations sharing a

more recent common ancestor to show more "divergence" than two populations which are less closely related, but on

average genetic distance and differences in vertically transmitted characteristics tend to go hand in hand.

7The only other economists who have used this variable, as far as we know, are Guiso, Sapienza and Zingales

(2004), who use genetic distance between European populations as an instrument for a measure of trust in order to

explain bilateral trade flows. This is quite different from our application, as we are interested in explaining income

differences, not trade flows. Their results are consistent with our interpretation of genetic distance as related to

cultural barriers.

8For example, see Cavalli-Sforza and Cavalli-Sforza (1995, chapter 8).
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Language is an obvious example. There is no gene for speaking Japanese or Italian, but people

who speak the same language on average tend to be closely related genetically, because most

children learn their language from their parents.9 In the theoretical part of this paper we present a

simple framework that shows how the vertical transmission of (non-genetic) cultural characteristics

across generations can be sufficient to explain a positive correlation between genetic distance and

differences in income per capita.

More generally, in our theoretical section we provide a framework illustrating how vertically-

transmitted characteristics affect income differences across countries. An important assumption

of our model is that vertically-transmitted characteristics affect barriers to the (horizontal) trans-

mission of technological and institutional innovations. For example, all other things being equal,

people who share similar languages and cultures may be more likely to learn from each other.

In our basic theoretical framework, different populations improve their productivity by adopting

innovations (new technology, new institutions) directly or through imitation and adaptation of

innovations from other societies. Technology and institutions are transmitted along with other cul-

tural characteristics. Income differences across societies emerge and persist when there are barriers

to the horizontal diffusion of innovations, related to distance in vertically-transmitted characteris-

tics. In our theoretical part we also extend the framework to allow for a direct effect of cultural

characteristics on the probability of achieving productivity-enhancing innovations, and provide a

general discussion of the different channels linking vertically-transmitted characteristics to income

differences.

In the empirical part of this paper we develop a novel methodology for estimation and inference

9For a discussion of the very close connection between genetic distance and linguistic classifications, see Cavalli-

Sforza, Menozzi and Piazza (1994, pp. 96-105). While we also use differences in language directly in our regressions,

we believe that genetic distance makes for a more comprehensive and informative measure of overall cultural distance,

for several reasons: Genetic distance is exogenous with respect to incomes per capita, since individuals and entire

populations may change their languages because of economic and political factors (conquests, globalization), but

cannot change their genes (yet). Moreover, language or religion are only one among a complex web of vertically-

transmitted characteristics that populations transfer across generations. Societies, even when they speak the same

language, differ in numerous other cultural characteristics that affect their view of the world, values, attitudes, ability

to interact and communicate with other groups, etc. Genetic distance, being correlated with the total set of vertically

transmissible characteristics, seems a more promising general long-term measure of cultural and societal distance than

any other available variable. An additional advantage is that genetic distance is measured as a continuous variable,

while other linguistic and cultural classifications typically do not provide a continuous measure of distance.
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with respect to the determinants of pairwise income differences across countries. We address a

serious econometric problem arising naturally from our empirical strategy: since our dependent

variable is the absolute value of the difference in income per capita between two countries, the

covariance matrix of the residuals will feature spatial correlation: observations that include a

common country will not be independent. We include a set of common-country fixed-effects to

address this issue. We find a significant effect of coancestor coefficients (genetic distance) on

income differences, even when controlling for geographical distance, differences in latitude, and

other characteristics. This suggests an important role for vertically transmitted characteristics

in the diffusion of development. Our results, moreover, hold not only for contemporary income

differences, but also for income differences in 1500 and 1700.

In our empirical analysis we also examine directly the proximate determinants of income differ-

ences: differences in institutional outcomes (expropriation risk), population growth, human capital,

investment rates and openness to trade. The same distance measures that account for differences

in income levels also account for differences in some of these underlying variables, and generally in

similar ways. This suggests that vertically-transmitted characteristics captured by genetic distance

affect income differences through their effects on key proximate determinants of development, such

as institutions, human capital, and population growth.

This paper is organized as follows. In Section 2 we present a simple analytical framework linking

genetic distance (i.e., distance between two populations in numbers of generations from their last

common ancestor), cultural distance, barriers to the diffusion of innovation, and differences in

income per capita. Section 3 discusses the data and the empirical methodology. In Section 4 we

present our empirical results, in which, consistently with our theoretical framework, genetic distance

explains differences in income per capita and in its proximate determinants. Section 5 concludes.

2 The Diffusion of Development: A Simple Framework

2.1 The Basic Model

In this section we develop a framework to study the diffusion of technological and institutional

innovations across societies. We sketch a simple model in which:

a) Innovations are transmitted vertically (across generations within a given population) and

horizontally (across different populations).
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b) The horizontal diffusion of innovations is not instantaneous, but is a function of barriers to

technological and institutional diffusion.

c) Barriers to technological and institutional diffusion across societies are a function of how far

societies are from each other as a result of divergent historical paths.

Productive knowledge is summarized by a positive real number Ait. We assume a linear tech-

nology Yit = AitLit, where Lit is the size of the population, which implies that income per capita

is given by yit ≡ Yit/Lit = Ait.

For simplicity, we summarize all other relevant characteristics of a society (cultural habits

and traditions, language, etc.) as a point on the real line. That is, we will say that at each

time t a population i will have "cultural" characteristics qit, where qit is a real number.10 These

characteristics are transmitted across generations with variations. Over time, characteristics change

(vocabulary and grammar are modified, some cultural habits and norms are dropped while new

ones are introduced, etc.). Hence, at time t + 1 a population i will have different characteristics,

given by:

qit+1 = qit + ηit+1 (1)

where qit are the characteristics inherited from the previous generations, while ηit+1 denotes cultural

change.

By the same token, the dynamics of productive knowledge includes vertical transmission across

generations as well as changes (innovations), that is:

Ait+1 = Ait +∆it+1 (2)

where ∆it+1 denotes change in productivity due to technological and institutional innovations.

Changes may take place because of original discovery by agents that belong to population i and/or

because of successful imitation/adaptation of innovations that were discovered elsewhere. The

diffusion of technological and institutional innovations can be viewed as a special case of cultural

transmission.

We are interested in the long-run process of vertical and horizontal transmission of culture across

populations at different genealogical distances from each other - that is, with different distances

10Of course, this is a highly simplified and reductive way of capturing cultural differences. In general, culture is a

highly elusive and multi-faceted concept. In a well-known survey over fifty years ago Kroeber and Kluckhohn (1952)

listed 164 definitions of culture proposed by historians and social scientists. See also Boyd and Richerson (1985).
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from their last common ancestor. To capture these relationships in the simplest possible way, we

will assume the following intergenerational structure. At time 0, there exists only one population,

with cultural characteristics q0 (normalized to zero) and productive knowledge A0.11 At time

1 the population splits in two distinct populations (population 1 and population 2). At time 2,

population 1 splits in two populations (populations 1.1 and 1.2), and population 2 splits in two

populations (populations 2.1 and 2.2). This structure provides us with the minimum number of

splits we need to have variation in genealogical distances between populations at time 2. We can

measure genealogical distance between populations by the number of genealogical steps one must

take to reach the closest common ancestor population. Let d(i, j) denote the genealogical distance

between populations i and j. Populations 1.1 and 1.2 have to go back only one step to find their

common ancestor (population 1), while populations 1.1 and 2.1 have to go back two steps to find

their common ancestor (population 0), as illustrated in Figure 1. Therefore, we have:

d(1.1, 1.2) = d(2.1, 2.2) = 1 (3)

and:

d(1.1, 2.1) = d(1.1, 2.2) = d(1.2, 2.1) = d(1.2, 2.2) = 2 (4)

What is the relationship between genealogical distance, cultural change and technological change?

In order to explore these issues, it is useful to consider the following benchmark assumptions:

A1. At each time t two populations i and j with Ait = Ajt face an identical probability πt of

discovering an original innovation that would increase productive knowledge by ∆t.

This assumption means that cultural characteristics qit per se do not have a direct effect on the

rate of technological progress: two populations with different cultural characteristics but identical

levels of productive knowledge face identical probabilities of expanding the technological frontier.

In other words, cultural characteristics are assumed to be neutral with respect to the process of

innovation.12

By contrast, it is reasonable to assume that the process of imitating somebody else’s innovation

is a function of the "cultural distance" between the innovator and the imitator. That is, we assume:

11 In this analysis we will abstract from differences in size across populations, and assume that all populations have

identical size.

12We will relax this assumption below.
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Figure 1: Population Tree.

A2. If an innovation is introduced by some population i with cultural characteristics qi, the

extent to which a population j, with cultural characteristics qj , can increase its own technological

knowledge through the imitation and adaptation of population i’s innovation will depend on the

"cultural distance" between the two populations, that is, on |qj − qi|.

Specifically, we assume that if a population i with characteristics qi increases its productive

knowledge through an innovation of size ∆i, a population j with characteristics qj can increase its

own productive knowledge by:

∆j = (1− β|qj − qi|)∆i (5)

where the parameter β measures the barriers to the diffusion of innovations associated with dif-

ferences in the two populations’ characteristics (languages, cultural habits and traditions, etc.).

In a general sense, we can interpret these barriers as stemming from difficulty in communication,

translation and understanding. Technological and institutional innovations may take specific forms

when developed by population i within its cultural setting qi. Those forms may be difficult to adapt

and "translate" into population j’s different cultural setting qj .

But how do different populations end up with differing cultural characteristics? For the purposes

of this analysis, we will consider a simple model of cultural divergence ("mimetic drift"):
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A3. Cultural transmission follows a random walk, in which cultural characteristics are trans-

mitted vertically across populations, while "cultural change" is white noise.

Clearly, this is a highly stylized approximation of more complex phenomena, but it does provide

a simple way to capture the dynamics of changes in "neutral" cultural characteristics. Specifically,

we will assume that for each population i cultural characteristics are given by:

qi = qi0 + ηi (6)

where qi0 are the characteristics of the closest ancestor (population 0 for populations 1 and 2,

population 1 for populations 1.1 and 1.2, population 2 for populations 2.1 and 2.2), and ηi is equal

to η > 0 with probability 1/2 and −η with probability 1/2.

When cultural characteristics follow the above process, we can immediately show that on average

cultural distance between two populations is increasing in their genealogical distance. Specifically,

in our example, the expected cultural distance between populations at a genealogical distance

d(i, j) = 1 is:

E{|qj − qi| | d(i, j) = 1} = η (7)

while populations at a genealogical distance d(i, j) = 2 have twice the expected cultural distance:

E{|qj − qi| | d(i, j) = 2} = 2η (8)

The above relationships imply that, on average, populations that are closer genealogically will also

be closer culturally:

E{|qj − qi| | d(i, j) = 2}−E{|qj − qi| | d(i, j) = 1} = η > 0 (9)

This is not a deterministic relationship: it is possible that two populations who are genealogically

far may end up with more similar cultures than two populations which are more closely related.

But that outcome is less likely to be observed than the opposite. In summary, we have:

Result 1

On average, greater genealogical distance is associated with greater cultural distance.

We are now ready to study the relationship between diffusion of innovations, cultural change,and

genealogical distance within our framework.

First of all, consider the case in which inter-population barriers to the horizontal diffusion

of innovations are prohibitive. In other terms, consider the case in which there is no horizontal
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transmission of innovations, but just vertical transmission. To fix ideas, suppose that at time

t = 1, each of the two existing populations (1 and 2) could independently increase its inherited

productivity A0 by ∆ > 0 with probability π. Assuming that no other innovation takes place at

time 2, what are the expected differences in income across populations at time 2?

Populations with the same closest ancestor will inherit the same productive knowledge (either

A0 or A0 +∆) and will not differ in income per capita. That is:

E{|yj − yi| | d(i, j) = 1} = 0 (10)

On the other hand, populations 1 and 2 will transfer different technologies to their descendants if

and only if one of the two population has successfully innovated at time 1 while the other population

has not. This event takes place with probability 2π(1 − π). Hence, expected income differences

across populations with genealogical distance equal to 2 are given by:

E{|yj − yi| | d(i, j) = 2} = 2π(1− π)∆ (11)

Not surprisingly, when technological innovations diffuses only via vertical transmission, income

differences are strongly correlated with genealogical distance:

E{|yj − yi| | d(i, j) = 2}−E{|yj − yi| | d(i, j) = 1} = 2π(1− π)∆ > 0 (12)

The relationship is stronger the higher is the variance of innovations across population (which, in

our example, is measured by π(1− π), and it is highest at π = 1/2).

By contrast, if there were no barriers to the horizontal transmission of innovations across

populations, all societies would have the same income per capita independently of their genealogical

distance.13 In general, genealogical distance matters for income differences if and only if there are

barriers to horizontal diffusion. Let us consider the case in which barriers are positive but not

prohibitive, that is:

∆j = (1− β|qj − qi|)∆i (13)

with β|qj − qi| < 1 for all qi and qj . Now, populations 1 and 2 will not end up with the same

technology if and only if a) only one of the two populations finds the innovation (an event with

probability 2π(1−π)), and b) the two populations are culturally different - that is, one experienced

13For all populations at time 1 and 2, we would have y = A0+ ∆ with probability 1− (1− π)2 and y = A0 with

probability (1− π)2.
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a cultural change equal to η while the other experienced −η (an event with probability 1/2). If

both a) and b) hold (an event with probability π(1 − π)), one of the two populations will have

productivity equal to A0 +∆ while the other will have productivity equal to A0 + (1− 2βη)∆. If

no additional diffusion can take place at time 2 (that is, if horizontal transmission is possible only

for contemporaneous innovations), we have:

E{|yj − yi| | d(i, j) = 2}−E{|yj − yi| | d(i, j) = 1} = 2π(1− π)βη∆ > 0 (14)

The above equation shows that income differences are increasing in genealogical distance if and

only if there are positive barriers to diffusion (β 6= 0) and populations diverge culturally over time

( η 6= 0).

In the above example we have assumed that horizontal diffusion of the innovation introduced

at time 1 takes place only contemporaneously - that is, at time 1. The analysis can be extended to

allow for further horizontal transmission at time 2.

Consider the case in which at time t two populations (say, 1.1 and 1.2) have "inherited" tech-

nology A0 + ∆ by vertical transmission while the other two populations (say, 2.1 and 2.2) have

inherited A0 + (1 − 2βη)∆. From population 2.1’s perspective, the unadopted innovation from

period 1 is:

[A0 +∆]− [A0 + (1− 2βη)∆] = 2βη∆ (15)

If we consider this situation as equivalent to the case in which populations 1.1 and 1.2 come up

with a new innovation of size 2βη∆, we can model the adoption of that "innovation" by population

2.1 as:

∆2.1 = [1− β|min{|q2.1 − q1.1|, |q2.1 − q1.2|}]2ηβ∆ (16)

where the expression min{|q2.1− q1.1|, |q2.1− q1.2|} captures the fact that population 2.1 will adopt

the innovation from the population that is culturally closer.

In this case, the expected income gap between populations at different genealogical distance is

given by:

E{|yj − yi| | d(i, j) = 2}−E{|yj − yi| | d(i, j) = 1} = π(1− π)β2η2∆ > 0 (17)

which, again, implies a positive correlation between differences in income per capita and genealogical

distance, as long as β 6= 0 and η 6= 0.
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An analogous equation can be obtained for innovations that occur in period 2. If the four

populations inherit identical technologies from period 2 and each population can find an innovation

of size ∆ in period 2 with probability π we have:

E{|yj − yi||d(i, j) = 2}−E{|yj − yi||d(i, j) = 1} = 2π2(1− π)2βη∆ > 0 (18)

We can summarize the analysis above as:

Result 2

Income differences across populations are increasing in genealogical distance if and only if there

are positive barriers to the diffusion of innovations (β 6= 0) and populations diverge culturally over

time ( η 6= 0).

2.2 An Extension: Non-Neutral Vertically-Transmitted Characteristics

The above results have been obtained under the assumption that cultural characteristics are neutral

- that is, they have no direct effect on the production function and on the process of innovation

itself, but only on the process of horizontal diffusion of innovations. The assumption can be relaxed

by allowing a direct effect of cultural characteristics on the probability of innovating. Specifically,

assume that population i’s probability of finding an innovation is given by:

πi = π + φqi

This means that a higher qi is associated with more innovations and a lower qi with less innovations.

The analysis above can be viewed as the special case φ = 0. Under this more general assumption

equation (14) becomes:

E{|yj − yi||d(i, j) = 2}−E{|yj − yi| | d(i, j) = 1} = 2[π(1− π) + φ2η2]βη∆ (19)

This equation shows that the larger the direct impact of cultural characteristics on the probability

of innovating, the stronger the relationship between expected income differences and genealogical

distance, provided there are barriers to diffusion (β 6= 0) and cultural heterogeneity (η 6= 0). In

other words, a direct effect of cultural characteristics on the innovation process strengthens the

relationship between genealogical distance and income gaps, as long as there are barriers to the

diffusion of innovations, consistent with Result 2 above.
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2.3 Vertical Transmission of Characteristics and Income Differences: A General

Taxonomy

In the analytical framework presented above, we have illustrated a mechanism of development diffu-

sion implying a positive correlation between genealogical distance (i.e., distance from last common

ancestors) and income differences. The central feature of the framework is the link between ge-

nealogical distance and the vertical transmission of characteristics across generations. In our basic

model, we show how differences in neutral characteristics (that is, characteristics that do not have

a direct effect on productivity and innovations) can explain income differences by playing a role as

barriers to the diffusion of innovation across populations. We then extended the model to include

possible direct effects of vertically transmitted characteristics on productivity. Specifically, in our

framework we considered a direct effect of different characteristics on the probability of adopting

productivity-enhancing innovations. We have seen how direct effects increase the magnitude of the

correlation between genealogical distance and income differences, but are not necessary for the ex-

istence of a positive correlation: barrier effects due to neutral vertically-transmitted characteristics

are sufficient to explain a positive correlation between genealogical distance and income differences.

In our basic framework we have modeled the transmission of characteristics as "cultural" -

that is, not directly related to the transmission of DNA from parents to children. We have done

that for two reasons. One reason is conceptual: to provide a model that clearly shows how a

direct link from DNA-transmitted characteristics to economic outcomes is not necessary for our

results,as long as vertical transmission of cultural characteristics takes place among genetically-

related individuals (typically, parents and children). The second reason is substantial. Our focus

is on income differences across different populations of Homo Sapiens Sapiens, taking place over

a relatively short period in terms of genetic evolution, and we expect that over that time frame

divergence in cultural characteristics have played a more important role than direct changes in non-

neutral genetic materials across populations. Hence, we wanted to show a model that is consistent

with our priors that "genealogical distance" between populations - e.g. how far populations are in

terms of common ancestors - can help explain income differences because it proxies for divergence

in (vertically-transmitted) cultural characteristics.

However, in principle, the insights from our framework can be generalized to include a broader

set of channels through which characteristics are vertically transmitted across generations. In gen-

eral, characteristics can be transmitted across generations through DNA (genetic transmission, or
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GT - e.g. eye color) or through pure cultural interactions (cultural transmission, or CT - e.g., a

specific language). Moreover, from a hypothetical perspective, vertically transmitted characteris-

tics, whether transferred through GT or CT, may affect income differences because of a direct (D)

effects on productivity or because they constitute barriers (B) to the transmission of innovations

across populations. Hence, in general one can identify four possible combinations of mechanisms

through which vertically transmitted characteristics may affect income differences: a GT direct

effect, a GT barrier effect, a CT direct effect, and a CT barrier effect.14 Figure 2 summarizes the

four possibilities.

Direct Effect (D) Barrier Effect (B)

Genetic Transmission (GT) Quadrant I Quadrant II

Cultural Transmission (CT) Quadrant III Quadrant IV
Figure 2 - Taxonomy for the vertical transmission of characteristics

For instance, vertically-transmitted characteristics affecting the trade-off between quality and

quantity of children in the theoretical framework proposed by Galor and Moav (2002) would be

examples of GT direct effects (Quadrant I). GT barrier effects (Quadrant II) could stem from

visible genetically-transmitted characteristics (say, physical looks) that do not affect productivity

directly, but introduce barriers to the diffusion of innovations and technology by reducing exchanges

and learning across populations that perceive each other as different.15 Direct effect of cultural

characteristics have been emphasized in a vast sociological literature that goes back at least to

Max Weber.16 A recent empirical study of the relationship between cultural values and economic

outcomes that is consistent with the mechanisms of Quadrant III is provided by Tabellini (2004).

The link between cultural characteristics and barriers (Quadrant IV) is at the core of our basic

model, while our extension to non-neutral cultural characteristics may be interpreted as an example

from Quadrant III.

14 It is important to notice that these conceptual types should not be viewed as completely separable, but rather

as points on a logical continuum, which may involve a mix of them. For example, the ability to digest milk as an

adult (lactose tolerance) is genetically transmitted, and may interact with culturally-transmitted characteristics in

affecting the impact of innovations in animal domestication on a population’s standards of living and productivity.

15This effect is related to recent work by Guiso et al. (2004), who argue that differences in physical characteristics

may affect the extent of trust across populations. Visible differences across ethnic groups play an important role in

the analysis of ethnic conflict by Caselli and Coleman (2002).

16More recent references can be found in the edited volume by Harrison and Huntington (2000).
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As we will see in the following section, genetic distance can be used to measure genealogical

distance (e.g., distance from the last common ancestors), and hence to estimate the relationships

between vertically-transmitted characteristics and the determinants of differences in income per

capita. Measures of genetic distance are constructed using neutral genetic markers that do not

affect phenotypic characteristics under strong natural selection. Hence, our empirical measures

of genetic distance provide particularly good proxies for genealogical distance related to cultural

distance (Quadrants III and IV).

3 Data and Empirical Methodology

3.1 Data

Genetic Distance Since the data on genetic distance that we use as a measure of distance in

vertically-transmitted characteristics is not commonly used in the economics literature, it is worth

spending some time describing it. Genetic distance measures the genetic similarity of two pop-

ulations. The basic unit of analysis is the allele, or the variant taken by a gene. By sampling

populations for specific genes, geneticists have compiled data on allele frequencies, i.e. the pro-

portion of the population with a gene of a specific variant.17 Differences in allele frequencies are

the basis for computing summary measures of distance based on aggregated differences in allele

frequencies across various genes (or loci on a chromosome). Specifically in this paper, following

Cavalli-Sforza et al. (1994), we will use measures of FST distance, also known as coancestor coef-

ficients (Reynolds et al., 1983). FST distances, like most measures of genetic diversity, are based

on indices of heterozygosity, the probability that two genes at a given locus, selected at random

from the relevant populations, will be different (heterozygous). The construction of FST distances

can be illustrated for the simple case of two populations (a and b) of equal size, one locus, and

two alleles (1 and 2). Let pa and qa be the gene frequency of allele 1 and allele 2, respectively,

in population a.18 The probability that two randomly selected genes at a given locus are identi-

cal within the population ("homozygosity") is p2a + q2a, and the probability that they are different

("heterozygosity") is:

ha = 1− p2a + q2a = 2paqa (20)

17Allele frequencies for various genes and for most populations in the world can be conveniently searched online at

http://alfred.med.yale.edu/

18Therefore we have pa + qa = 1 and (pa + qa)
2 = p2a + q2a + 2paqa = 1.
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By the same token, heterozygosity in population b is:

hb = 1− p2b + q2b = 2pbqb (21)

where pb and qb be the gene frequency of allele 1 and allele 2, respectively, in population b. The

average gene frequencies of allele 1 and 2 in the two populations are, respectively:

p =
pa + pb
2

(22)

and:

q =
qa + qb
2

(23)

Heterozygosity in the sum of the two populations is:

h = 1− p2 + q2 = 2pq (24)

By contrast, average heterozygosity is measured by:

hm =
ha + hb
2

(25)

FST measures the variation in the gene frequencies of populations by comparing h and hm:

FST = 1−
hm
h
= 1− paqa + pbqb

2pq
(26)

If the two populations have identical allele frequencies (pa = pb), FST is zero. On the other hand,

if the two populations are completely different at the given locus (pa = 1 and pb = 0, or pa = 0 and

pb = 1) , FST takes value 1. In general, the highest the variation in the allele frequencies across

the two populations, the higher is their FST distance. The formula can be extended to account for

L alleles, S populations, different population sizes, and to adjust for sampling bias. The details of

these generalizations are provided in Cavalli-Sforza et al. (1994, pp. 26-27).19

These measures of genetic distance have been devised mainly to reconstruct "phylogenies" (or

"family trees") of populations. FST (which is also known as the coancestor coefficient) can be

interpreted as the distance to a common ancestor of two populations. Thus, in effect, genetic

distance is related to how long two populations have been isolated from each other.20 If two

19For a general discussion of measures of genetic distances, see also Nei (1987).

20 "Isolation" here refers to the bulk of the genetic heritage of a given population. Small amounts of interbreeding

between members of different populations do not change the big picture.
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populations split apart as the result of outmigration, their genes start to change as a result of

genetic drift (randomness) and natural selection. When calculating genetic distances in order to

study population history and phylogenesis, geneticists concentrate on "neutral" characteristics that

are not affected by strong directional selection occurring only in some populations and environments

(Cavalli-Sforza et al., 1994, p. 36).21 In other words, the term "neutral markers" refers to genes

affected only by drift, not natural selection.

If the populations are separated, this process of change will take them in different directions,

raising the genetic distance between them. The longer the period for which the separation lasts,

the greater will genetic distance become. More specifically, the rate of evolution is the amount of

evolutionary change, measured as genetic distance between an ancestor and a descendant, divided

by the time in which it occurred. If drift rates are constant, genetic distance can be used as a

"molecular clock" - that is, the time elapsed since the separation of two populations can be measured

by the genetic distance between them. Figure 3, from Cavalli-Sforza et al. (1994), illustrates the

process through which different human populations have split apart over time. Heuristically, genetic

distance between two populations is captured by the horizontal distance separating them from the

next common node in the tree.

Therefore, in this paper we will use FST distance as a measure of "genealogical distance" between

populations. Consistent with our theoretical framework, we expect that a larger FST distance

should reflect a longer separation between populations, and hence, on average, a larger difference in

vertically-transmitted characteristics. The data itself is from Cavalli-Sforza et al. (1994), p. 75-76:

we focus on the set of 42 world populations for which they report all bilateral distances, based

on 120 alleles.22 These populations are aggregated from subpopulations characterized by a high

level of genetic similarity. However, measures of bilateral distance among these subpopulations are

21The classic reference for the "neutral theory" of molecular evolution is Kimura (1968). For more details on the

neutral theory, the "molecular clock" hypothesis, and the construction and interpretation of measures of genetic

distance, a recent reference is Jobling et al. (2004). The fact that genetic distance is calculated with respect to

"neutral" genetic markets implies that genetic distance can provide an especially useful measure for the channels of

Quadrants III and IV in Figure 2 (Section 2.3).

22Cavalli-Sforza et al. (1994) also provide a different measure of genetic distance (Nei’s distance). Nei’s distance,

like FST , measures differences in allele frequencies across a set of specific genes between two populations. FST and

Nei’s distance have slightly different theoretical properties, but the differences are unimportant in practice as they

are very highly correlated, and the choice of measures does not impact our results (as we show below).
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Figure 2: Genetic distance among 38 populations. Source: Cavalli-Sforza et al., 1994.
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available only regionally, not for the world as a whole.23 Among the set of 42 world populations,

the greatest genetic distance observed is between Mbuti Pygmies and Papua New-Guineans, where

the FST distance is 0.4573, and the smallest is between the Danish and the English, for which the

genetic distance is 0.0021.24 The mean genetic distance among the 861 available pairs is 0.1338.

Genetic distance data is available at the population level, not at the country level. It was thus

necessary to match populations to countries. We did so using ethnic composition data from Alesina

et al (2003). In many cases, it was possible to match ethnic group labels with population labels

from Cavalli-Sforza et al. (1994). The was supplemented with information from Encyclopedia

Britannica when the mapping of populations to countries was not achievable from ethnic group

data. Obviously, many countries feature several ethnic groups. We matched populations to the

dominant ethnic group, i.e. the one with the largest share of the country’s population.25

The ethnic composition in Alesina et al. (2003) refers to the 1990s. This is potentially endoge-

nous with respect to current income differences if the latter are persistent and if areas with high

income potential tended to attract immigration since 1500. This would be the case for example

under the view that the Europeans settled in North America because of a favorable geographical

environment.26 In order to construct genetic distance between countries as of 1500 (in an effort to

obtain a variable that is more exogenous than current genetic distance), we also mapped popula-

tions to countries using their ethnic composition as of 1500, i.e. prior to the major colonizations

of modern times. Thus, for instance, while the United States is classified as predominantly popu-

lated with "English" people for the current genetic distance, it is classified as being populated with

"North Amerindians" for the 1500 genetic distance. This distinction affected mostly countries that

were colonized by Europeans since 1500 to the point where the main ethnic group is now of Eu-

23 In our empirical work, we make use of the more detailed data for Europe in order to extend our results.

24Among the more disaggregated data for Europe which we also compiled, the smallest genetic distance (equal

to 0.0009) is between the Dutch and the Danish, and the largest (equal to 0.0667) is between the Lapp and the

Sardinians. The mean genetic distance across European populations is 0.013. As can be seen, genetic distances are

roughly ten times smaller on average across populations of Europe than in the World dataset. However, we still find

that they significantly predict intra-Europe income differences.

25We have also computed measures of weighted genetic distance by using the data on each ethnic group within

a country. However, we have not used these series yet in our empirical work. Weighted genetic distances are very

highly correlated with unweighted ones, so for practical purposes it should not make a big difference which one we

use.

26 In fact, income differences are not very persistent at a long time horizon such as this - see Acemoglu et al. (2002).
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ropean descent (New Zealand, Australia, North America and some countries in Latin America...).

Genetic distance in 1500 can be used as a convenient instrument for current genetic distance, or

can be entered in our regressions in its stead.

Geographic Distance. In addition to genetic distance, we also used several measures of geo-

graphic distance. The first is a measure of the greater circle (geodesic) distance between the major

cities of the countries in our sample. This comes from a new dataset compiled by researchers at

CEPII.27 This dataset features various measures of distance (between major cities, between capitals,

weighted using several distances between several major cities, etc.), all of which bear correlations

that exceed 99%. The dataset includes other useful controls such as whether pairs of countries

share the same primary or official language, whether the countries are contiguous, whether they

had a common colonizer, etc. We used some of these controls in our regressions.

The second measure of geographic distance that we use is latitudinal distance - i.e. simply

the absolute value of the difference in latitude between the two countries in each pair: GL
ij =

|latitudei − latitudej |. Latitude could be associated with climactic factors that affect income levels

directly, as in Sachs (2001). Latitude differences would also act as barriers to technological diffusion:

Diamond (1997) suggests that barriers to the transmission of technology are greater along the

latitude direction than along the longitude direction, because similar longitudes share the same

climate, availability of domesticable animal species, soil conditions, etc. We should therefore expect

countries at similar latitudes to also display similar levels of income. All variables are entered in

natural logarithms in the regressions.

Summary Statistics Table 1, Panel a displays correlations between our various measures of

distance.28 Perhaps surprisingly, these correlations are not as high as we might have expected. For

instance, the correlation between geodesic distance and FST genetic distance is only 35% - though

unsurprisingly it rises to 54.6% if genetic distance is measured based on populations as they were

in 1500 (the colonization era acted to weaken the link between genetic distance and geographic

distance by shuffling populations across the globe). The correlation between alternative measures

of genetic distance, on the other hand, tends to be quite high: the FST measure and the Nei measure

27The data is available free of charge at http://www.cepii.fr/anglaisgraph/bdd/distances.htm.

28Panel b presents means and standard deviations of the main variables, allowing us to assess the quantitative

magnitudes of the effects estimated in the regressions that follow.

19



of genetic distance bear a correlation of 94%, so it should not matter very much which one we use.

Interestingly, latitudinal distance and genetic distance are completely uncorrelated. Finally, our

various measures of distance bear positive correlations between 10% and 20% with the absolute

value of log income differences in 1995.29 Together, these correlations suggest it may be possible

to identify separately the effects of geographic and cultural barriers on the long-run diffusion of

development.

3.2 Empirical Methodology

3.2.1 Specification

Since our empirical methodology is new, we describe it in some detail. We depart from the usual

approach, which consists of regressing income levels or income growth on a set of determinants.

Instead, we consider a specification in which the absolute difference in income between pairs of

countries (or other dependent variables such as measures of institutions and human capital) is re-

gressed on measures of distance between the countries in this pair. We computed income differences

between all pairs of countries in our sample for which income data was available, i.e. 10, 939 pairs

of countries. All our variables are entered in logs. Thus our baseline specification is:

|log yi − log yj | = β0 + β1 logG
D
ij + β2 logG

G
ij + β3G

L
ij + β04Xij + εij (27)

where GD
ij is genetic distance, G

G
ij is geodesic distance, G

L
ij is latitudinal distance, Xij is a set of

controls capturing other types of barriers and εij is a disturbance term to be further discussed

below.

The reason our empirical specification must involve income differences rather than a single

country’s income level on the left hand side is that this makes the use of bilateral measures of

barriers possible. There is no other way to quantify the impact of barriers, which are inherently of

a bilateral nature, on income differences. Conceptually, therefore, we depart in a major way from

existing methodologies: our regression is not "directional" in the sense that the right-hand side

variable takes on the same value for each country in the pair, i.e. our specification is not simply

obtained by differencing levels regressions across pairs of countries.30

29The data on per capita income is purchasing power-parity adjusted data from the World Bank, for the year 1995.

We also used data from the Penn World Tables (Summers, Heston and Aten, 2002), which made little difference. We

focus on the World Bank data for 1995 as this allows us to maximize the number of countries in our sample.

30This, obviously, would result in adding no new information relative to the levels regressions themselves. Our
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We should stress that equation (27) is a reduced form. That is, differences in income are

presumably the result of differences in institutions, technologies, human capital, savings rates, etc.,

all of which are possibly endogenous with respect to income differences. Whether income differences

are caused by these factors is the subject of a vast literature but is not primarily the subject of this

paper. This paper is concerned with barriers to the diffusion of these more proximate causes of

income differences: barriers work to explain differences in income presumably because they affect

the adoption of technologies, norms for human and physical capital accumulation, the adoption

of institutions conducive to differential economic performance, etc.. In Section 5 we will relate

barriers to differences in human capital, institutions, investment rates, population growth rates

and openness. Evaluating the role of genetic distance in affecting income differences through these

various channels, however, does not form the core of our argument.

3.2.2 Estimation

We estimate equation (27) using a new methodology. In principle, if one is willing to assume

that the measures of barriers are exogenous, equation (27) can be estimated using least squares.

However, in this case usual methods of inference will be problematic. Consider three countries,

1, 2 and 3. Observations on the dependent variable |log y1 − log y2| and |log y1 − log y3| will be

correlated by virtue of the presence of country 1 in both observations. Conditioning on the right-

hand side variables (which are bilateral in nature) should reduce cross-sectional dependence in the

errors ε12 and ε13, but we are unwilling to assume that observations on the dependent variable are

independent conditional on the regressors.31 In other words, simple least squares standard errors

will lead to misleading inferences due to spatial correlation.

Before proceeding, we note the following observations and conventions: with N countries, there

are N(N−1)/2 distinct pairs. Denote the observation on absolute value income differences between

country i and country j as dyij . Pairs are ordered so that country 1 appears in position i and is

methodology is more akin to gravity regressions in the empirical trade literature than to levels or growth regressions

in the literature on comparative development.

31Another feature that reduces the dependence across pairs is the fact that the dependent variable involves the

absolute value of log income differences. Simple simulations show that under i.i.d. Normal income draws with moments

equal to those observed in our sample (Table 1b), the correlation between absolute value differences in income for

any two pair containing the same country will be about 0.22. Without taking absolute values, it is straightforward

to notice that the correlation would be exactly 0.5.
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matched with all countries from 2...N appearing in position j. Then country 2 is in position i and

is matched with 3...N appearing in position j, and so on. The last observation has country N − 1

in position i and country N in position j. We denote the non-zero off-diagonal elements of the

residual covariance matrix by σm where m is the country common to each pair.

A simple example when the number of countries is N = 4 is illustrative. In this case, under our

maintained assumption that the error covariances among pairs containing a common country m

are equal to a common value σm, the covariance matrix of the vector of residuals ε is of the form:

Ω = cov

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε12

ε13

ε14

ε23

ε24

ε34

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ2ε

σ1 σ2ε

σ1 σ1 σ2ε

σ2 σ3 0 σ2ε

σ2 0 σ4 σ2 σ2ε

0 σ3 σ4 σ3 σ4 σ2ε

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
In this context, controlling for a common-country fixed effect should account for the correlated part

of the error term. For this we rely on well-known results cited in Case (1991), showing that fixed

effects soak up spatial correlation, though in a context quite different from ours: we do not have

longitudinal data, and the panel nature of our dataset comes from the fact that each country is

paired with all the other countries in the dataset.32 Following this observation, we model:

εij =
NX
k=1

γkδk + νij (28)

where δk = 1 if k = i or k = j, δk = 0 otherwise, and νij is a well-behaved disturbance term.

We treat δk as fixed effects, i.e. we introduce in the regression a set of N dummy variables δk

each taking on a value of one N − 1 times.33 Given our estimator, the effect of the right-hand side

32Note that simply treating εi and εj as fixed effects, by including corresponding dummy variables in the regression,

will not fully address our concern. This is because, with the exception of country 1 and country N , all countries will

appear either in position i or in position j in different observations, inducing spatial correlation between these pairs.

In the example above, for instance, country 2 appears in position i in observation 1, and in position j in observation

4, inducing spatial dependence between ε12 and ε23. Simple country fixed effects would not soak up this dependence.

33The inclusion of fixed effects did not greatly alter the signs or magnitudes of the estimates of the slope coefficients

on our variables of interest, compared to simple OLS estimation. In contrast, in line with our expectations, our

common-country fixed effects technique resulted in standard errors that were quite different from (and generally

larger than) the (wrong) ones obtained with simple OLS.
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variables is identified off the variation within each country, across the countries with which it is

matched.

To summarize, for each country we create a dummy variable equal to 1 if the country appears

in a given pair. We then include the full set of N dummy variables in the regression. The in-

clusion of these fixed effects soaks up the spatial correlation in the error term resulting from the

presence of each country multiple times in various country pairs. In addition, our standard errors

are heteroskedasticity-consistent (i.e. we correct standard errors to account for the fact that the

diagonal elements of Ω might differ).34

4 Empirical Results

4.1 Baseline Results

The baseline estimates of equation (27) are presented in Table 2. Columns (1) through (4) feature

our measures of distance entered one by one. The results are in line with expectations: greater dis-

tance, whether genealogical, latitudinal or geodesic, is significantly associated with greater income

differences. The unconditional results using FST genetic distance (column 3) suggest that a one

standard deviation increase in genetic distance is associated with a 0.256 increase in income differ-

ences - 20.19% of this variable’s mean. Columns (4) and (5) shows that it matters little whether

we use Nei genetic distance rather than FST genetic distance. In fact, the impact of a standard

deviation difference in Nei genetic distance is almost the same as that of FST distance. We will

focus on FST genetic distance for the remainder of this paper, since it has a clear interpretation as

genealogical distance (it is referred to in the literatures as the "coancestor coefficient").

Column (5) and (6) enters all three measures of distance together, for the Nei and FST distance

measures respectively. Interesting results emerge. First, the magnitude of the coefficient on geodesic

34There are obviously several ways to address the issue of spatial correlation in our context. An alternative we

considered would be to do feasible GLS by explicitly estimating the elements of Ω, and introducing the estimated Ω as a

weighing matrix in the second stage of the GLS procedure. While apparently straightforward, this is computationally

demanding as the dimensionality of Ω is large - in our application we over 10, 000 country pairs with available data

on the variables of interest, and up to 155 covariance terms to estimate - so we leave this for future research. We also

pursued several bootstrapping strategies based on selecting subsamples such that the problem of spatial correlation

would not occur, generating results very similar to those we present here. Details and results from these bootstraps

are available upon request. In contrast to these alternatives, our approach is computationally easy to implement.
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distance falls by one third, suggesting that it was capturing at least in part the effect of genetic

distance. Second, the coefficient on latitudinal distance becomes very small in magnitude and only

borderline significant. Hence, genetic distance swamps any effect of differences in latitude on the

diffusion of development. Once controlling for genetic distance, the effect of a one standard deviation

change in latitudinal distance on income differences equals only 1.59% of the latter variable’s mean:

the vast income differences observed unconditionally across latitudes (column 2) are not primarily

geographical, but linked to vertically transmitted characteristics captured by genetic distance.

Column (7) introduces a set of control variables that might proxy for different sets of barriers,

linguistic, historical and geographic (the Xij variables in equation (27)). Some of these variables,

such as the one reflecting linguistic similarity and colonial history, are less exogenous with respect to

income differences than the distance measures already considered, so results should be interpreted

cautiously. Several lessons emerge. First, the signs of the coefficients are largely as expected.

Contiguous countries tend to have more similar income levels, as do countries that were ever a

single political entity. Countries that have had a common colonizer share more similar income

levels, though the effect is small in magnitude. Unsurprisingly, income differences are greater when

countries were ever in a colonizer-colonized relationship. On the other hand, having substantial

fractions of the populations in each country speaking the same language bears a very small effect

on income proximity, and the sign is the opposite of that expected. Second, these coefficients are

estimated quite precisely. Third, and perhaps most importantly, the inclusion of these controls does

not modify the estimates on our main variables of interest: the distance measures, in particular

genetic distance, hardly change at all.

Finally, in column (8), we assess whether the effects of genetic distance might depend on geodesic

distance, by adding the interaction between the two variables. We find strong evidence of such an

interaction effect: genetic distance matters less for income differences when countries are far apart

geographically, and the effect is statistically significant. We can interpret this result as evidence

in favor of the "barrier" interpretation for genetic distance: the effect of genetic distance falls as

physical distance increases, so these two types of barriers act as substitutes for each other. We

would not observe this pattern of coefficients if genetic distance mattered only as the result of a

genetic trait bearing a direct effect on income levels.

Together, these results provide considerable evidence consistent with the model of cultural

barriers introduced in Section 2: genetic distance enters with a positive and statistically significant
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sign in all specifications. Moreover, we find only limited empirical support for the idea that income

differences are less pronounced along similar latitudes than across latitudes, once we control for

genetic distance.

4.2 Extensions and Robustness

Historical Income Data. Table 3 considers various extensions and robustness checks on our

baseline reduced form regressions. The first set of tests we perform examine whether the pattern

uncovered for income differences in 1995 held for earlier periods in history. Our basic argument

about the importance of cultural barriers for the diffusion of development should hold for other

time periods as well, particularly for the period preceding the Industrial Revolution. Unfortunately,

internationally comparable income data for this period are available for only a few countries. We

used income per capita data in 1500 and 1700 from Maddison (2003), for up to 29 countries (27 for

1500), and repeated our basic reduced form regression.35 On the right-hand side, we use genetic

distance for populations as they were in 1492, prior to the discovery of the Americas and the

great migrations of modern times.36 The results are presented in columns (1) and (2). Much

to our surprise, genetic distance again came out statistically significant and positive, despite the

small sample. The magnitude of the coefficient is smaller than in Table 2, but so is the average

difference in log incomes to be explained (as the dispersion of income was much lower in those time

periods): a one standard deviation change in genetic distance is associated with a 0.122 change in

the pairwise difference in log income in 1500, corresponding to 38.15% of that variable’s mean - a

much larger magnitude than in the 1995 data. Similar results hold for income differences computed

for 1700 - a one standard deviation change in FST genetic distance is associated with a change in

the difference in log income of 36.20% of its mean. Given the paucity of historical income data,

these pre-Industrial Revolution results are quite remarkable.

Finally, we also replicated our results using income in 1960 (column 3). Here, the coefficient is

35These countries are Australia, Austria, Belgium, Brazil, Canada, China, Denmark, Egypt, Finland, France,

Germany, Greece, India, Indonesia, Ireland, Italy, Japan, Korea, Mexico, Morocco, Netherlands, New Zealand,

Norway, Portugal, Spain, Sweden, Switzerland, United Kingdom, United States. There were 275 pairs with available

data for 1500 income, and 328 pairs for 1700. A noteworthy feature of this sample is that it contains no countries in

Sub-Saharan Africa.

36This variable is constructed using the Cavalli-Sforza data, but matching countries to populations as they were in

1500, not as they are today, as explained in Section 3.2.
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smaller than the one obtained for 1995, though it remains highly significant statistically. Again,

the average pairwise difference in log income per capita was lower in 1960 than it was in 1990: so

a one standard deviation change in log FST genetic distance is associated with a 0.178 change in

the difference in log income in 1960, amounting to 15.95% of that variable’s mean.

Possible Endogeneity of Genetic Distance. Next, we attempt to control for the possible

endogeneity of genetic distance with respect to income differences. While differences in allele

frequencies between the populations of two countries obviously do not depend directly on income,

migration could lead to a pattern of genetic distances today that is closely linked to current income

differences. Consider for instance the pattern of colonization of the New World starting after

1500. Europeans tended to settle in larger numbers in the temperate climates of North America

and Oceania. If geographic factors were to bear a direct effect on income levels, and geographic

factors were not properly accounted for in the regressions through included control variables, then

genetic distance today could be positively related to income distance not because cultural distance

precluded the diffusion of development, but because similar populations settled in regions prone to

generating similar incomes.

To assess this possibility, column (4) of Table 3 excludes from the sample any pairs involving

one or more countries from the New World (defined as countries in North America, Latin America,

the Caribbean and Oceania), where the problem identified above is likely to be most acute. The

effect of genetic distance is now actually marginally larger than in column (6) of Table 2. Note

also that the difference in latitudes becomes three times larger, an observation to which we will

return below. Next, we use our data on FST genetic distance as of 1500 instead of current genetic

distance in column (5) of Table 3, and as an instrument for current genetic distance in column (6)

of Table 3. This variable reflects genetic distance as it stood before the great migrations of the

modern era, and yet is highly correlated with current genetic distance, so it fulfills the conditions

of a valid instrument. Again, the magnitude of the genetic distance effect is raised in both cases -

in fact it is raised by 20% when 15th century genetic distance is used as an instrument for current

genetic distance. This suggests that, if anything, our baseline results were understating the effect

of genetic distance on income differences.

The Diamond Gap. Jared Diamond’s (1997) influential book stressed that differences in latitude

played an important role as barriers to the transfer of technological innovations in early human
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history, an effect that could have persisted to this day. Our estimates of the effect of latitudinal

distance provided only limited evidence that this effect was still at play: in our regressions we

have found little evidence that differences in latitudes help explain much of the income differences

across countries, although the effect was much larger when excluding the New World from our

sample. However, Diamond took his argument one step further, and argued that Eurasia enjoyed

major advantages in the development of agriculture and animal domestication because a) it had

the largest number of potentially domesticable plants and animals, and b) had a predominantly

East-West axis that allowed an easier and faster diffusion of domesticated species. By contrast,

differences in latitudes in the Americas and Africa created major environmental barriers to the

diffusion of species and innovations. More generally, Eurasia might have enjoyed additional benefits

in the production and transfer of technological and institutional innovations because of its large

size (as stressed by Michael Kremer, 1993).

To test and control for a Eurasian effect, we constructed a dummy variable that takes on

a value of 1 if one and only one of the countries in each pair is in Eurasia, and 0 otherwise (the

"Diamond gap").37 In order to test Diamond’s hypothesis, we added the Diamond gap to regressions

explaining income differences in 1995 (column 7) and in 1500 (column 8). For the former regression,

we restrict our sample to the Old World. It is appropriate to exclude the New World from the

sample when using 1995 incomes because Diamond’s theory is about the geographic advantages

that allowed Eurasians to settle and dominate the New World. If we were to include the New

World in a regression explaining income differences today, we would include the higher income per

capita of non-aboriginal populations who are there because of guns, germs and steel, i.e. thanks

to their ancestors’ Eurasian advantage. As expected, in the regression for 1995 income differences,

the Diamond gap enters with a positive and significant coefficient, and its inclusion reduces (but

does come close to eliminating) the effect of genetic distance. In column (8), for 1500 income

differences, the Diamond gap is again significant and large in magnitude, despite the paucity of

observations. This provides suggestive quantitative evidence in favor of Diamond’s observation that

the diffusion of development was faster in Eurasia. We also conclude that genetic distance between

populations plays an important role in explaining income differences even when controlling for the

environmental advantages and disadvantages associated with Eurasia.

37For further tests providing statistical support for Diamond’s observations, see Olsson and Hibbs (2005).
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Genetic Distance across European Countries. Cavalli-Sforza et al (1994) provide data on

genetic distances within certain regions of the world, in particular Europe. These data are more

disaggregated (i.e. cover more distinct populations) than the matrix of distances for 42 worldwide

populations. For Europe, they present a distance matrix for 26 populations that can be matched

quite readily to 24 European countries.38 Analyzing these data can be informative for several

reasons. First, it constitutes a robustness check on the worldwide results. Second, matching popu-

lations to countries is much more straightforward for Europe than for the rest of the world, because

the choice of sampled European populations happens to match nation state boundaries. Third,

genetic distances are generally much smaller across countries of Europe, and genetic specificities

within Europe have developed over the last couple of thousand years (and not tens of thousands of

years). It is very unlikely that any genetic traits have risen to prominence as the result of strong

natural selection over such a short period of time, so a finding that genetic distance based on neu-

tral markers within Europe is associated with income differences would be evidence in favor of the

"barriers" interpretation rather than a direct effect of genetic traits.

Table 4 presents the results. Much to our surprise, genetic distance is again positively and

significantly associated with income differences. Moreover, the effects are large in magnitude.

The baseline results of column (5), which includes several controls (we now exclude the colonial

variables for obvious reasons) suggest that a one standard deviation change in the log of genetic

distance is associated with a 0.331 change in log income differences, or 59.62% of that variable’s

sample mean. Thus, cultural barriers captured by genetic distance seem very strongly associated

with income differences. Physical distance measures correspondingly bear small or insignificant

coefficients, suggesting that geographic barriers are not a big hindrance to the diffusion of income

across countries of Europe.

4.3 Effects on the Proximate Determinants of Income Levels

Our approach to quantifying the barriers to the diffusion of development has been of a resolutely

reduced-form nature. That is, we did not specify what economic factors make incomes similar or

different, and have instead focused on the effects of geographic and cultural barriers on income

differences directly. However, differences in income result from more proximate causes. Several

38These countries are Austria, Belgium, Croatia, Czech Republic, Denmark, Finland, France, Greece, Hungary,

Iceland, Ireland, Italy, Macedonia, Netherlands, Norway, Poland, Portugal, Russian Federation, Slovak Republic,

Slovenia, Spain, Sweden, Switzerland and the United Kingdom.
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prime candidates have been offered to explain differences in income per capita. These factors are

summarized in the model of Section 2 by parameter A, and we now discuss them in greater detail.

In the tradition of the Solow model, steady-state income per capita is positively affected by rates

of factor accumulation (in physical and human capital), and negatively affected by the depreciation

of capital per worker, which is more rapid when population growth is faster. The level of total factor

productivity, in growth accounting or income accounting exercises, has been found to account for

much of the variation in growth and income levels.39 What causes differences in the levels of total

factor productivity, however, is largely unknown. On a general level, TFP is "technology", though

the deeper determinants of the adoption of better technologies are generally left unspecified. A

recent literature has stressed the importance of institutions as a determinant of productivity (the

seminal contribution here is Acemoglu, Johnson and Robinson, 2001), and Glaeser et al. (2004)

have recently reemphasized the importance of human capital accumulation, rather than institutions,

as a central determinant of income levels. Finally, a large literature emphasized the role of market

size and openness as a driver of growth and income levels. We consider these five proximate causes

of income levels and examine the effects of our measures of distance on pairwise differences in the

rate of physical capital accumulation, the rate of population growth, institutional quality, the stock

of human capital and openness. These are meant to reflect the prime candidate explanations for

differences in income levels. Our empirical model can be summarized as:

Genetic distance

Geodesic distance

Latitudinal distance

Contiguity, colonial past...

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
⇒

Institutional quality differences

Human capital differences

Investment differences

Population growth differences

Openness differences

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
⇒ Income Differences

Our paper is primarily concerned with the first arrow in this diagram, and there are voluminous

literatures and debates on the respective roles of the proximate determinants of income. Thus,

we do not attempt to decompose income differences into differences into the underlying proximate

cause, a task that is both a tall order and beyond the scope of this paper. We focus instead on

investigating empirically the role of our distance measures as determinants of differences in the

proximate determinants of income.

39For an excellent survey on this point, see Caselli (2005).
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Institutions. In an influential series of papers, Acemoglu, Johnson and Robinson (2001) and

Rodrik, Subramanian and Trebbi (2004) suggest that the prime cause of economic development is

the quality of a country’s institutions. If this is the case, countries that are distant in terms of

institutional quality should also be distant in terms of income per capita. We use a commonly-used

measure of institutional quality, the risk of expropriation variable (this variable, which ranges from

0 to 10, was used for instance in Acemoglu et al., 2001). Constructing the pairwise difference in

the risk of expropriation for 1990, we regress this variable on our various measures of geographic

and cultural distance. Table 5, column (1) presents the results. The three main measures of

distance are significant when entered individually, but the log of geodesic distance becomes small

in magnitude when genetic distance and latitudinal distance are entered alongside it.40 This is

interesting, as latitudinal distance had a small effect in the income differences regression. Our

finding that latitudinal distance matters for institutional differences is consistent with the view

that geographic and climatic factors have historically constituted hindrances to the diffusion of

institutions conducive to higher incomes. Our estimates suggest that a one standard deviation

change in genetic distance results in a 0.31 change in the difference in expropriation risk, which

corresponds to 15.27% of this variable’s mean.

Human Capital. In a recent paper taking issue with the literature on the primacy of institutions,

Glaeser et al. (2004) suggest that variation in human capital is the fundamental cause of income

differences across countries. To examine the role of geographic and cultural barriers in preventing

countries from adopting high levels of human capital, we reran the specification of equation (27),

replacing the left hand side variable with the absolute difference in the stock of human capital,

measured by the average number of years of primary, secondary and tertiary schooling in the

population aged 25 and above in 1990.41 Again, our three categories of distance measures bear

positive and significant coefficients when entered individually, and remain so when entered jointly

(Table 4, column 2). The pattern of coefficients is similar to that obtained for institutions, with a

larger effect of geodesic distance. A one standard deviation change in genetic distance is associated

with a 0.55 change in the absolute difference in human capital, or 16.91% of this variable’s mean.

40Results for the specifications where distance measures are entered individually are available upon request.

41The human capital data is from Barro and Lee (2000). Again, this is a commonly used, if imperfect, measure of

the stock of human capital.
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Population Growth. In column (3) of Table 4, we examine the determinants of differences in

rates of population growth. In neoclassical growth models, rapid population growth reduces the

steady-state level of income per worker. Thus, differences in population growth (in turn resulting

mainly from differences in mortality and fertility) are thought to be associated with differences in

income. Again, measures of cultural and geographic distance may affect how differently countries’

populations grow. We particularly expect geographic distance measures to be correlated with

differences in population growth, as countries located closer to the equator tend to have higher

rates of population growth. Indeed, Table 4, column (3) shows that latitudinal distance is positively

related to population growth differences (where population growth is defined over the 1960-1990

period): a one standard deviation change in latitudinal distance is associated with a 0.049 change

in population growth differences, or 15.41% of this variable’s mean. Genetic distance again appears

to be significantly related to the dependent variable: a one standard deviation change in genetic

distance is associated with a 0.049 change in differences in population growth, or 16.62% of this

variable’s mean. One interpretation of this finding is that vertically transmitted characteristics are

associated with persistent differences in norms of behavior affecting population growth, particularly

fertility which dominates the cross-country variation in population growth rates.42

Physical Capital Investment. The rate of investment in physical capital is also a determinant

of steady-state income levels in the neoclassical model. How do the geographic and cultural barriers

to the diffusion of development relate to differences in this proximate cause of income levels? Table

4, column (4) provides the corresponding estimates, using the Penn World Tables version 6.1 series

on the investment share of GDP for 1990. Distance measures bear positive signs when they are

entered separately as well as jointly. Genetic distance is positively related to investment differences:

a one-standard deviation change in genetic distance is associated with a 1.28 difference in investment

rates, which corresponds to 13.79% of this variable’s sample mean. We can interpret this finding

as indicating that cultural barriers hinder the adoption of norms of investment behavior that are

possibly conducive to superior economic outcomes.

Extent of the Market. Finally, there exists a very large literature on the causal links between

international openness, the extent of the market, and economic development. Recent contributions

42A regression relating differences in fertility rates to our distance measures reveals a very significant and large

effect of genetic distance on fertility differences. These results are available upon request.
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that have emphasized the extent of the market as an important determinant of economic perfor-

mance include Ades and Glaeser (1999), Alesina, Spolaore and Wacziarg (2000, 2005) and Alcalá

and Ciccone (2004). We examine here whether differences in market size are related to our vari-

ous measures of distance. Our measure of market size is the conventionally used ratio of imports

plus exports to GDP (in 1990), which proxies for access to world markets. Table 4, column (5)

displays the results for the openness variable. Differences in openness seem unrelated to most of

the variables included in our model, with the exception of the post-war common colonizer variable

(this could capture an Africa effect) and the common language variable. Genetic distance appears

unrelated to differences in trade openness.

To summarize, genetic distance is significantly positively associated with differences in four of

the five proximate determinants of development that we considered, and these effects are generally

large in magnitude. This confirms the results found using income differences directly, and provides

suggestive evidence that genetic distance acts through several channels. Latitudinal differences

were also significantly related to differences in some of these variables (notably institutional quality,

human capital and investment), providing some evidence that climactic factors stressed in Sachs

(2001) or the geographic barrier effects stressed by Diamond (1997) might be at play for some of the

proximate determinants of development - despite being only weakly related to income differences

directly.

5 Conclusion

In this paper we have established the following facts: First, differences in income per capita across

countries are positively correlated with measures of genetic distance between populations. Second,

the effect of genetic distance - which we interpret as an overall measure of differences in vertically

transmitted characteristics across generations - hold even when a large set of geographical and

other variables are controlled for. Third, the patterns of relationships between income differences

and measures of genetic and geographical distances hold not only for current worldwide data but

also for estimates of income per capita and genetic distance in the years 1500 and 1700, as well as

in a sample of European countries. Finally, similar patterns hold when the dependent variable is

differences in human capital, institutional quality, population growth and investment rates.

These results strongly suggest that characteristics transmitted from parents to children over long

historical spans play a key role in the process of development. In particular, the results are consistent
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with the view that the diffusion of technology, institutions and norms of behavior conducive to

higher incomes, is affected by differences in vertically transmitted cultural characteristics associated

with genealogical relatedness: populations that are genealogically far are more likely to differ in

those characteristics, and hence less likely to adopt each other’s innovations over time. Future

research should seek to identify the precise mechanisms through which the vertical transmission of

characteristics across generations affect the diffusion of development across time and space.
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