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Abstract

We introduce intentional idiosyncratic play in a standard stochastic evolutionary

model of equilibrium selection in bargaining games. We define intentional mutations

as rare play of mixed strategies that are supported only on the set of strategies that

would give the idiosyncratic player a higher payoff were it to become an equilibrium. In

contract games, intentional idiosyncratic play alters the standard evolutionary dynamic

in ways that are plausible in light of historical studies of institutional transitions. First,

the most probable transitions between institutions are induced only by the idiosyncratic

play of those who stand to benefit from the switch. Second, where sub-population sizes

and idiosyncratic play rates differ cross groups, the group whose interests are favored

are those who engage in more frequent idiosyncratic play and who are are less numerous.

The intentional idiosyncratic play dynamic selects the equilibrium that implements the
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Nash bargain as the stochastically stable state, while the standard dynamic selects the

Kalai-Smorodinsky bargain.

Keywords: Evolutionary Game Theory, Stochastic Stability, Nash Bargaining So-

lution, Multiple Equilibria, Institutional Transitions, Intentionality
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1 Introduction

The development of stochastic evolutionary game theory (Foster and Young (1990),

Young (1993b), Kandori, Mailath, and Rob (1993),Young (1993a), Blume(1995) Bin-

more, Samuelson, and Young (2003) provides a mechanism for equilibrium selection

in models with multiple strict Nash equilibria(Samuelson 1997). Using these models,

institutions may be represented as conventions, and idiosyncratic individual behav-

iors occasionally displace a population from the neighborhood of one convention to

another. Models from this literature have been used to explain the evolution of conven-

tions(Young 1995), the diffusion of innovations(Young 2003), the emergence of classes

(Axtell, Epstein and Young 2000, Axtell and Chakrabarty 2001) and crop-shares(Young

and Burke 2001). When applied to a contract game or other interactions governing dis-

tribution between economic classes, the approach allows remarkably strong conclusions

about the nature of evolutionarily successful institutions. For example in Young (1998),

the equilibrium selection process generates a long term history in which populations

tend to spend most of their time at conventions that are Pareto-efficient and egalitar-

ian. In addition, high-rationality results in cooperative bargaining theory, such as the

Nash and Kalai-Smorodinsky solutions, emerge as unique stochastically stable states in

non-cooperative, low-rationality processes of adaptation and mutation.

Here we extend this approach by imposing empirically plausible restrictions on the

process generating idiosyncratic play. The works above use a standard adaptive learn-

ing dynamic, in which idiosyncratically playing agents randomly draw strategies from

their entire strategy set, effectively replicating a mutation-like process. The approach

we develop here is that the error distribution is state dependent: when playing idiosyn-
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cratically, agents draw from strategies that offer them a better payoff, should sufficiently

many others do the same, by comparison with their current payoff. We thus introduce

a minimal amount of foresight into an otherwise myopic updating process.

Our modification to the standard dynamic is motivated by our belief that agents

who act idiosyncratically in economic conflicts are behaving intentionally, and thus do

not “accidentally” experiment with contracts under which they would do worse, should

the contract be generally adopted. We have in mind such idiosyncratic play as walk-

ing to work rather than riding in the racially segregated (“Negro”) section of the bus

or refusing to exchange under the terms of a contract that awards most of the joint

surplus to the other party (for example locking out overly demanding employees). We

thus seek to synthesize the evolutionary game theory approach with the literature on

institutional transitions, providing formal models for processes that sociologists (Tilly

1994, Skocpol 1979) and historians (Brenner 1976, Hobsbawm 1974) have long found

to be empirically important. Axtell and Chakravarty(2001) use a similar approach, but

they a) limit themselves to agent-based simulations, and b) mandate that a fraction

of players always plays a non-best-response, while we provide analytical results and

assume that players only play a non-best-response when they play idiosyncratically.

Like Bergin and Lipman (1996), who conclude that “models or criteria to deter-

mine ‘reasonable’ mutation processes should be a focus of research in this area”, and

Van Damme and Weibull(2001), our idiosyncratic play is state-dependent. But while

these authors make error rates state dependent, we make the distribution of idiosyn-

cratic play across the strategy space state-dependent. We do this in order to impose
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a particular structure on the process generating idiosyncratic play, one that we think

captures an essential aspect of the process of institutional transitions, namely the in-

tentional violation of an existing norm motivated by dissatisfaction with the status quo.

A large recent literature characterizes the stochastically stable equilibria of various

classes of games. A strand of this literature has looked at bargaining games, where

the set of strict Nash equilibria are symmetric in strategy and are Pareto-optimal.

Young(1993b) examines the Nash demand game, and shows the Nash bargaining so-

lution is stochastically stable. Young(1998) examines contract games, and shows that

the Kalai-Smorodinsky solution is stochastically stable. Tröger(2002) studies stochastic

stability in a “hold-up” model, where the bargaining follows a first-stage investment

decision. Ellingsen (1997) examines the related but distinct notion of evolutionary sta-

bility in bargaining games. Agastya(2004) investigates stochastic stability in double-

sided auctions, which can be represented as bargaining games where matches that do

not exhaust the surplus are decided by randomizing between the contracts that do fully

divide the surplus.

A common assumption in these papers and the stochastic adjustment literature is

that the idiosyncratic noise takes the form of errors, in that there is no systematic bias

in the strategies played when non-best-responses occur. A possible explanation for this

omission is that it might not matter; Young(1993a) shows that as long as errors have

full support, the stochastically stable state is invariant to the choice of error distribu-

tion. If on empirical plausibility grounds, however, we weaken the assumption of full

support, we select different equilibria for some important classes of games.
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Table 1: Example 1
Contract 0 1 2

0 5,60 0,0 0,0

1 0,0 12,20 0,0

2 0,0 0,0 36,1

Intentional idiosyncratic play, we will show, alters the standard evolutionary dy-

namic in ways that are plausible in light of historical studies of institutional transitions.

First, transitions between institutions are induced only by the idiosyncratic play of those

who stand to benefit from the switch, in contrast to the standard (unintentional) ap-

proach. Second, as one would expect, in the intentional dynamic where sub-population

sizes and error rates differ across groups, the group whose interests are favored are

those who engage in more frequent idiosyncratic play and who are are less numerous.

In contract games, the conventions that are selected as stochastically stable under the

intentional idiosyncratic play dynamic, differ from those selected under the standard

dynamic. Our dynamic selects the convention that implements the Nash bargain, while

the standard dynamic selects the Kalai-Smorodinsky bargain. The difference is illus-

trated in the example in Table 1.

In example 1, the Kalai-Smorodinsky contract is (1, 1), as 12
36 = 1

3 = 20
60 , and

the Kalai-Smorodinsky solution equates the ratio of the payoffs to the ratio of the

players best possible payoff. In contrast, the Nash bargaining solution is (0, 0), since

5 × 60 > 12 × 20 > 36 × 1, and the Nash solution is that which maximizes the product

of the payoffs. Our primary contribution in this paper is to show that when errors are

intentional rather than random, although still far from fully rational, the Nash bargain
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is generally selected as the ultra-long-run equilibrium.

In order to establish a benchmark for contrast, in the next section we reproduce a

version of the standard adaptive stochastic dynamic model and point out some counter-

intuitive implications of the institutional transition process that it supports. The main

difference between our construction of the standard model and those mentioned above

is that, in contrast to Kandori, Mailath and Rob, we have two sub-populations (classes)

and in contrast to Young, our agents have but a single period memory and best respond

to the (known) distribution of play in the previous period. These modeling differences

do not alter the basic results of the unintentional idiosyncratic play model under inves-

tigation here. In contrast to both we are interested in the dynamics given by substantial

(non vanishing) error rates and with differing group sizes.

In section 3 we introduce our intentional idiosyncratic play modification and demon-

strate the results mentioned above as well as showing that institutional transitions under

the intentional dynamic are among adjacent contracts (those that are the “neighbors”

of the status quo contract along the contract frontier in a finite contract space) while

the standard dynamic moves between extreme contracts, leapfrogging, as it were, across

large segments of the contract space. Section 4 extends the model to double-sided auc-

tion and Nash Demand games, and section 5 concludes.
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2 Adaptive Stochastic Dynamics

We consider two large sets of agents, called classes(denoted R and C for row and col-

umn), playing an asymmetric K-contract game. This has K strategies, with payoff

functions given by πR(i, j) = πC(i, j) = 0 if i 6= j, and πR(i, i) = ai, π
C(i, i) = bi i∈

(0, 1, ...,K − 1) otherwise. We order the strategies such that if i < j then aj > ai and

bj < bi, so the contracts are ordered such that the row player favors higher indices,

and the column player favors lower indices. Clearly the diagonal of the game matrix

constitutes the set of pure Nash equilibria, and they are all strict and Pareto-optimal.

For example, a simple 2 contract game, with both contracts specifying the division of

a unit good, is given by (with a0 < a1, bi = 1 − ai):

Contract 0 1

0 a0, 1 − a0 0, 0

1 0, 0 a1, 1 − a1

We can represent this dynamic by a stochastic dynamical system, where the states

represent the number of each population playing each strategy. The state space is

given by X = ∆R × ∆C , where ∆R = {n0, n1, n2..., nK−1|
∑

i ni = N} and ∆C =

{m0,m1,m2, ..,mK−1|
∑

i mi = M} where N is the size of the row population and M

is the size of the column population, and each ni and mi is the number of the row and

column population, respectively, that is playing strategy i. Let p ∈ ∆R and q ∈ ∆C

be vectors denoting the number of agents playing each strategy in the row and column

population, respectively. We will often denote a state as θ = (p, q) ∈ X.
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Denote the best-response functions for the row and column populations respectively,

BRR(q) : ∆C → ∆R = Neargmaxjqjaj
(1)

BRC(p) : ∆R → ∆C = Meargmaxjpjbj
(2)

where ei is the i’th standard basis vector of <K . If there are multiple best responses,

the agents choose the highest index if they are row players, and the lowest index if they

are column players.

We now consider a matching dynamic with noise. The dynamic is a familiar my-

opic best-response dynamic with inertia, as in Young(1998), Samuelson(1997) and

Agastya(2004). Each period, all players are matched to play the contract game. Each

time they are matched, agents play the strategy they played last with probability ν or

revise their strategy with probability 1 − ν. This “inertia”, provided by ν, is neces-

sary to ensure convergence. This defines a Markov process: P ν : X → X, defined by

P ν(θ′|θ) = Prob(θ − (x1

N p, x2

M q) + (x1

N BRR(q), x2

M BRC(p)) = θ′ where x1 ∼ Bin(N, ν),

x2 ∼ Bin(M,ν) where Bin(N, ν) is a binomial distribution with N draws with proba-

bility of success given by ν. Following Young(1998) we note that, for generic contracting

games and sufficiently large population sizes, the only recurrent classes of this Markov

process are the strict pure Nash equilibria, where both players coordinate on the same

contract.

Suppose that when agents can revise their strategies, they play a non-best response

with probability εTR for the row players and probability εTC for the column players.
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Thus, with probability εTR the row players play a strategy drawn from uniform distribu-

tion U on the strategy space. As we will see, it will be useful to use the following general

distribution: U(i, j) as the density function for the uniform distribution on the strategies

i, i + 1, ...j, with 0 weight on the other strategies. For the standard dynamic, the error

distribution is just U(0,K − 1) which gives a Markov process defined by: P ν,ε(θ′|θ) =

Prob(θ−(x1

N p, x2

M q)+( 1
N (x1−

∑K−1
i=0 y1i)BRR(θ), 1

M (x2−
∑K−1

i=0 y2i)BRC(θ))+(y1, y2) =

θ′) where x1, x2 are binomial draws as above, y1 ∼ MN (K,x1, U(0,K − 1)) and

y2 ∼ MN (K,x2, U(0,K − 1)), with MN (N, k, f) being the multinomial distribution

with N bins, k draws, and distribution f over the bins. Owing to the unintentional

nature of the errors, where mistakes that are potentially beneficial are as likely as those

that are potentially unfavorable, we call this the U-dynamic, ΓU .

As is well-known, this Markovian dynamic can be represented by a transition ma-

trix given by(abusing notation somewhat) P ν,ε
θθ′ = P ν,ε(θ′|θ). The long-run steady

state of the dynamic is then given by the unique vector µ(ν, ε) ∈ RN+M that sat-

isfies
∑

i µi(ν, ε) = 1 and µ(ν, ε)P ν,ε = µ(ν, ε). We are interested in the states that

have positive weight in the distribution µ∗(ν) = limε→0µ(ν, ε), following Foster and

Young(1990) we call these stochastically stable states, with U-stability referring to sta-

bility under the perturbation process described in the preceding paragraph.

In general, this ergodic distribution will be the solution to an intractably large sys-

tem of linear equations. However, the proofs in this literature have largely been done

using a result from Friedlin and Wentzell(1984), that expresses the ergodic distribution

of a finite irreducible Markov process as the sums of “tree potentials”. This provides a
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useful method for characterizing the stochastically stable states. Young(1993), defines

the resistance of a transition from state i to state j as the unique Rij that satisfies

0 < limε→0P
ν,ε
ij /εRij < ∞. If we build a complete weighed directed graph, with vertices

corresponding to the states of the Markov process, with each edge i, j having weight

Rij , the recurrent class will be the root of the in-branching1 with the least sum of edge

weights. We will also call this the minimal tree. See Young(1993) for details.

Equilibrium selection in this model is determined by the likelihood for each con-

vention that the stochastic process generating idiosyncratic play will realize a number

of deviants from the convention sufficient to induce the best responding players on the

other side to adopt some other convention. The resistances defined in the previous para-

graph are the minimum number of players who must idiosyncratically deviate from the

convention i to induce a transition to some other convention j is termed the resistance

for this transition or Rij. (For non-vanishing ε transitions in both directions will be

induced by both classes, but as ε goes to zero, the influence on the ergodic distribution

µ(ν, ε) of the least likely path from i to j can be ignored).

We shall make use of three propositions proved in Binmore, Samuelson and Young(2004):

Proposition 2.1 (Local Resistance Test). If maxjRji < minjRij then i is the root

of the minimal tree.

1An in-branching is a directed connected graph where every node save one has only one edge exiting it,
The node with no exiting edge is called the root.
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Proposition 2.2 (Naive Minimization Test). Take the least edge exiting each node.

If the resulting graph has a unique cycle containing an edge that is maximal over all

edges, deleting that edge will give the minimal tree.

Proposition 2.3 (Contract Theorem). . Let 0 < δ < 1. If the contracts are equally

distant in the row player’s payoff, and given by (ai, bi = f(ai)), ai =iδ,i∈ (1, ...., 1
δ −

1) where f is a continuous, strictly decreasing, strictly concave function. Then, for

δ sufficiently small, the stochastically stable contract in the U-dynamic is the Kalai-

Smorodinsky solution, given by i such that ai/amax = bi/bmax, assuming it lies in the

set of contracts.

Our first observation is that the transitions between equilibria in the contract game

are instigated by the class that loses from the transition. That is, the resistance of the

transition from contract i to contract j is given by

Rij = min{d
MTCai

ai + aj
e, d

NTRbi

bi + bj
e}. (3)

If NTR = MTC is sufficiently large, then we can use the reduced resistances rij =

min{ ai

ai+aj
, bi

bi+bj
}. Note that if bi > bj and ai < aj then rij = ai

ai+aj
< 1/2 < bi

bi+bj
=

1 − rji. Simple manipulation then shows that i is stochastically stable if and only if

aibi > ajbj.

For the transition from i to j, it is the more likely of the two paths that is the

resistance, transitions are always induced by those who lose as a result. The intuition

behind this result is that it always takes more idiosyncratic play by those disadvantaged

at the status quo convention to dislodge the best responding members of a class from
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its preferred contract than to dislodge the best responders in the disadvantaged class

to try a contract that is preferable to the status quo.

The fact that the unintentional dynamic takes the minimum of both populations’

resistances means that the agents who are inducing the change are those who stand to

lose from the tip. The resistance of the transition from i to j is the number of idiosyn-

cratic plays made by the population facing payoffs bi and bj . Similarly, the transition

from j to i is driven by the idiosyncratic play of the population facing the payoffs ai

and aj . The most likely path between the two conventions occurs when the losers from

the transition make enough mistakes.

This observation gives rise to a number of corollary observations. a) Having a larger

group benefits you, and b) if the rates of idiosyncratic play differ, then the side with the

faster rate does worse. We show this in the 2-contract case to illustrate the intuition,

and then generalize to the K-contract case.

Consider the 2-contract game below with payoffs (a0, b0), (a1, b1) with a0 < a1 and

b0 > b1 as usual. Assume the row population has population size N and the column

population is size M . Further, assume that the row population has idiosyncratic play

probability εTR and the column population has idiosyncratic play probability εTC .

Contract 0 1

0 a0, b0 0, 0

1 0, 0 a1, b1
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Then the resistances(see Young(1998) are given by Rij = min{dMTC
ai

ai+aj
e, dNTR

bi

bi+bj
e}.

If NTR/MTC is sufficiently large (the row population has a very slow idiosyncratic play

rate and/or a very large population relative to the column population), the resistances

will be R01 = dMTCa0

a1+a0
e, and R10 = dMTCa1

a1+a0
e. If a0 < a1 then R01 < R10 and 1 is

U-stable. Note that 1 is the preferred contract for the row players, while it is the col-

umn players with relatively faster idiosyncratic play rates and smaller population. This

is because both transitions occur as a result of the idiosyncratic play of the column

population, who prefer contract 0. The errors of the column players bring about their

own reduction in payoffs.

When we have K contracts, ai, bi, i ∈ 0...K − 1, i < j → ai < aj , bi > bj, this is also

easy to see. Note that Rij = min{MTC
ai

ai+aj
, NTR

bi

bj+bi
} which is equal to MTCai

ai+aj
for

sufficiently large NTR/MTC , which is increasing in ai and decreasing in aj . Suppose

1 is the contract with the highest row payoff a1. Let j denote the second highest ak

since the highest incoming edge to vertex 1 is
MTCaj

aj+a1
, while the lowest outgoing edge is

MTCa1

a1+aj
. Since a1 > aj , this means that the minimum outgoing edge from 1 is greater

than the maximum incoming edge, so by the local resistance test, a1 is stochastically

stable. So the population that is largest, or idiosyncratically plays the least, does best.

We summarize these findings in the next proposition:

Proposition 2.4. Under the U-dynamic, if population sizes are given by N and M ,

and idiosyncratic play rates are given by TR and TC for row and column respectively,

then if NTR/MTC is sufficiently large(small) then the contract most beneficial, with

payoff amax(bmax), to the row(column) population will be U-stable.
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3 Intentional Idiosyncratic Play

In sum, under the U-dynamic the individuals who induce transitions from one contract

to another always lose as a result. Two additional odd results follow from this: those

who play idiosyncratically at a lower rate and those who come from larger groups are

favored in this dynamic. The reason is that idiosyncratic play by members of a more

numerous group with lower rates of idiosyncratic play are less likely to induce a tran-

sition (from which they would necessarily lose, if it occurred).

In order to overcome these problems with the U-dynamic, we now define a new

dynamic ΓI or the I-dynamic, where the error distribution for idiosyncratic play is

supported only on the strategies that would be beneficial relative to the current state.

Instead of idiosyncratic play being a random draw over the entire strategy space, we

require that the agent randomly choose only from those strategies that would give a

higher payoff, were they to be played by both populations. That is, when the agent’s

opposing population is at a recurrent class θ = (j, j), the agent in the row population

randomly plays a strategy drawn from the set Sj = {i|πR(i, i) > πR(j, j)}. We make

this precise below. This involves a degree of foresight without imposing full rationality,

something that is missing in the standard, purely myopic-with-errors dynamic.

An important caveat is that agents do not take account of the costs of failing to co-

ordinate. While this may be plausible in some circumstances, it is certainly not general.
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The off-diagonal payoffs should play a role in the error distribution, as in Van-Damme

and Weibull(1999). In order to reduce notational clutter, however, we focus on the case

when both populations face 0 off-diagonal payoffs.

3.1 Intentional Dynamics

This dynamic is somewhat more complicated, involving as it does state-dependent error

distributions. First, we need to denote the domain from which idiosyncratic strategies

are drawn. If the system is at a contract i, then the row players will choose from all

strategies with index greater than i, while the column players will choose from among

all the strategies less than i, since row payoffs are increasing in the index. More gen-

erally, for row(column) players at a state θ = (p, q), this will be the strategy with the

least(greatest) index supported by the distribution of play of the column(row) players.

Formally:

iR(θ) = maxi{i|qi > 0}

iC(θ) = mini{i|pi > 0}

The error distribution in our case is population- and state-dependent; at state p, q

the error distribution is U(iR(θ),K − 1) for the row population, and U(0, iC (θ)) for

the column population. Therefore our transition probabilities are now given by equa-

tion 1, with the following modification. Instead of yi ∼ MN (K,xi, U(0,K − 1)) in

the above model, we have instead that y1 ∼ MN (K,x1, U(iR(θ),K − 1) and y2 ∼

16



MN (K,x2, U(0, iC (θ)). We denote the transition matrix by P ν,ε,I .

Showing this process is ergodic is straightforward, albeit not trivial, since our errors

are not always supported on the entire strategy space. Given state θ ∈ X, how can

we get to state θ′ in a finite number of periods?. It suffices to show that we can get

to the state (p, q) = (N, 0, 0, ..., 0), (0, 0, 0, ...,M ), which is where all members of both

populations are at the contract that would be worst for them were it to become an

equilibrium, from an arbitrary state θ = p, q, since then the errors are supported on

the entire strategy space, and therefore any state is accessible from θ.

This follows from the fact that from θ there is a positive probability that the column

population will mutate to the state M, 0, ..., 0, which is the contract that is most favor-

able to it, and the same time that the row population mutates to the state 0, 0, 0..., N .

Then, there is a positive probability that all agents play a best-response to which leads

the row population to respond(with no mutations) with N, 0, ..., 0, and the column pop-

ulation to respond with 0, 0, 0, .., 0,M .

It is clear that as ε → 0, P ν,I(ε) → P ν . It is also clear that the process converges

exponentially, since the transition probabilities are polynomials in ε. Let

RI
jk =















d
NTRbj

bj+bk
e if aj < ak

d
MTCaj

aj+ak
e if bj < bk
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Note that this is well-defined since all of the i are Pareto-optimal. This reflects the

fact that if one class loses from a transition to a particular equilibrium, it will never

idiosyncratically play the strategy corresponding to that equilibrium. Thus the transi-

tion will be generated by the idiosyncratic play of the other, opposing population. The

class that stands to benefit from the transition must overcome the resistance of the

would-be loser by generating so much idiosyncratic play that the best-response of the

losing population is to play a strategy that, when the strategy is an equilibrium, gives

them a lower payoff than the current equilibrium.

It is obvious that ∞ > limε→0
P ν,ε,I

jk
(ε)

ε
RI

jk

> 0, since, when we only allow one population

to idiosyncratically play, that this is the smallest number of non-best-responses required

to make a transition.

Definition 3.1. We call a contract I-stable if it is the stochastically stable state when

transition resistances are defined as above.

We call trees with RI(RU ) edge weights I-trees(U-trees). From theorem 1 in Young(1993),

we know that the I-stable state is contained in the root of the minimal I-tree.

For the rest of this section, we will omit the I superscript from the resistances unless

there is some ambiguity.

Proposition 3.2. Assume equal class sizes and idiosyncratic play rates, then:

a) In 2-contract games the risk-dominant equilibrium is I-stable.

b) In 3-contract games, if a contract is both maximin and risk-dominant, then it is
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Table 2: U-Resistances for Example 1
Root/Trees

0 0.266 0.297 0.266

1 0.341 0.310 0.169

2 0.544 0.371 0.371

Table 3: I-Resistances for Example 1
Root/Trees

0 1.583 1.455 1.830

1 1.500 1.628 1.733

2 1.702 1.689 1.932

I-stable.

Proof. a) The 2 contract case follows from the fact that RI
01 = a0

a1+a0
≥ b1

b0+b1
= RI

10

iff RU
01 = min{ a0

a0+a1
, b0

b1+b0
} ≥ min{ a1

a0+a1
, b1

b1+b0
} = RU

10 Thus, 0 is U-stable if and only

if 0 is I-stable, and similarly for contract 1. If the inequality is an equality, then both

equilibria are I-stable and U-stable(see Young(1993)).

b)See Appendix.

After this result, one might be tempted to think that there is no substantial dif-

ference between U-stability and I-stability. However, the example in the introduction

(Table 1) illustrated otherwise, and we now turn to investigating the differences in the

two dynamics.

In Table 1, the I-stable contact is 0, while the U-stable contract is 1. Table 2,
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consisting of tree resistances, illustrates the calculations for the U-dynamic(3 trees for

each root).

Thus the lowest tree, with resistance 0.169 has root 1. The actual tree is given below.

r Contract 0

rContract 1

rContract 2

?�
�
��

5
41

1
21

However, with intentional error distributions(the I-dynamic), the tree resistances

are given in Table 3. The minimal I-tree has root 0, with resistance 1.455, shown in

the tree below. The full set of trees is given in Appendix B.

r Contract 0

rContract 1

rContract 2

�
�

�	

@
@
@R

12
17

36
48

Note that the U-stable state in example 1 is the Kalai-Smorodinsky solution(a1/b1 =

amax/bmax), while the Intentionally Stable State is the Nash Solution(a0b0 = maxiaibi).

This is a general difference, as illustrated by the next proposition.

Proposition 3.3. Assume equal group sizes and idiosyncratic population sizes, and let

the contracts be given by (ai, bi = f(ai)), ai =iδ,i∈ (1, ...., 1/δ − 1) where f is a positive,

continuous,strictly decreasing, strictly concave function. Then, for δ sufficiently small,

the I-stable contract is the one that maximizes the Nash product sf(s), assuming it lies

in the set of contracts.

Proof. This follows as a special case of the next proposition.
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When agents’ errors are restricted to be a uniform distribution supported only on

strategies that could give them a higher payoff, the results can be different from the

unintentional errors case. Counter to the Binmore-Samuelson-Young result presented

above, the Nash bargaining solution is I-stable. The difference stems from the fact

that the intentional resistances are always lowest in transitions to adjacent contracts,

while the Binmore-Samuelson-Young result depends on the fact that with unintentional

errors, the lowest resistances are for the transitions to the extreme contracts, i.e. those

that are best for one side. This is illustrated by the comparison between the mini-

mal I-tree and U-tree in the figures above. We find this “leapfrogging” feature of the

U-dynamic to be historically implausible, compared to the “neighboring” transition

feature of the I-dynamic.

The intuition of the result is as follows. The Kalai-Smorodinsky solution is the

midpoint of the secant connecting the endpoints of the bargaining frontier, while the

Nash solution is the point on the bargaining frontier that is the midpoint of the tangent

line at that point. This characterization illustrates why the two dynamics give different

solutions. Intuitively, the stochastically stable state maximizes the chance of entering

the state. Given the transitions are driven by opposing populations, the stable state

will equate the highest probability of entering the state from the left with the highest

probability of entering it from the right. The least cost transition into the I-stable

state under the I-dynamic are from the immediately adjacent states, while the least-

cost transition into the U-stable state is from the extreme contracts x = 0 and x = 1.

Hence the midpoint of the tangent line in the first case and the midpoint of the secant

line in the latter case.
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A key property of the Kalai-Smorodinsky solution is that it is invariant to the slope

of f , the bargaining frontier, while the Nash solution is sensitive to the slope of f (a

steeper curve benefits the column population more). They agree generically only if the

bargaining frontier is symmetric around the 45-degree line or linear.

3.2 Population and Mutation Rates

We first note that under the I-dynamic, the relative population and idiosyncratic play

rates operate in exactly the opposite direction than the analogous variables in the U-

dynamic. Smaller groups with higher rates of idiosyncratic play are favored. To illus-

trate this, consider a 2-contract game with payoffs as in the previous example. Assume

also that contract 1, favored by the row players is risk-dominant, so that a1b1 > a0b0

. Assume the row population has population size N and the column population is size

M with N > M . Assume also that the rate of mutations differ by a power T , so that

the row population makes mistakes at a rate εT , while the column population plays

idiosyncratically at the rate ε(i.e. TC = 1).

The resistances in the intentional dynamic will be RI
01 = NT b0

b0+b1
and RI

10 =

M a1

a0+a1
. Contract 0 will be I-stable iff RI

01 > RI
10 which is the case if TN/M >

b1a1+b0a1

b0a1+b0a0
> 0 Thus, if the row population, N , is sufficiently large, and/or the row mu-

tation rate, is sufficiently slow(high T ), then the risk-dominant contract (contract 1)

may not be selected.
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For the K contract case, we can easily make a simpler statement, without tight spec-

ifications of the precise difference in idiosyncratic play rates or population size necessary

to secure the best contract for a given size. Again suppose that the row population

has population N, and the best contract for them is K-1. Then choose MTC > NTR

such that maxiNTR
bi

bK−1+bi
= RI

i(K−1) < minjR
I
(K−1)j = minjMTC

aK−1

aj+aK−1
. Then, by

the local resistance test, contract K − 1 is I-stable. The next proposition gives a more

precise result.

Proposition 3.4. Assume unequal group sizes N and M and idiosyncratic play rates

TR and TC for the row and column populations respectively. Let the contracts be given

by (ai, bi = f(ai)), ai = iδ, i ∈ (0, 1, ...., 1−δ
δ , 1

δ ) where f is a continuous, strictly de-

creasing, strictly concave function, with f(0) = 1 and f(1) = 0. Then, for δ suf-

ficiently small, the I-stable contract is the one that maximizes the product G(ai) =

(aie
2ai/δ)NTR(f(ai)e

−2ai/δ)MTC , assuming it lies in the set of contracts.

Proof. See Appendix A.

Note that if NTR = MTC , the I-stable contract is the symmetric Nash Bargaining

solution, which proves proposition 3.3. Note also that since δ is small, the stochasti-

cally stable contract will be close to the best contract for the population with lower

population-size and higher idiosyncratic play rate. That is, row players will be favored

when NTR < MTC . We can summarize this in a corollary:

Corollary 3.5. As δ goes to 0, there are three candidates for equilibrium payoffs a∗, b∗:

if MTC > NTR then a∗ = 1 and b∗ = 0,
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if MTC = NTC , then a∗ = aNash and b∗ = bNash

if MTC < NTR then a∗ = 0 and b∗ = 1,

4 Nash Demand and Double-Sided Auctions

We now consider the effects of intentional idiosyncratic play in alternative specifications

of the bargaining game. We first consider the Nash demand game, the stochastically

stable(U-stable) equilibrium of which is the Nash Bargaining solution(Young(1993b)).

The difference between the Nash demand game and the contract game is that in the

former, all contracts that do not exhaust the surplus can be struck, and so agents get

their offer even if the offers do not agree with that of their matched opponent. Formally,

in our previous notation, if i < j then ai < aj, bi > bj, just as before, but now the

off-diagonal payoffs are not all 0. In particular, if i < j then the payoff matrix is given

by:

Contract i j

i ai, bi ai, bj

j 0, 0 aj, bj

A recent paper by Agastya(2004) explores the stochastic stability of various equilib-

ria in a two-sided auction game. In the double-auction game, the payoffs are similar to

the Nash demand game, except if the agents fail to exhaust the surplus, with probabil-

ity ρ the agents’ payoff is what the agents would have received in contract i and with

probability 1 − ρ the payoff is what they would have received at contract j. Agastya

considers agents with varying risk-aversion, while we limit ourselves to the risk-neutral
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case here. The game matrix is given below.

Contract i j

i ai, bi ρai + (1 − ρ)aj , ρbi + (1 − ρ)bj

j 0, 0 aj, bj

Proposition 4.1. If the strategy space is as in Proposition 3.3, but the payoff structure

is either (1) Nash demand or (2) double-sided auction games with risk-neutral utility

functions, the I-stable contract approaches the Nash Bargaining solution as δ goes to 0.

Proof. It suffices to show this for the Double-Sided Auction game, as the proof for the

Nash Demand game is virtually identical. The result follows from the fact that

rI
ij =















f(si)−ρf(sj)−(1−ρ)f(si)
f(si)+f(sj)−ρf(sj)−(1−ρ)f(si)

if i < j

si−ρsj−(1−ρ)si

si+sj−ρsj+(1−ρ)si
if i > j

Without loss of generality, we can restrict our attention to only local transitions. Note

that rI
ii+δ = ρ(f(i)+f(i+δ))

ρf(i)+(1−ρ)f(i+δ) and rI
ii−δ = (1−ρ)(i−i−δ)

(1−ρ)i+ρ(i−δ) Note that if δ is sufficiently

small, rI
ii+δ is equal to rU

ii+δ = min{ ρ(f(i)−f(i+δ))
(1−ρ)f(i)+ρf(i+δ) ,

i+δ
(1−ρ)(i+δ)+ρi} which is the resis-

tance generated by the U dynamic. Similarly, rI
ii−δ = rU

ii−δ. Under these resistances,

Agastya(2004) shows that the U-stable state is argmaxss
ρf(s)1−ρ Since the resistances

are the same for the I-dynamic, the proof works here as well2

The reason the U-stable and I-stable state are the same in these games that the

off-diagonal payoffs increase the resistance of the winners and decrease the resistance

2Young(1998) has an analogous proof for the Nash Demand game.
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of the losers from a transition. For small δ, this makes the resistance of the losers less

than the resistance of the winners in the U-dynamic. Since the resistance of a transition

is given by the lower resistance of the two populations, the U-dynamic generates the

same resistance for a transition as the I-dynamic.

5 Conclusion

Notwithstanding its abstract nature, the strength of the stochastic approach is that

formalizes a dynamic of institutional emergence and demise that highlights two critical

aspects of real historical processes. The first is the structure of payoffs given by the

different conventions and the resulting conflicts of interest that often drive the real his-

torical equilibrium selection process. The second is the central role of deviants from the

status quo and the occasional concession of best-responding members of the opposing

group that results when the level of deviance is sufficiently great. The recognition of

trade unions in the United States during the first third of the last century, the end of

Communist rule in many countries and the demise of apartheid in South Africa appear

to reflect this pattern.

In addition to the not entirely plausible aspects of the transition process in the

U-dynamic that we pointed out earlier, a less attractive feature of this class of models

is that as presently formulated, the transition times from one convention to another

are implausibly long except for very small populations with substantial rates of id-

iosyncratic play. The long waiting times characteristic of these models, however, are
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partly the result of special and empirically unrealistic simplifying assumptions. First,

we have abstracted from perturbations of the payoff structure of the game. If these

were introduced, they would periodically substantially reduce the critical number of

deviants necessary to induce a transition, and could displace a convention even in the

absence of idiosyncratic play. Second if there are many similar contracts (δ is small in

proposition 2.3 and 3.3), then the transition times are greatly reduced in the I-dynamic,

which moves exclusively among adjacent contracts (but not in the U-dynamic). Third,

if most interactions are local, as is often the case in political movements challenging

the status quo, transition times are reduced (Ellison(1993), Young(2001)). Fourth, in

models with more than one period of memory, if idiosyncratic players are persistent,

in the sense that an agent who plays idiosyncratically continues to play idiosyncrat-

ically for several more periods then the resistances are substantially reduced, with a

corresponding decrease in the transition time (Young 1998, pg 142). Fifth, if agents

have availability bias (Kahneman and Tversky 1976), then they may systematically

overpredict the idiosyncratic play of the opposing population, leading to much more

frequent transitions. Finally, transitions may be realistically modeled as interactions

among corporate entities (firms, business associations, trade union locals, ethnic associ-

ations) the numbers of which may be sufficiently small to generate historically realistic

waiting times.

We would like to point out that while we have explored intentional error structures

in a relatively narrow class of games, the principle underlying equilibrium selection here

is quite general, applying to any model with multiple Pareto-optimal equilibria.
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Further extensions of the model are possible. For example, one can also generalize

the dynamic so that it is defined for games where there are equilibria that are not

Pareto-optimal, just by mandating that both parties engage in idiosyncratic play when

they are at a non-Pareto-optimal equilibria, reducing it to the standard case. Another

extension would make the error distributions sensitive to the off-diagonal payoffs, as

currently the agents do not account for the costs of a mismatch when they play idiosyn-

cratically.

The stochastic evolutionary approach also provides a framework open to further

steps towards historical realism. Among these are an account of the way in which

technical change alters the shape of the contract set, in some periods making highly

unequal bargains stochastically stable, and others favoring more egalitarian outcomes.

Another is an explicit modeling of non-conformism with the terms of the status quo

and particularly its behavioral foundations and its realization through various forms of

state-dependent collective action. For example, the rate of idiosyncratic play may then

depend the degree of collective action, which in turn depends on the amount of inequal-

ity in a particular contract. Exploring these extensions seem like promising directions

for future research.
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6 Appendix A

Proof of Proposition 3.2(b)

Proof. First normalize the payoffs by dividing each player’s payoff by the maximum

attainable by that player. This gives us contracts (amin, 1), (a, b), (1, bmin). So the mid-

dle contract (a, b) is maximin. The only candidate for a minimal tree rooted at the

middle is 1
1+a + 1

1+b Note that the resistances of the trees rooted at the first contract

are a
a+amin

+ 1
1+a and b

b+bmin
+ 1

1+amin

The resistances of the trees rooted at the last contract are b
b+bmin

+ 1
1+b and a

a+amin
+

1
1+bmin

However, risk-dominance implies that ab > amin and ab > bmin. So, since payoffs

are bounded between 0 and 1, we get that b > amin and a > bmin so a
a+amin

+ 1
1+bmin

>

a
a+amin

+ 1
1+a and b

b+bmin
+ 1

1+amin
> b

b+bmin
+ 1

1+b so , since the middle contract is risk-

dominant, we have b > amin/a and a > bmin/b, which implies 1
1+a + 1

1+b < a
a+amin

+ 1
1+a

and 1
1+a + 1

1+b < b
b+bmin

+ 1
1+b so the tree rooted at (a,b) is least resistant.

To prove proposition 3.4 we first need a lemma:

Lemma 6.1. The least cost edge exiting a given node i is to an adjacent node.

Proof. Any edge going to the right(j > i has resistance RI
ij = NTR

f(ai)
(f(ai)+f(ai+(j−i)δ)

since f is decreasing, the lowest edge exiting to the right will have j = i + 1 . Similarly,
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any edge going to the left(j < i) has resistance RI
ij = MTC

ai

ai+jδ , which will be lowest

for j = i − 1

This lemma says that we only need to consider transitions to adjacent contracts.

Proof of Proposition 3.4: Let aj∗ = argmaxai
(aie

2ai/δ)NTR(f(ai)e
−2ai/δ)MTC =

argmaxai

1
NTR

(log(ai) + 2ai

δ ) + 1
MTC

(log(f(ai)) −
2ai

δ ).

We will use the Naive Minimization test. Take the least edge from each node, I

claim that all the nodes less than j∗ point to the immediate right, and all the nodes

greater than j∗ point to the immediate left.

Given s, f(s) a1 < s < a2 we first note that the log of (se2s/δ)NTR(f(s)e−2s/δ)MTC

is a concave function of s, therefore it has a unique maximum at aj∗. This can be

seen by noting that logG = NTR log s + MTC log f(s + 2
δ (NTR − MTC)s Which is

clearly concave, as it is the sum of a concave function and a linear function of s. Thus,

the maximum can be obtained by using first order conditions. Also this implies that

NTR(log(ai) + 2ai

δ ) + MTC(log(f(ai)) −
2ai

δ ) is increasing for s < aj∗ and decreasing

for s > aj∗.

Now, consider a node i < j∗, we just need to show that NTR
f(ai)

f(ai)+f(ai+δ) <

MTC
ai

ai+ai−δ , which would show that the transition to the right is cheaper than the

transition to the left.
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This is equivalent to

MTC(
f(ai + δ)

f(ai)
+ 1) > NTR(

ai − δ

ai
+ 1) ⇐⇒

MTC(
f(ai + δ)

f(ai)
+ 1) − 2MTC + 2MTC > NTR(

(ai − δ)

ai
+ 1) − 2NTR + 2NTR

Adding 0 to both sides, now multiply thoughout by frac1δ

MTC(
f(ai + δ) − f(ai)

δf(ai)
) +

2MTC

δ
> NTR(

ai − δ − ai

δai
) +

2NTR

δ
⇐⇒

MTC(
f(ai + δ) − f(ai)

δf(ai)
) +

2MTC

δ
− NTR(

ai − δ − ai

δai
) −

2NTR

δ
> 0

For small δ, this is close to MTC(f ′(ai)
f(ai)

+ 2/δ) + NTR( 1
ai

− 2/δ) > 0 which reduces

to MTC(
d(log(f(ai))+

2ai
δ

)

dai
) + NTR(

d(log ai−
2ai
δ

)

dai
> 0 which is given by our statement that

MTC(log(ai) + 2x
δ + NTR(log(f(ai)) −

2x
δ ) is increasing. The case i > j∗ follows sym-

metrically, with the least edge pointing to the left. However, the actual maximand j∗

can have an edge exiting to the left or to the right, which will give us a cycle of length 2.

Now we must show that the edge exiting j∗ is the largest over the entire tree. This

follows from the fact that at j∗, the first-order condition implies that MTC(
f(aj∗+δ)−f(aj∗)

δf(aj∗) )+

2MTC

δ −NTR(
aj∗−δ−aj∗

δaj∗
)− 2NTR

δ is close to 0. Thus, the resistances rj∗j∗−1 and rj∗j∗+1

are approximately equal. Since Rj∗j∗−1 > Rjj−1 for all j > j∗ and Rj∗j∗+1 > Rjj+1 for

all j < j∗, it follows that the least edge exiting j∗ is maximal over the entire tree. Our

result then follows from the Naive Minimization test.
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7 Appendix B: I-resistance Trees

Trees rooted at contract 0.
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Trees rooted at contract 2.
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For each root, the least I-resistance tree is indicated by *. The minimum of these,

indicated by **, identifies contract 0 as the root of the minimal I-tree.
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