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Abstract

We introduce a model of unawareness founded on preferences over descriptions of acts.
The model highlights the effects of how the contingencies of an act or contract are framed by
distinguishing different descriptions of the same act. A more detailed description immediately
confers a higher level of awareness to the decision maker. The primitive is a family of preferences,
indexed by partitions of the state space. Each partition corresponds to an enumeration or frame
of the state space. We axiomatically characterize the following partition-dependent expected
utility representation: the decision maker has a (nonadditive) set function over contingencies
which she adapts and normalizes to her level of awareness; she then computes expected utility
with respect to her partition-dependent belief. Unawareness can then be expressed through
betting preference and subjective likelihood rather than through knowledge. Absolute and
relative notions of unawareness and response to unawareness are presented.

1 Introduction

Consider a newly hired worker comparing available health insurance plans during open enrollment.
While she understands some broad possible contingencies, like requiring a surgery or becoming
pregnant, she is unaware of more specific contingencies, like requiring a laminotomy.1 Despite
this partial awareness of the environment, she still has to decide to enroll in some health plan
before the end of the month. How much is this employee willing to pay for the different insurance
options? Can an outside observer, who knows what kind of coverage she will purchase, distinguish
the treatments of which the employee is aware from those of which she has never heard? Can
the observer distinguish those of which the employee has never heard from those that she believes
are impossible? Can the observer place predictive restrictions on the employee’s behavior as she
becomes aware of more contingencies?

This paper introduces a novel methodology for answering these sorts of questions. It uses dif-
ferent framing of acts to measure the decision maker’s response to different levels of awareness. For
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example, consider the following contract, which associates deductibles on the left with contingencies
on the right: 

$500 surgery
$100 prenatal care

...
...

 .

Compare this to the following contract, which includes some redundancies:
$500 laminotomy
$500 other surgeries
$100 prenatal care

...
...

 .

These contracts represent the same levels of coverage, but the decision maker might evaluate these
lists differently, because the second formulation makes her aware of laminotomies. If the employee
is willing to pay more for the second contract, this disparity might reflect her unawareness of
laminotomies when she was presented the first contract. Her unawareness while evaluating the first
contract reveals itself when she is willing to pay more for the second contract, perhaps reflecting an
updated and increased personal belief of the likelihood of surgery. The broader conceptual point is
that the presentation and expression of an act immediately confers some information to the reader
about the structure of the state space. Specifically, the decision maker must at least understand the
coarsest partition required to express the structure of the contact. Moreover, increasingly refined
expressions of the contract must confer correspondingly more awareness. To our knowledge, our
model is the first axiomatic attempt to connect the measurability of an act and the decision maker’s
awareness. It attempts to provide a unified treatment of awareness and framing.

The following example perhaps illustrates the relationship between awareness and framing more
sharply. The mathematician Jean d’Alembert argued that “the probability of observing at least
one head in two tosses of a fair coin is 2/3 rather than 3/4. Heads, as he said, might appear on the
first toss, or, failing that, it might appear on the second, or, finally, might not appear on either.
D’Alembert considered the three possibilities equally likely (Savage 1954, p. 65).” D’Alembert’s
fundamental mistake was in his framing of the states; he failed to split the first event into its
two atoms: heads then tails, and heads then heads. His view of the world was as three events:
{HH, HT}, {TH}, and {TT}. Had he been aware of these contingencies and framed the possible
tosses appropriately, he may have avoided the error.

Such framing effects are precluded in the standard models of decision making under uncertainty
introduced by Savage (1954) and by Anscombe and Aumann (1963). These models do not distin-
guish between different presentations of the same act, implicitly assuming that the framing of the
state space is inconsequential. We introduce a richer set of primitives which treats the different
frames for an act as distinct choice objects.

In particular, our model treats lists of contingencies and outcomes as the primitive objects of
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Office visit $20
Hospital visit no charge
Preventive physical exam $20
Maternity outpatient care $20
Maternity inpatient care $250

Table 1: Blue Cross health insurance plan

choice. The following list 
x1 E1

x2 E2

...
...

xn En

 ,

denotes an act which delivers the outcome xi if the state of the world is in Ei. In paper, acts are
often denoted by such lists for ease of exposition. We take these expressions literally. For example,
if E′

1 ∪ E′′
1 = E1, then the following list 

x1 E′
1

x1 E′′
1

x2 E2

...
...

xn En


,

denotes the same act, but is modeled as a distinct object. The decision maker might have dif-
ferent attitudes about the two presentations, because the second has made her aware of the more
specific contingencies E′

1 and E′′
2 . This discrimination between lists is the primary methodological

innovation of the paper.
This also provides a natural framework to understanding how the decision maker updates her

decision making as she becomes aware of possibilities she did not previously understand. For
example, what would d’Alembert have done if he had realized that HH is distinct from HT?
Can we make any predictive restrictions on his behavior after this realization from his preferences
before the realization? One can view the different lists as reflective of more or less awareness. The
response to new awareness is central to our approach. In fact, given that the decision maker uses
expected utility to aggregate uncertainty at a fixed enumeration of states, the comparison across
enumerations is the only way to identify unawareness from preference.

Aside from theoretical concerns, many real contracts are presented as such lists. Insurance plans
are often described by a table of contingencies and coverage amounts. Table 1 is a partial verbatim
copy of a Blue Cross medical plan available to University of California employees expressed as
procedures and deductibles.

We study a decision maker who acts as if she places a weight ν(E) on each event E. When
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presented the enumeration E1, . . . , En, she judges the probability of Ei to be ν(Ei)/
∑

j ν(Ej).
Since the weighting function ν is not necessarily additive, her probability of E1 can depend on
whether it is expressed as E1 or expressed as E′

1 ∪ E′′
1 . Her utility for a list is her expected utility

aggregating the cardinal utility of each consequence by the weight on its accompanying event. Then
the nonadditivity of ν can be used to measure and compare the awareness of E′

1 when she is only
told of E1. So, although the primitives are richer, our proposed utility representation maintains
the essential notions of expected utility and subjective probability from the standard model.

The articulation of awareness in decision theoretic terms of betting and likelihood provides
several benefits. First, it provides a language to discuss partial awareness of unawareness. While
having nothing directly to say about interactive epistemology, we hope our work complements a
sizable literature studying semantic models which poses awareness and unawareness as epistemic
operators on events.2 Often, it either begins with or arrives at the position that the decision maker
should have no awareness of her unawareness. For example, Dekel, Lipman, and Rustichini (1998,
p. 161) argue that “an agent who is unaware of a possibility should have no positive knowledge of
it at all.” This claim was cast in the context of possibility correspondences in epistemic models,
where the dichotomous nature of the awareness operator hinders the expression of partial awareness
in the required terms. Either a decision maker is aware of an event or she is not. Then she is either
aware of her unawareness or she is not. In this sense, the severity is at least partially an artifact of
modeling choices.

While concurring that one should never be completely aware of her unawareness, our intuition
departs from the severe conclusion that she should have no awareness at all. For example, a
consumer may be partially aware that she has a less than complete medical understanding of her
health or an investor may be partially aware that he cannot consider the universe of all mutual
funds. What they cannot do is express the diseases or the mutual funds they don’t know exactly.
By expressing awareness in terms of betting and likelihood, rather than knowledge, we hope to
introduce some notion of partial awareness, hence also a notion of partial awareness of unawareness.
In our model, partial awareness is not a part of the description of the state space, but identified
through comparisons of belief between descriptions. For example, we compare the consumer’s
willingness to pay for insurance contracts with varying levels of descriptive detail.

Some recent work expands the basic semantic structure to include different projections or par-
titions of state spaces to reflect different levels of awareness (Heifetz, Meier, and Schipper forth-
coming, Li 2006). But, at a fixed state space, the austere epistemic model still provides no channel
for the decision maker to express a partial conception of the more refined semantics to which he
does not have immediate access. These different state spaces might also be viewed as different
frames of a single space. Under this interpretation, one contribution of this paper is to introduce
an axiomatic notion of choice into these enriched structures.

However, this interpretation is strained by the following major difference between these papers
and ours. Heifetz, Meier, and Schipper (forthcoming) and Li (2006) treat each state space as the

2Feinberg (2004) and Heifetz, Meier, and Schipper (2005) provide syntactic analyses of interactive unawareness.
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fixed awareness of the decision maker; she does not have any more awareness. On the other hand,
we treat each frame as the minimal awareness that the analyst can attribute to the decision maker,
based on the expression of the acts. We then let the choice behavior provide some insight on her
awareness beyond this minimal level. Because the representation involves likelihoods, it provides
another channel to express partial awareness. Specifically, as alluded to in the beginning of this
introduction, the disparity in subjective beliefs between different frames gauges the decision maker’s
partial awareness. For example, if there is no change in these beliefs, then the decision maker acts
as if she is completely of the more refined state space.

We also hope this model complements the existing decision theoretic work on unforeseen con-
tingencies. Kreps (1979) introduced an axiomatic model of preference for flexibility by considering
menus of objects as the primitives of choice. Demand for flexibility is interpreted as a response to
unforeseen contingencies, which are captured in the proposed representation as subjective taste un-
certainties. Dekel, Lipman, and Rustichini (2001), henceforth DLR, extend this approach to menus
of lotteries, where the linear structure essentially identifies the subjective state space.3 Then the
analyst can remarkably determine the space of uncertainty as a theoretical artifact of preference,
rather than assume a state space a priori.

The DLR methodology provides a powerfully unified treatment of states, beliefs, and utilities.
On the other hand, because it depends on the decision maker’s preferences to elicit the states,
recovering unawareness is difficult, encountering the basic conundrum that the decision maker
cannot reveal something of which she is totally unaware. In fact, in DLR’s main representations,
the decision maker acts as if she has complete awareness of some state space.

Epstein and Marinacci (2005) propose a generalization of DLR to address this conundrum. A
form of maxmin expected utility, similar to that used by Gilboa and Schmeidler (1989) to model
ambiguity, over the likelihood of the subjective states is suggested as a response to the decision
maker’s partial awareness that his understanding of the world is coarse. This resonates with
work by Ghirardato (2001), Mukerji (1996), and Nehring (1999) who capture the decision maker’s
partial awareness of unforeseen contingencies through Choquet integration of belief functions or
capacities, which is also used to model ambiguity by Schmeidler (1989). One point of this paper
is to demonstrate another method of detecting unawareness without invoking ambiguity aversion.
In fact, our representation satisfies the standard expected utility axioms for each enumeration of
states.

One way to distinguish DLR’s approach and ours is that DLR relaxes Savage’s assumption that
the analyst has a complete understanding of the state space and studies a model where the states
of the world are revealed through preference. On the other hand, then unawareness can only be
elicited through violations of expected utility. We equip the model, hence the analyst, with the
comprehensive view. This means that it is not a part of the representation in the model.

This assumption is a strong one, but we hope that it is justified by its conceptual dividends.
It also seems more palatable when imagining applications. For example, one party often has more

3Dekel, Lipman, Rustichini, and Sarver (2005) report a technical corrigendum to the original paper.
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awareness than another. Then the completely specified state space only has to be the more specified
space in situations of asymmetric awareness, where perhaps one party has to decide how much
awareness information it wishes to reveal by presenting a contract. It also seems difficult to verify
and enforce contracts which depend on subjective states, which are purely theoretical constructions.
Insofar as unawareness and unforeseen contingencies bear on contracting, assuming some sort of
objective state space seems less heroic. One of the motivations of the model is to accommodate
unawareness in a Savage setting without invoking menus or multi-valued consequences, so the
primitives of the model bear as close a resemblance as possible to the way that actual contracts,
like insurance policies or warranties, are presented.

Finally, we believe that the framing interpretation of the model is of interest, independently
of its application to awareness. While economists appreciate the framing effects of consequences,
especially as formalized by prospect theory (Kahneman and Tversky 1979), the framing effects of
states seems to be relatively obscure. This is despite a large psychological literature which questions
extensionality, the psychological term for the invariance of the judged probability of an event to
its particular expression. For example, Fischoff, Slovic, and Lichtenstein (1978) found that car
mechanics assign higher value to the conditional probability that a car fails to start because of
something other than the battery, fuel system, or engine when this complement is expressed as a
union of more specific causes. It is difficult to attribute this distortion to unawareness on the part
of the mechanics. Tversky and Koehler (1994) propose a theory of judgement, which they coin
support theory, with many similarities to the theory of decision forwarded here. One contribution
of the paper is to provide an axiomatic foundation for a generalized version of support theory.
While the connections are discussed throughout the sequel, we should note now that many of the
behavioral intuitions of the model should be credited to this psychological literature in general
and to Tversky and Koehler (1994) in particular. We hope this paper bring more attention by
economists to violations of extensionality, which we think is an important psychological factor that
might have very large economic consequences.

In the next section, we introduce the primitives of our theory. We then propose a utility rep-
resentation for the model and provide an axiomatic characterization. Finally, we suggest methods
for detecting correction for unawareness and comparing this correction across individuals.

2 A model of decision making with unawareness and framing

We introduce our formal model. Let S denote an arbitrary state space. Let X denote the finite set
of consequences, and ∆X denote the lotteries on consequences. Let Π denote the collection of all
finite partitions of S.4 For any π ∈ Π, let σ(π) denote the algebra induced by π. Let F denote the
simple Anscombe–Aumann acts, {f ∈ (∆X)S : |f(S)| < ∞}. We slightly abuse notation and let
p ∈ ∆X denote the obvious constant act. Let Fπ = {f ∈ F : f is π-measurable} denote the acts
which respect the partition π. We consider a family of preferences {%π}π∈Π indexed by π, where

4The restriction to finite partitions is mainly for technical ease.
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each preference %π⊂ Fπ × Fπ is on π-measurable acts. The strict and symmetric components �π

and ∼π carry their standard meanings. Given a partition π = {E1, . . . , En} and acts f1, . . . , fn ∈ F
define a new act by: 

f1 E1

...
...

fn En

 (s) =


f1(s) if s ∈ E1

...
...

fn(s) if s ∈ En

.

The following is a generalization of the concept of null events for our setting.

Definition 1. Given π ∈ Π, an event E ∈ σ(π) is π-null if(
p E

f E{

)
∼π

(
q E

f E{

)
,

for all f ∈ Fπ and p, q ∈ ∆X. E ∈ σ(π) is π-nonnull if it is not π-null. The event E is null if
E = ∅ or if E is π-null for any π such that E ∈ π. E is nonnull if it is not null.

This family of preferences might not immediately appear to be related to our original motivation
of studying lists. In fact, this model provides a parsimonious primitive which is isomorphic to a
model which begins with preferences over lists. Suppose we started with a list

x1 E1

...
...

xn En


which is a presentation of the act f . This could be more compactly represented by a pair (f, π),
where π = {E1, . . . En} denotes the enumeration of contingencies on the right hand side of the list.
This enumeration π must be at least rich enough to describe the act f , so we can assume f ∈ Fπ.
Now suppose the decision maker is deciding between two lists, which are represented as (f, π1) and
(g, π2). Since she has read both enumerations, she is now aware of both π1 and π2; alternatively,
she must be aware of both π1 and π2 to compare the lists. Then her minimal level of awareness
is the coarsest common refinement of π1 and π2, their join π = π1 ∨ π2. Then (f, π1) is preferred
to (g, π2) if and only if (f, π) is preferred to (g, π). So, we can restrict attention to the preference
restricted to pairs (f, π) and (g, π) where f, g ∈ Fπ. Moving the partition from being carried by
the acts to being carried by the preference lightens the notation and results exactly in the model
being studied here. We stress that the model is really of a decision maker deciding between lists.
This notation is economical and aids in the understanding of the axioms.

For example, suppose the decision maker is deciding between the Blue Cross health plan de-
scribed on Table 1 and the healthy plan available from Kaiser Permanente and depicted in Table 2.
The partitioning of the Kaiser Permanente plan differs from the partitioning of the Blue Cross plan.
A newly hired and naive assistant professor, in the process of comparing health insurance options,
becomes aware of the possibility of maternity outpatient care, from the Blue Cross plan, and of
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Primary and specialty care visits $50
Well-child visits to age two $15
Family planning visits $50
Scheduled prenatal care and first postmartum visit $50
Maternity inpatient care $250

Table 2: Kaiser Permanente health insurance plan

family planning visits, from the Kaiser Permanente plan. This level of awareness is a consequence
of simply reading the lists and merely reflects her exposure to both policies.

By assuming f, g ∈ Fπ, we assure that π is at least as fine as π(f, g). This interpretation
highlights an important interpretive difference between standard theories of Bayesian updating and
our theory of awareness. In the former, functions must be restricted to respect the information, or
lack thereof, embodied in an algebra on the state space. In our theory, it is the algebra that must
be expanded to reflect the awareness implicit in the description of an act.

Partitions or subalgebras are often used to model the arrival of information about the actual
state of the world, where each cell of a partition represents an updated restriction on the truth. Our
interpretation is quite different. We take each partition π as a frame of awareness or a description
of the entire state space. Each cell represents an event that a decision maker understands and of
which she is aware. For example, she may be aware that her car may break down, yet be unaware
that one of the ways it might break down is a sudden disintegration of the tires. In our model, she
does not learn at some ex interim stage which particular cell actually obtains, i.e. whether her car
will actually break down in the future because of tire disintegration or for some other reason.

One feature of our model is that the decision maker’s minimal awareness is formalized with
respect to partitions. We feel that focusing on the awareness an entire partition of the state
space is superior to discussing the awareness of particular states or events. A similar view is
articulated in semantic models with lattices or partitions of state spaces by Heifetz, Meier, and
Schipper (forthcoming) and Li (2006) and in the interpretation of DLR’s subjective state space by
Epstein and Marinacci (2005), who suggest the term “coarse contingencies” is more evocative than
“unforeseen contingencies.” For example, an investor may have been unaware of the possibility
of domestic terrorism before September 11, 2001. Afterwards, she updates her awareness. The
investor does not become aware of a new state of the world, because a terrorist action does not
constitute a full description of relevant uncertainty. She is still concerned with the prime interest
rate, the price of oil, and all the other variables that priced her investments before she was aware of
terrorism. Rather than becoming aware of a single state, she becomes aware that each cell she had
previously considered a full description of the relevant uncertainty had actually been incomplete.

Graphically, suppose the investor’s view of the world before September 11 was:

s1 s2 s3
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If we model her awareness of terrorism as a new state t, then her new view would look like:

s1 s2 s3 t

If we model her awareness as a new partition which filtrates terrorism (t) and no terrorism (n), her
new view has six cells and would look like:

s1, t s2, t s3, t

s1, n s2, n s3, n

We believe the latter view is much more aligned with the general process of updating awareness.
A model which considers only awareness of states also has difficulties accommodating a decision

maker who is aware of an event, but unaware of its components. For example, it seems reasonable
that a consumer might be aware of the fact that her car might break down, and even have a well-
formed probability of this event, yet have only a vague idea of the different components in her
car that might fail. In the standard epistemic expressions of unawareness, awareness of an event
implies awareness of its subevents. By using partitions, our models separates awareness from set
inclusion, since a partition can obviously be fine enough to include an event but be too coarse to
include its subevents.

3 Partition-dependent expected utility

We propose the following utility representation for every %π. The decision maker has a nonnegative
set function ν : 2S → R+ over all events. When she is presented with an enumerated description
π = {E1, E2, . . . , En} of the state space, she places a weight ν(Ek) on each event. Normalizing
these weights by their sum, µπ(Ek) = ν(E)/

∑
i ν(Ei) defines a probability measure µπ over σ(π),

the algebra induced by π. Then, her utility for the act

f =


p1 E1

p2 E2

...
...

pn En

 ,

is simply
∑n

i=1 u(pi)µπ(Ei), where u : ∆X → R is an affine von Neumann–Morgenstern utility
function on objective lotteries over consequences.

The following restriction is needed to avoid dividing by zero when normalizing the set function.

Definition 2. A set function ν : 2S → R is nondegenerate if
∑

E∈π ν(E) > 0 for all π ∈ Π.

We can now formally define our desired representation.

Definition 3. {%π}π∈Π admits a partition-dependent expected utility representation if there
exist a nondegenerate and positive set function ν : 2S → R+ and a nonconstant affine vNM utility
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function u : ∆X → R such that for all π ∈ Π and f, g ∈ Fπ:

f %π g ⇐⇒
∫

S
u ◦ f dµπ ≥

∫
S

u ◦ g dµπ,

where µπ is the unique probability measure on (S, σ(π)) such that, for all E ∈ π:

µπ(E) =
ν(E)∑

F∈π ν(F )
. (1)

When such a pair (u, ν) exists, we will call it a partition-dependent expected utility representation.
The set function ν in this definition is not necessarily additive, and its nonadditivity provides a

channel for detecting how aware the decision maker is of more specified states. While the represen-
tation involves nonadditive set functions, it is only very superficially similar to Choquet expected
utility (Schmeidler 1989). In fact, the decision maker acts as if she maximizes an affine expected
utility function at each partition π. The structure of ν is quite general: ν does not have to be
monotone nor convex-ranged. It can also be strictly bounded away from zero for nonempty events,
in which case there are no null events, even if the state space is uncountably rich.

In the special case that the set function ν is additive, the probabilities of events do not depend
on their expressions. Then the decision maker is indistinguishable from someone who has full
awareness of the state space.

Definition 4. {%π}π∈Π admits a partition-independent expected utility representation if
there exist a finitely additive probability measure µ : 2S → R+ and a nonconstant affine vNM
utility function u : ∆X → R such that for all π ∈ Π and f, g ∈ Fπ:

f %π g ⇐⇒
∫

S
u ◦ f dµ ≥

∫
S

u ◦ g dµ.

Our representation provides the following guidelines for the decision maker’s response to un-
awareness. Each event E ( S carries a value ν(E), which corresponds to its relative weight in
frames where the decision maker must be aware of E but not necessarily of its subevents. The
nonadditivity of ν captures the effects of framing or unawareness: A and B can be disjoint yet
ν(A)+ν(B) 6= ν(A∪B). If πE is a partition of E, then the difference

∑
F∈πE

ν(F )−ν(E) captures
the unawareness of πE relative to E. Of course, if ν is additive, then the decision maker acts as if
she is totally aware of the state space and her behavior corresponds to standard Bayesian updating.
Moreover, she may have complete awareness over part of the state space, i.e. if ν is additive over
all the subevents of E, without awareness over the entire state space, i.e. if ν is nonadditive over
subevents of E{. In the representation, unawareness departs from Bayesian decision theory only in
the response to new awareness or information, but not in the choices within a fixed mode of aware-
ness, since each %π conforms to expected utility. From the analyst’s perspective, the detection or
elicitation of unawareness therefore hinges on this response, on the dynamics between partitions.
If she accepts our axioms, the analyst can predict the decision maker’s behavior in frame π from

10



her behavior in other frames.
Notice that the inequality

∑
F∈πE

ν(F ) < ν(E) is not precluded. This is because ν does not
capture unawareness in isolation, but also reflects the decision maker’s correction for her unaware-
ness. She may be partially aware that her conception of the event E is incomplete, and try to
incorporate what “she believes she does not know” into her odds. If she overcompensates for her
unawareness, the resulting ν(E) might be larger than the sum of its components. For example, a
car owner might understand that there are myriad ways for her car to break down, but can name
only a few. One plausible response might be to purchase more insurance than would be optimal
had she possessed a full mechanical understanding of her car.

Tversky and Koehler (1994) introduced a related nonextensional theory of judgement called
support theory. Its primitives are different descriptions of events, called hypotheses. It analyzes
binary comparisons of likelihood between two hypotheses, which they call evaluation frames, which
consist of a focal hypothesis and an alternative hypothesis. The probability judgment of the fo-
cal hypothesis A relative to the alternative B in the evaluation frame (A,B) is proposed to be
P (A,B) = s(A)/[s(A) + s(B)], where s(A) is a assignment of support for each hypothesis which
is based on the strength of its evidence. They offer a characterization of such judgments based
on functional equations, but this characterization is primarily technical and not rooted in deci-
sion making (Tversky and Koehler 1994, Theorem 1). Our theory translates support theory from
judgment to decision making, extends its scope beyond binary evaluation frames, and provides an
axiomatic foundation from preference. The motivation is also quite different, since Tversky and
Koehler attribute violations of extensionality to heuristic devices like availability, where the decision
maker judges probabilities by her ability to recall typical cases, rather than to unawareness. They
also present extensive experimental evidence illustrating the sensitivity of judgments of probability
to the description and framing of the possibilities.

The following special cases provide some particular intuition for partition-dependent expected
utility.

Example 1 (Probability weighting). Suppose µ : 2S → R is a finitely additive probability mea-
sure and w : [0, 1] → R+ is a weakly increasing transformation. Now suppose ν(E) = w(µ(E)).
Transformations like w are sometimes called probability weighting functions and featured in the
literature on non-expected utility over lotteries, for example in prospect theory (Kahneman and
Tversky 1979) and anticapted utility theory (Quiggin 1982), where they are applied in a different
manner. The application to our model is closest to the subjectively weighted utility theory of
Karmarkar (1978). Quiggin (1982) points out, because it is independent of the consequences tied
to the lottery, that the weighting function w in subjectively weighted utility must be linear if the
preference satisfies stochastic dominance. Here, because the manner in which w is applied depends
on the framing of the act, we avoid this trivial reduction.

This example illuminates a framing dependence of objective theories which depend on weighting
functions. Instead of working with the space of probability distributions or lotteries, suppose the
objects of choice were lists of outcomes and odds, analogous to the lists of outcomes and events
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considered here. If a list included redundancies, for example if the probability p of x was broken
into p1 + p2 = p, then a nonlinear weighting function would aggregate the redundant expression
differently from the minimal expression.

Example 2 (Principle of insufficient reason). Suppose ν is a constant function, for example
ν(E) = 1 for each every nonempty E. Then the decision maker puts equal probability on all the
events of which she is cognizant. Such a criterion for cases of extreme ignorance or unawareness was
advocated by Laplace as the principle of insufficient reason. This principle is sensitive to the fram-
ing of the states. Consider the error of d’Alemebert mentioned in the introduction, who attributed
a probability of 2/3 to seeing at least one head among two tosses of a fair coin. The fundamental er-
ror was his framing of the state space as H-, TH, TT , or partitioned as {{HT, HH}; {TH}; {TT}}.
If ν is constant, d’Alembert would have realized his error had he been presented a bet which
pays only on a head followed by a tail, HT . On the other hand, he would have made a sim-
ilar error had he reasoned that there can be either 0, 1, or 2 heads, partitioning the states into
{{TT}; {HT, TH}; {HH}}. The principle of insufficient reason is often derided for its sensitivity to
the framing of events and states. This criticism is difficult to even formalize in a standard decision
model; ours is specifically designed to capture such framing effects.

A more tempered resolution of unawareness is a convex combination of a probability measure
and the ignorance prior: ν(E) = α(µ)+ (1−α). Fox and Rottenstreich (2003) report experimental
evidence which suggests that judgement is partially biased towards the ignorance prior.

4 Axioms and characterizations

We now provide axiomatic characterizations of both partition-dependent and partition-independent
expected utility. We also discuss the somewhat subtle uniqueness of ν, which requires an additional
condition.

4.1 Representations

The first five axioms on preference essentially apply the standard Anscombe–Aumann axioms to
each %π. We will refer to Axioms 1 to 5 collectively as the Anscombe–Aumann axioms.

Axiom 1 (Preference). %π is complete and transitive for all π ∈ Π.

Axiom 2 (Independence). For all f, g, h ∈ Fπ and α ∈ (0, 1): if f �π g, then αf + (1 − α)h �π

αg + (1− α)h.

Axiom 3 (Archimedean Continuity). For all f, g, h ∈ Fπ: if f �π g �π h, then there exist
α, β ∈ (0, 1) such that αf + (1− α)h �π g �π βf + (1− β)h.

Axiom 4 (Nondegeneracy). For all π ∈ Π, there exist f, g ∈ Fπ such that f �π g.
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Axiom 5 (State Independence). For all π ∈ Π, π-nonnull E ∈ σ(π), p, q ∈ ∆X, and f ∈ Fπ:

p %{S} q ⇐⇒

(
p E

f E{

)
%π

(
q E

f E{

)
.

State Independence has some additional content in our model. Not only is cardinal utility of
a consequence invariant to the state in which it obtains, but it is also invariant to the decision
maker’s minimal level of awareness.

These familiar axioms guarantee an Anscombe–Aumann expected utility representation for each
%π: there exist a probability measure µπ : σ(π) → [0, 1] and an affine function u : ∆X → R such
that Uπ(f) =

∫
S u ◦ f dµπ represents %π. Hence, given a fixed partition π, the decision maker’s

preferences %π are completely standard: she is probabilistically sophisticated on σ(π) and evaluates
lotteries linearly. Probabilistically sophisticated expected utility for a fixed level of awareness is
not at odds with our model. The model’s interest derives from the relationship between preferences
across partitions, i.e. in how the decision maker responds to updated awareness. The following
axioms consider this relationship.

To consider an act f , the decision maker must be aware of the events which are necessary for
its description, namely those in σ(π) where π is the coarsest partition such that f ∈ Fπ. If she
was ignorant of π, reading any description of f would immediately refine her understanding of the
states. Similarly, when comparing two acts f and g, she must have the minimal awareness required
to describe both f and g. This motivates the following binary relation % on F .

Definition 5. For all f, g ∈ F define f % g if f %π(f,g) g, where π(f, g) is the coarsest partition
such that f, g ∈ Fπ.

In words, % reflects the decision maker’s preference when presented with the coarsest possible
descriptions of the two acts. The remaining axioms restrict the relation %. To see why it is so
theoretically informative, suppose the analyst wanted to understand the decision maker’s response
to an act f which is expressed more finely than π(f). Then the description must entail some
redundancies, for example, f−1(p) = E1 ∪E2, but the enumeration separately lists E1 and E2 even
though they return the same lottery. But, there is a very similar act f ′ whose minimal expression
does require separate expressions for E1 and E2: an act which assigns a very close but different
lottery p′ to E2. Given the Anscombe–Aumann axioms, the decision maker’s utility for the original
act f under π is very similar to her utility for the nearby f ′ under π(f ′).

The defined relation % is generally intransitive, since the frames π(f, g), π(g, h), and π(f, h)
required for pairwise comparisons of f , g, and h are generally distinct. One relaxation of transitivity
is acyclicity. A preference relation % is acyclic if its strict component � does not admit any cycles.
Given that % is complete, it is equivalent to the following definition.

Axiom 6∗ (Acyclicity). For all acts f1, . . . , fn ∈ F ,

f1 � f2, . . . , fn−1 � fn =⇒ f1 % fn
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It is well known that acyclicity of the preference relation is necessary and sufficient for its
induced choice rule to be nonempty for any finite choice set. Since the presentation of an entire
choice set of many acts will dramatically improve the decision maker’s awareness, the interpretation
in our setting is less direct. Here, the nonemptiness of the choice rule means that, for any finite
set A ⊆ F , we can assign some status quo act f ∈ A such that if the decision maker is presented
the minimal expression of any alternative g ∈ A, she will weakly prefer to keep f , f % g. While it
might appear innocuous, this assumption is quite strong. The following result shows that assuming
Acyclicity precludes any meaningful notion of unawareness, because in the resulting representation,
decision making is independent of the minimal level of awareness.

Theorem 1. {%π}π∈Π admits a partition-independent expected utility representation if and only if
it satisfies the Ancsombe–Aumann axioms and Acyclicity.5

Proof. See Appendix A.2.

So, to allow for partition-dependent expected utility, Acyclicity must be further generalized.
In particular, some cycles must be admitted. But, we can specify exactly which cycles are still
disallowed.

Definition 6. A sequence of events E1, E2, . . . is sequentially disjoint if Ei ∩Ei+1 = ∅ for all i.

In particular, cycles can only be admitted on simple binary bets across sequentially disjoint
events.

Axiom 6 (Binary Bet Acyclicity). For all sequentially disjoint cycle of sets E1, . . . , En, E1 and
lotteries p1, . . . , pn; q ∈ ∆X,(

p1 E1

q E{
1

)
�

(
p2 E2

q E{
2

)
, . . . ,

(
pn−1 En−1

q E{
n

)
�

(
pn En

q E{
n−1

)
=⇒

(
p1 E1

q E{
1

)
%

(
pn En

q E{
n

)
.

Binary Bet Acylicity forces the decision maker to consistently evaluate simple likelihoods for
disjoint events. Since the compared events are disjoint, there is no issue of relative awareness once
these binary bets are presented to the decision maker. It is analogous to Savage’s Postulate 4,
sometimes called Weak Comparative Probability.6 Unable to marshal Savage’s entire battery of
assumptions, we must modify Weak Comparative Probability. First, Axiom 6 admits richer com-
parisons across consequences. This compensates for dropping Postulate 6 (Small Event Continuity),
since S may be finite and a likelihood relation may not identify a quantitative probability. Second,
it admits chains of comparisons to compensate for lack of transitivity.

5Theorem 1 remains true if Acyclicity is replaced with transitivity of %.
6Postulate 4, Weak Comparative Probability: for all A, B ⊂ S and x, x′, y, y′ ∈ X such that x � y and x′ � y′,„

x A

y A{

«
%

„
x B

y B{

«
⇒

„
x′ A

y′ A{

«
%

„
x′ B

y′ B{

«
.
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Another justification of acyclicity is that it prevents the construction of Dutch book schemes
which are strictly profitable at each trade. This justification is more tenuous in in our interpretation
of the model as one of awareness, because the preference relations that comprise the sequence in the
hypothesis of Binary Bet Acyclicity are all indexed by distinct minimal partitions. If we present
the decision maker with the first, the second, and then the third binary bets, she has become
aware of more events than had she been presented the second and third bets in isolation. On the
other hand, the preference notated in the axiom is really the latter. Perhaps an alternative and
similar justification is that if there were n people who exhibit this behavior, we could construct a
Dutch book between them by offering them separate choice. This could in principle be tested in a
laboratory across subjects.

Once Acyclicity is relaxed to Binary Bet Acyclicity, the classic Sure-Thing Principle of Savage
(1954) must be imposed to maintain a form of consistency.

Axiom 7 (Sure-Thing Principle). For all events E ⊂ S and acts f, g, h, h;∈ F ,(
f E

h E{

)
%

(
g E

h E{

)
=⇒

(
f E

h′ E{

)
%

(
g E

h′ E{

)

The standard justification for the Sure-Thing Principle is in establishing coherent conditional
preferences. The evaluation of conditional probabilities for subevents on E should be independent
on what happens on E{. Here, because the expression of acts on E{ also confers some awareness,
this axioms has additional content. As discussed, comparing two acts requires awareness of certain
events. When the range of h is disjoint from the ranges of f and g, the awareness needed to make
the comparison in the hypothesis can be divided into two parts: conditional awareness of subevents
of E generated by f and g, and conditional awareness of subevents of E{ generated by h. The
awareness needed to make the comparison in the conclusion can be similarly divided: conditional
awareness of the same subevents of E generated by f and g, and awareness of possibly different
subevents of E{ generated by h′. Since the conditional awareness required on E is similar for both
comparisons and the acts being compared agree on E{, the Sure-Thing Principle requires that the
preferences are determined by where the acts differ on E.

We can now present the main representation result of the paper:

Theorem 2. {%π}π∈Π admits a partition-dependent expected utility representation if and only if
it satisfies the Anscombe–Aumann axioms, Binary Bet Acyclicity, and the Sure-Thing Principle.

Proof. See Appendix A.1

4.2 Uniqueness

While the utility function u over lotteries is unique up to positive affine transformations, the
uniqueness of ν in the representation is surprisingly delicate. This delicacy also provides some
intuition for Theorem 2. Our general strategy for identifying ν is to use an appropriate chain of
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partitions and betting preferences to calibrate the likelihood ratio ν(E)/ν(F ). For example, suppose
S = {a, b, c} and consider the ratio ν({a, b})/ν({a}). First, examine preferences indexed by the
partition π1 = {{a, b}; {c}} to identify the likelihood ratio of {a, b} to {c}. Next, the preferences
indexed by π2 = {{a}; {b}; {c}} reveal the ratio of {c} to {a}. The Sure-Thing Principle and Binary
Bet Acyclicity suggest the following argument: the ratio of {a, b} to {a} is equal to the ratio of {a, b}
to {c} times the ratio of {c} to {a}, i.e. “the {c}’s cancel” and the revealed likelihood ratios multiply
out. However, if {c} is π1-null, these ratios are undefined. Instead of achieving uniqueness, the
state space segregates into equivalence classes of events which reach each other through sequentially
disjoint chains of nonnull comparisons. Without further restrictions, ν is unique only up to scale
transformations for all such equivalence classes. If all events are nonnull for all partitions, there
is one such equivalence class and ν is identified up to constant multiplication. This motivates the
following definition.

Axiom 8 (Event Reachability). For any distinct nonnull events E and F different from S, there
exists a sequentially disjoint sequence of nonnull events E1, . . . , En such that E = E1, F = En.

Event Reachability is immediately satisfied if there are no nonempty null states. The notion
of Strict Admissibility is sometimes invoked as a normative condition. It is a strong form of
monotonicity or dominance.

Axiom 8∗ (Strict Admissibility). If f(s) % g(s) for all s ∈ S and f(s′) � g(s′) for some s ∈ S,
then f � g.

Strict Admissibility readily implies Event Reachability. Also, unlike in the standard Savage
model, Strict Admissibility is not a vacuous assumption, even if the state space is very rich. For
example, if ν(E) > α for some α > 0, then there will be no null states and Strict Admissibility is
satisfied. This bound suggest a decision maker who always put some nontrivial probability on any
explicitly mentioned contingency.

On the other hand, as shown in the next example, Event Reachability is strictly weaker and is
insufficient to guarantee Strict Admissibility.

Example 3 (Event Reachability ; Strict Admissibility). Let S = {s1, s2, s3} and suppose that
{%π}π∈Π has a representation as in Theorem 1, where only the events {s1}, {s2}, {s3}, and {s1, s2}
have strictly positive ν-weight. The specified ν is non-degenerate. Strict Admissibility fails since
some non-empty events are null. Event Reachability is satisfied: there is a direct “disjoint path” in
between disjoint nonnull events, and {s1, s2} is linked to the events {s1} and {s2}, through {s3}.

Of course, the value of ν will be indeterminate on the universal event S, because it will always
divide by itself, and on the empty event ∅, because it never get assigned a consequence. Event
Reachability is necessary and sufficient to determine the set function everywhere else up to a scalar
multiple. This is the best we can hope for, since this scalar multiple will always divide itself out.

Theorem 3. Suppose that {%π}π∈Π admits a partition-dependent expected utility representation
by (u, ν). The following are equivalent:
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(i) {%π}π∈Π satisfies Event Reachability.

(ii) If (u′, ν ′) also represents {%π}π∈Π, then there exist numbers a, c > 0 and b ∈ R such that
u′(p) = au(p) + b for all p ∈ ∆X and ν ′(E) = cν(E) for all E 6= ∅, S.

Proof. See Appendix A.3

If {%π}π∈Π satisfies the uniqueness in Theorem 3, we will say that it admits a unique partition-
dependent expected utility representation by (u, ν).

4.3 Monotonicity

We have yet to conclude that ν is monotone with respect to set inclusion, or that ν(E) ≤ ν(F )
whenever E ⊂ F . While it seems very natural that someone would put less weight on a subset of an
event, the experimental evidence has repeatedly detected violations of monotonicity. For example,
Tversky and Kahneman (1983) document numerous experimental examples of the conjunction
fallacy, where subject judge an intersection of different events to be strictly more likely than its
components. When estimating the frequency of seven-letter words ending with “ing” versus seven-
letter words with “n” as the sixth letter, subjects report a higher frequency for the former set,
even though it is a strict subset of the latter. In addition, violations of monotonicity due to
the representativeness heuristic, as famously demonstrated by the Linda problem, are remarkably
robust despite “a series of increasingly desperate manipulations designed to induce subjects to obey
the conjunction rule” (Tversky and Kahneman 1983, p. 299).7 So, we see no a priori reason to
impose monotonicity of the set function.

Nonetheless, we present the characterization of monotonicity for those who are interested. When
the set function ν is unique up to a scalar multiple as characterized in Theorem 3, the following
condition guarantees that ν is monotone.

Axiom 9 (Monotonicity). For all E ⊂ F ⊂ S and p, q, r, s ∈ ∆X such that p � q,

s %

(
p F

q F {

)
=⇒

(
r E

s E{

)
%

r E

p F \ E

q F {

 .

Theorem 4. Suppose {%π∈Π}π∈Π admits a unique partition-dependent expected utility representa-
tion (u, ν). Then {%π}π∈Π satisfies Monotonicity if and only if ν is monotone.

Proof. See Appendix A.4.
7In the Linda problem, subjects are told that “Linda is 31 years old, single, outspoken and very bright. She

majored in philosophy. As a student, she was deeply concerned with issues of discrimination and social justice,
and also participated in anti-nuclear demonstrations.” The subjects believe the event “Linda is a bank teller” is less
probable than the event “Linda is a bank teller and is active in the feminist movement” (Tversky and Kahneman 1983,
p. 297).
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Event Reachability is required because, in general, there could exist one representation where ν

is not monotone, but another where ν is monotone. This is demonstrated explicitly in Example 4
of Appendix A.4. What can be guaranteed is that all subevents of null events remain null, i.e. if F

is null and E ⊆ F , then E is also null.
One interesting and potentially useful property of the Monotonicity axiom is that, once imposed,

Event Reachability and Strict Admissibility are equivalent.

Proposition 5. Suppose |S| ≥ 3 and {%π}π∈Π admits a partition-dependent expected utility rep-
resentation and satisfies Monotonicity. Then {%π}π∈Π satisfies Event Reachability if and only if it
satisfies Strict Admissibility.

Proof. See Appendix A.5.

5 Measures of unawareness

Here, we introduce behavioral and quantitative characterizations of a decision maker who incom-
pletely corrects for her lack of awareness.

We first review some formalities. Define the binary relation ≥ on Π by π′ ≥ π if σ(π′) ⊇ σ(π),
i.e. if π′ is finer than π. This binary relation defines a lattice on Π, where the meet π∧π′ denotes the
finest common coarsening of π and π′ and the join π ∨ π′ denotes the coarsest common refinement
of π and π′. Slightly abusing notation, if E ⊂ S and π′E ∈ ΠE , let π ∨ π′E denote π ∨ [π′E ∪ {E{}].
When it engenders no confusion, given π′ ∈ Π and E ∈ σ(π), let π′E ∈ ΠE denote the restriction of
π′ to E: π′E = {F ∈ π′ : F ⊂ E}.

The following definitions of absolute under and overcorrection for unawareness do not depend
on the particular utility representation forwarded in the previous section. The decision maker
undercorrects for her unawareness of an event if she puts more relative likelihood on the event as
she understands its contingencies better. Conversely, she overcorrects if she puts less likelihood
on the event as she understands it better. We stress the correction for unawareness because the
decision maker can try to adjust her assigned likelihood for the events which are not explicitly
mentioned in the framing of the acts. In doing so, she may undershoot or overshoot the desired
target. Is she happens to correct for her unawareness precisely, we cannot distinguish her behavior
from that of someone who has full awareness.

Definition 7. Suppose E ∈ π ∈ Π. {%π}π∈Π undercorrects for unawareness of π′E at π if,
for any p, q, r ∈ ∆X such that q � r:(

q E

r E{

)
%π p =⇒

(
q E

r E{

)
%π∨π′E

p

Suppose π′ ≥ π. {%π}π∈Π undercorrects for unawareness of π′ at π if π undercorrects for
unawareness of π′E for all E ∈ π.
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Finally, {%π}π∈Π undercorrects for unawareness if π undercorrects for unawareness of π′

for all π′ ≥ π.

In words, if the decision maker’s certainty equivalent for a bet on the event E increases when
she becomes aware of π′E , then she is undercorrecting at the point when she is unaware of π′E . One
way to consider the definition is that she is more willing to pay more to insure against contingency
E as she becomes increasingly aware of its subevents. For example, violations of monotonicity
entail severe undercorrections for unawareness.

Definition 8. Suppose E ∈ π ∈ Π. {%π}π∈Π overcorrects for unawareness of π′E at π if, for
any p, q, r ∈ ∆X such that q � r:

p %π

(
q E

r E{

)
=⇒ p %π∨π′E

(
q E

r E{

)

Suppose π′ ≥ π. {%π}π∈Π overcorrects for unawareness of π′ at π if π overcorrects for
unawareness of π′E for all E ∈ π.

Finally, {%π}π∈Π overcorrects for unawareness if π overcorrects for unawareness of π′ for
all π′ ≥ π.

In an example given earlier, we considered a car owner who purchases too much warranty protection
when she does not understand how her engine works. Such a consumer is overcorrecting to her
unawareness.

When preferences admit a unique representation as in Theorems 2 and 3, undercorrection or
overcorrection of unawareness is obviously related to the subadditivity or superadditivity of the set
function.

Definition 9. A set function ν is subadditive if ν(A ∪ B) ≤ ν(A) + ν(B) whenever A ∩ B = ∅.
A set function ν is superadditive if ν(A ∪B) ≥ ν(A) + ν(B) whenever A ∩B = ∅.

In the context of pure framing in support theory, Tversky and Koehler (1994) argue for and provide
evidence suggesting subadditivity of the support function across disjunctions of hypotheses. Note
that subadditivity is strictly weaker than concavity, ν(A∪B)+ν(A∩B) ≤ ν(A)+ν(B) for all A,B ⊂
S, and that superadditivity is strictly weaker than convexity, ν(A∪B)+ν(A∩B) ≥ ν(A)+ν(B) for
all A,B ⊂ S. Concavity and convexity are commonly used in the study of capacities in Choquet
integration or in the value functions of cooperative games, but have little behavioral content in
terms of unawareness.

Undercorrection and overcorrection are quantitatively characterized by an obvious ratio of the
weighing function’s value on the event as she is aware and unaware of the subevents of π′E . If this
ratio is larger than unity, than the decision maker puts more likelihood on the event when she is
aware of π′E .

Definition 10. Suppose {%π}π∈Π satisfies Axioms 1–8, so is represented by a utility function u

and a set function ν. If E ∈ π and π′E ∈ ΠE , define the coefficient of unawareness correction
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of π′E as

λ(π′E) =

∑
F∈π′E

ν(F )

ν(E)
.

The standard notion of risk aversion can be expressed behaviorally in terms of certainty equiv-
alents, as a property of the utility function for wealth, or quantitatively through the Arrow–Pratt
coefficient. Our proposed definition of under and overcorrection can be tied to a a structural
condition on the set function ν, which can then be tied to a quantitative measure.

Proposition 6. Suppose {%π}π∈Π satisfy the Anscombe–Aumann axioms, the Sure-Thing Princi-
ple, and Binary Bet Acyclicity, hence uniquely represented by (u, ν). The following are equivalent:

(i) {%π}π∈Π undercorrects [overcorrects] for unawareness;

(ii) ν is subadditive [superadditive];

(iii) λ(π′E) ≥ [≤] 1 for all E ⊂ S, π′E ∈ ΠE.

We next introduce a relative notion of undercorrection for unawareness.

Definition 11. Suppose (u, ν) and (u′, ν ′) uniquely represent {%π}π∈Π and {%′
π}π∈Π in the sense

of Theorem 3. Let λ, λ′ denote their coefficients of unawareness correction. Then ν is more

underaware than ν ′ if λ(πE) ≥ λ′(πE) for all E ⊂ S, πE ∈ ΠE .

An obvious deficiency in the comparative definition is its dependence on the particular utility
representation of Theorem 2. A more basic definition, which does not refer to a specific functional
form, would be superior.8 However, in the more narrow space where our representation holds, the
concept seems like a reasonable one. Referring back to the examples buttresses the intuition.

First, recall Example 1: ν(E) = w(µ(E)) for some additive probability measure µ and an
increasing probability weighting function w : [0, 1] → R+. Then {%}π∈Π undercorrects for un-
awareness if and only if w is a concave transformation, so the absolute definition seems to work
here. Also, suppose (u, w ◦ µ) and (u′, w′ ◦ µ) represent {%π}π∈Π and {%′

π}π∈Π. Then {%π}π∈Π is
more underaware than {%′

π}π∈Π if and only if w is a concave transformation of w′.
In Example 2, where ν(E) = αµ(E) + (1 − α). When α = 0, ν is a constant set function

and corresponds with the principle of insufficient reason which puts equal weight on all listed
contingencies. Suppose (u, αµ + (1 − α)) and (u′, βµ + (1 − β) represent {%π}π∈Π and {%′

π}π∈Π.
Then {%π}π∈Π is more underaware than {%′

π}π∈Π if and only if α ≤ β. In words, a decision maker
who is more biased towards the ignorance prior will exhibit more undercorrection for unawareness.

All the definitions so far are applied to the entire preference or to the set function ν. Moreover,
the concept appeal to the decision maker’s awareness with respect to partitions. One might be
independently interested of the decision maker’s awareness of specific events, independent of any
partition of the state space. The following provides on extreme notion of unawareness for particular
sets.

8We have a behavioral characterization of this definition which is independent of any particular utility represen-
tation, but at this point it is too complicated to be superior to this one.
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Definition 12. {%π}π∈Π is completely unaware of E ⊂ S if E is nonnull and for all partitions
{E,F, G} of S and p, q, r ∈ ∆X:(

p E ∪ F

q G

)
∼ r ⇐⇒

(
p F

q E ∪G

)
∼ r.

In words, the decision maker never puts any weight on E unless it is explicitly described to
her. In the first comparison, she attributes all the likelihood of receiving p to F because she is
completely unaware of E; in the second comparison, all the likelihood of q is similarly attributed
to G. Due to the framing of both acts, E remains occluded and the certainty equivalents are equal.

Definition 12 begins by distinguishing an event of which the decision maker is completely un-
aware from an event which the decision maker considers null. The following preference is not
precluded by complete unawareness of E:

(
x1 A ∪B

x2 C

)
�

 y A

x1 B

x2 C

 .

Here, the presentation of the second act makes the decision maker aware of E, at which point she
assigns it some positive likelihood. In contrast, this strict preference is precluded whenever E is
a null event, because the decision maker would be indifferent as to whether x1 or y is assigned to
the impossible event. Therefore, the primitives allow the analyst to distinguish unawareness and
nullity from preferences over bets.

Proposition 7. Suppose |S| ≥ 3 and {%π∈Π}π∈Π admits a unique partition-dependent expected
utility representation (u, ν). Then {%π}π∈Π is completely unaware of all nonempty E ⊂ S if and
only if ν is a constant set function.

The extreme case of complete unawareness across all events is represented by a constant capacity
where ν(E) = 1 for every E. The decision maker places a uniform distribution over the events in
her partition; extreme unawareness corresponds to the principle of insufficient reason.

A Appendix

Contrary to the order of presentation, we will prove Theorem 2 before proving Theorem 1.

A.1 Proof of Theorem 2

The necessity of the first five axioms follows immediately from the standard Anscombe–Aumann Expected
Utility Theorem. We check the final two axioms.

Claim 1. If {%π}π∈Π admits a partition-dependent expected utility representation, then % satisfies the Sure-
Thing Principle.
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Proof. For any f, g ∈ F , note that D(f, g) ≡ {s ∈ S : f(s) 6= g(s)} ∈ σ (π(f, g)), hence:

f % g ⇐⇒ f %π(f,g) g

⇐⇒
∫

D(f,g)

u ◦ f dµπ(f,g) ≥
∫

D(f,g)

u ◦ g dµπ(f,g)

⇐⇒
∑

F ∈ π(f, g) :

F ⊂ D(f, g)

u(f(F ))ν(F ) ≥
∑

F ∈ π(f, g) :

F ⊂ D(f, g)

ν(F ),

where the second equivalence follows from multiplying both sides by
∑

F ′∈π(f,g) ν(F ′).
Now, to demonstrate the Sure-Thing Principle, let E ⊂ S and f, g, h, h′ ∈ F . Let

f̂ =

(
f E

h E{

)
; ĝ =

(
g E

h E{

)
;

f̂ ′ =

(
f E

h′ E{

)
; ĝ′ =

(
g E

h′ E{

)
.

Note that D ≡ D(f̂ , ĝ) = D(f̂ ′, ĝ′) ⊂ E and πD ≡ {F ∈ π(f̂ , ĝ) : F ⊂ D(f̂ , ĝ)} = {F ∈ π(f̂ ′, ĝ′) : F ⊂
D(f̂ ′, ĝ′)}. Hence by the observation made in the first paragraph:

f̂ % ĝ ⇐⇒
∑

F∈πD

u(f̂(F ))ν(F ) ≥
∑

F∈πD

u(ĝ(F ))ν(F )

⇐⇒
∑

F∈πD

u(f(F ))ν(F ) ≥
∑

F∈πD

u(g(F ))ν(F )

⇐⇒
∑

F∈πD

u(f̂ ′(F ))ν(F ) ≥
∑

F∈πD

u(ĝ′(F ))ν(F )

⇐⇒ f̂ ′ % ĝ′.

Claim 2. If {%π}π∈Π admits a partition-dependent expected utility representation, then % satisfies Binary
Bet Acyclicity.

Proof. Let E,F ⊂ S be disjoint events and p, q, r ∈ ∆X lotteries. Set π =
{

E,F, (E ∪ F ){
}

, then

(
p E

q E{

)
%

(
r F

q F {

)
⇐⇒ [u(p)− u(q)]µπ(E) ≥ [u(r)− u(q)]µπ(F )

⇐⇒ [u(p)− u(q)]ν(E) ≥ [u(r)− u(q)]ν(F )

where the second equivalence is obtained by multiplying both sides by ν(E) + ν(F ) + ν
(
(E ∪ F ){

)
.

To see necessity of Binary Bet Acyclicity, let the events E1, . . . En ⊂ S and the lotteries p1, p2, . . . , pn; q ∈
∆X be such that E1 ∩ E2 = E2 ∩ E3 = . . . = En−1 ∩ En = En ∩ E1 = ∅ and

∀i = 1, . . . n− 1 :

(
pi Ei

q E{
i

)
%

(
pi+1 Ei+1

q E{
i+1

)
.

The observation made in the first paragraph implies that [u(p1)− u(q)]ν(E1) ≥ [u(p2)− u(q)]ν(E2) ≥ . . . ≥
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[u(pn)− u(q)]ν(En). Since [u(p1)− u(q)]ν(E1) ≥ [u(pn)− u(q)]ν(En), we conclude that(
p1 E1

q E{
1

)
%

(
pn En

q E{
n

)
.

We now move to proving the sufficiency of the axioms for the representation. The first five axioms
provide a simple generalization of the Anscombe–Aumann Expected Utility Theorem.

Claim 3. Suppose {%π}π∈Π satisfies the Anscombe–Aumann axioms. Then there exists a family of probabil-
ity measures {µπ}π∈Π with µπ : σ(π) → [0, 1] and an affine utility function u : ∆X → R with [0, 1] ⊆ u(X)
such that

f %π g ⇐⇒
∫

S

u ◦ f dµπ ≥
∫

S

u ◦ g dµπ

Proof. For each π ∈ Π, Axioms 1–5 guarantee a probability measure µπ on (S, σ(π)) and a non-constant
affine vNM utility function uπ : ∆X → R such that f %π g if and only if

∫
S

uπ ◦ f dµπ ≥
∫

S
uπ ◦ g dµπ, for

all f, g ∈ Fπ. By State Independence, p %π q if and only if p %π′ q, therefore uπ(p) ≥ uπ(q) if and only
if uπ′(p) ≥ uπ′(q). Then the uniqueness component of the standard Anscombe–Aumann Expected Utility
Theorem implies that uπ′ is a positive affine transformation of uπ. By appropriately normalizing, we lose
no generality by assuming uπ = uπ′ = u. Nondegeneracy ensures that u is not constant, so we may further
assume that its image contains the unit interval, [0, 1] ⊂ u(X), again by appropriately normalizing.

For any act f ∈ F , let π(f) denote its induced algebra on S, which is the coarsest partition such that
f ∈ Fπ. We now record two facts which rely only on the Anscombe–Aumann axioms and the Sure-Thing
Principle.

Claim 4. For any events E,F and partitions π, π′:

(i) If E ∈ π, π′, then µπ(E) = 0 ⇔ µπ′(E) = 0.

(ii) If E,F ∈ π, π′ and E ∩ F = ∅, then µπ(E)µπ′(F ) = µπ(F )µπ′(E)

Proof. To prove part (i), it is enough to show that E ∈ π, π′, then µπ(E) = 0 ⇒ µπ′(E) = 0. Suppose
that µπ(E) = 0. Select any two lotteries p, q ∈ ∆X satisfying u(p) > u(q) and any two acts h, h′ such that
p, q /∈ h(S) ∪ h′(S), π(h) = π, and π(h′) = π′. Then(

p E

h E{

)
∼

(
q E

h E{

)

by Claim 3. Hence (
p E

h′ E{

)
∼

(
q E

h′ E{

)
by the Sure-Thing Principle. Since u(p) > u(q), the last indifference can hold only if µπ′(E) = 0 by Claim 3.

To prove part (ii), observe that if either side of the desired equality is zero, then part (ii) is immediately
implied by part (i). So we may proceed assuming that both sides are strictly positive. Then all of the terms
µπ(E), µπ′(F ), µπ(F ), and µπ′(E) > 0 are strictly positive. As before, select any two lotteries p, q ∈ ∆X

such that u(p) > u(q), and let

r =
µπ(E)

µπ(E) + µπ(F )
p +

µπ(F )
µπ(E) + µπ(F )

q,
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which is another lottery. Select any two acts h, h′ such that p, q, r /∈ h(S)∪ h′(S), π(h) = π, and π(h′) = π′.
By the choice of r and the expected utility representation of %π implied in Claim 3, we have:p E

q F

h (E ∪ F ){

 ∼

(
r E ∪ F

h (E ∪ F ){

)

Hence by the Sure-Thing Principle, p E

q F

h′ (E ∪ F ){

 ∼

(
r E ∪ F

h′ (E ∪ F ){

)
.

This indifference relation, in conjunction with Claim 3, implies that

u(r) =
µπ′(E)

µπ′(E) + µπ′(F )
u(p) +

µπ′(F )
µπ′(E) + µπ′(F )

u(q)

We also have
u(r) =

µπ(E)
µπ(E) + µπ(F )

u(p) +
µπ(F )

µπ(E) + µπ(F )
u(q)

by the definition of r. Subtracting u(q) from each side of the two expressions for u(r) above, we have

µπ′(E)
µπ′(E) + µπ′(F )

[u(p)− u(q)] =
µπ(E)

µπ(E) + µπ(F )
[u(p)− u(q)]

which further simplifies to µπ′ (F )
µπ′ (E) = µπ(F )

µπ(E) since both sides of the previous equality are strictly positive.

By part (i) of Claim 4, any event E ∈ π, π′ is π-null if and only if it is π′-null. Hence we can change
quantifiers in the definitions of null and nonnull events. A nonempty event E is null if and only if E is
π-null for some partition π with E ∈ π. Dually, an event E is nonnull if and only if E is π-nonnull for every
partition π with E ∈ π.9

For any two disjoint nonnull events E,F , define the ratio:

E

F
=

µπ(E)
µπ(F )

where π is a partition such that E,F ∈ π. The value of E
F does not depend on the particular choice of π, by

part (ii) of Claim 4. Moreover, E
F is well-defined and strictly positive since E and F are nonnull. Finally,

F
E ×

E
F = 1 by construction. The following appeals to Binary Bet Acyclicity in generalizing this equality. We

first show that, given the other axioms, Binary Bet Acyclicity can be strengthened so that the conclusion
holds even if the preferences in the hypothesis are weak.

Claim 5. For all any sequentially disjoint cycle of events E1, . . . , En, E1 and lotteries p1, p2, . . . , pn; q ∈ ∆X

9Obviously, ∅ is null and S is nonnull by Nondegeneracy. Note that there may exist a nonnull event E, which
is π-null for some π for which E ∈ σ(π). From the above observation concerning the quantifiers, this can only be
possible if E is not a cell in π but a union of its cells. This would correspond to a representation where for example
E is a disjoint union of two sub-events E = E1 ∪ E2, and ν(E) > 0 yet ν(E1) = ν(E2) = 0.
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such that q 6= pi for all i,

(∀i = 1, . . . n− 1) :

(
pi Ei

q E{
i

)
%

(
pi+1 Ei+1

q E{
i+1

)
=⇒

(
p1 E1

q E{
1

)
%

(
pn En

q E{
n

)
.

Proof. Suppose ε > 0. For each pi, pick some pi(ε) ∈ ∆X such that u(pi(ε)) = u(pi(ε)) + εi. Without loss
of generality, we can take ε sufficiently small so pi(ε) 6= q for all i, so the minimal awareness is unchanged.
The expected utility representation of Claim 3 implies that for sufficiently small ε,(

pi(ε) Ei

q E{
i

)
�

(
pi+1(ε) Ei+1

q E{
i+1

)
,

for i = 1, . . . , n− 1. By Binary Bet Acyclicity, this implies(
p1(ε) E1

q E{
1

)
%

(
pn(ε) En

q E{
n

)
.

Appealing to the continuity of the expected utility representation in the assigned lotteries f(s), and taking
ε → 0 proves the desired conclusion.

Claim 6. If n ≥ 2 and E1, . . . , En are nonnull events such that E1 ∩ E2 = E2 ∩ E3 = . . . = En−1 ∩ En =
En ∩ E1 = ∅, then:

E1

E2
× E2

E3
× · · · × En−1

En
× En

E1
= 1.

Proof. The case where n = 2 immediately follows from our definition of event ratios, so assume that n ≥ 3.
Fix t1 > 0, and recursively define

ti = t1 ×
E1

E2
× E2

E3
× . . .× Ei−1

Ei
.

for i = 2, . . . , n. By selecting a sufficiently small ti, we may assume that t1, . . . tn ∈ (0, 1]. Also note that
ti+1
ti

= Ei

Ei+1
for i = 1, . . . , n − 1. Recall the range of the utility function u over lotteries contains the unit

interval [0, 1], so there exist lotteries p1, . . . , pn, q ∈ ∆X such that u(pi) = ti for i = 1, . . . , n and u(q) = 0.
Fix any i ∈ {1, . . . , n−1}. Let π = {Ei, Ei+1, (Ei∪Ei+1){}. Since ti+1

ti
= Ei

Ei+1
, we have µπ(Ei+1)u(pi+1) =

µπ(Ei)u(pi). Hence: (
pi Ei

q E{
i

)
∼

(
pi+1 Ei+1

q E{
i+1

)
by the expected utility representation of Claim 3. Since the above indifference holds for any i ∈ {1, . . . , n−1},
by two applications of Claim 5, we have (

p1 E1

q E{
1

)
∼

(
pn En

q E{
n

)
.

Hence by the expected utility representation of %π for π = {E1, En, (E1∪En){}, µπ(E1)u(p1) = µπ(En)u(pn),
that is tn

t1
= E1

En
. By definition of tn, the latter equality implies the desired conclusion:

E1

E2
× E2

E3
× . . .× En−1

En
=

E1

En
.
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We can now conclude the proof of sufficiency. Let E denote the collection of all nonnull events, which is
nonempty since Nondegeneracy ensures S ∈ E . Define the binary relation ≈ on E by E ≈ F (we read it as
F is reachable from E) if E = F or if there exist nonnull sequence of sequentially disjoint events E1, . . . , En.
The relation ≈ is obviously reflexive, symmetric, and transitive, defining an equivalence relation on E . For
any nonnull E ∈ E , let [E] = {F ∈ E : E ≈ F} denote the equivalence class of E with respect to ≈ (the
reach of E). Let E/ ≈= {[E] : E ∈ E} denote the quotient set of all equivalence classes of E modulo ≈, with
a generic class R ∈ E/ ≈.10 Select a representative event GR ∈ R for every equivalence class R ∈ E/ ≈,
invoking to the axiom of choice if the quotient is infinite.

We next define ν. For all null E, let ν(E) = 0. For every class R ∈ E/ ≈, arbitrarily assign a positive
value ν(GR) > 0 for its representative. We will conclude by defining ν(E), for any E ∈ E \{S}. If E = G[E],
then E represents its equivalence class and ν(E) has been assigned. Otherwise, whenever E 6= G[E], since
E ≈ G[E], there exist nonnull sequentially disjoint path of events E1, . . . , En such that E = E1, G[E] = En.
Then set:

ν(E) =
E1

E2
× . . .× En−1

En
× ν(G[E]).

Note that the definition of ν(E) above is independent of the particular choice of the path E1, . . . , En, because
for any other such sequentially disjoint path E = F1, . . . , Fm = G[E]:

E1

E2
× . . .× En−1

En
× Fm

Fm−1
× . . .× F2

F1
= 1

by Claim 6.
We will next verify that ν : 2S \ {S} → R+ defined above is a non-degenerate set function satisfying

µπ(E) =
ν(E)∑

F∈π ν(F )
(1)

for any event E ∈ π of any partition π ∈ Π \ {{S}}.
Let π ∈ Π \ {{S}}. By Nondegeneracy and the expected utility representation of Claim 3 for %π, there

exists a π-nonnull F ∈ π. Then F is nonnull so the denominator on the right hand side of Equation (1) is
strictly positive, so the fraction is well-defined. This also implies that ν is a non-degenerate set function.
Observe that Equation (1) immediately holds if E is null, since then ν(E) = 0 and µπ(E) = 0 follows from
E being π-null. Let Eπ ⊂ π denote the nonnull cells of π. To finish the proof of the Theorem, we will show
that µπ(E)

µπ(F ) = ν(E)
ν(F ) for any distinct E,F ∈ Eπ. Along with the fact that

∑
E∈Eπ

µπ(E) = 1, this will prove
Equation (1).

Let E,F ∈ Eπ be distinct. Note that [E] = [F ] since E and F are disjoint. Suppose first that neither E

nor F is G[E]. Then there exist nonnull events E1, . . . , En such that E = E1, G[E] = En, Ei ∩ Ei+1 = ∅ for
i = 1, . . . , n− 1, and:

ν(E) =
E1

E2
× . . .× En−1

En
× ν(G[E]).

But then F,E1, . . . , En = G[E] forms such a path from F to G[E], hence we have:

ν(F ) =
F

E1
× E1

E2
× . . .× En−1

En
× ν(G[E]).

Dividing the term for ν(E) by the term for ν(F ), we obtain E
F = ν(E)

ν(F ) .

10Note that [S] = {S} and E ≈ F for any disjoint nonnull E, F .

26



The other possibility is that exactly one of E or F (without loss of generality E) is G[E]. Then the
nonnull events F = E1, E2 = E, make up a path from F to E = G[E]. Then

ν(F ) =
F

E
× ν(E)

as desired.

A.2 Proof of Theorem 1

We maintain the notation and the results established in the proof of Theorem 2 in Appendix A.1. Suppose
{%π}π∈Π admits a partition-independent expected utility representation. The Anscombe–Aumann axioms
follow immediately, so we only check Acyclicity. We have f % g if and only if %π for all π ∈ Π such that
f, g ∈ π. Then if f % g and g % h, let π be some partition such that f, g, h ∈ π and f % h because %π is
transitive. Thus % is transitive, hence acyclic.

We prove that Acyclicity implies a partition-independent expected utility representation contrapositively.
Suppose the Anscombe–Aumann axioms hold, so by Claim 3 there exist a vNM utility function u and a
family of measures {µπ}π∈Π which represent {%π}π∈Π. Now suppose that no additive representation can be
achieved. Then there exists a partition π ∈ Π \ {S} and E ∈ π such that µπ(E) 6= µ{E,E{}(E). Without loss
of generality, we can assume the range u(∆X) contains the interval [−1, 1] by appropriately normalizing.
Also, either E or E{ must be π-nonnull; we will assume that E is π-nonnull, switching labels if required.
Suppose µπ(E) > µ{E,E{}(E); the other strict inequality is symmetric. Let p, q ∈ ∆X be such that u(p) = 1,
u(q) = 0 and define the act h by

h =

(
p E

q E{

)
.

Either µ{E,E{}(E) 6= 1 or µ{E,E{}(E) 6= 0. We will consider the first case; the second is symmetric. Fix some
ε ∈ (0, 1 − µ{E,E{}(E)). Note that αp + (1 − α)q � h where α = µ{E,E{}(E) + ε. Let f ∈ F be such that
π(f) = π and for all s ∈ S, u(f(s)) < 0. Then, for sufficiently small ε, there exists small enough δ ∈ (0, 1)
such that the act gδ defined by

gδ =

(
p E

(1− δ)q + δf E{

)
satisfies π(gδ) = π and gδ �π αp + (1− α)q. Then gδ � αp + (1− α)q. By part (i) of Claim 4, this implies
µπ(E) > 0. Then, since u(q) = 0 > u(f(s)) for all s ∈ S and E is π-nonnull, we have h � gδ. Collecting
relations, we have αp + (1 − α)q � h, h � gδ, and gδ � αp + (1 − α)q. Therefore � admits a cycle and %

violates Acyclicity.

A.3 Proof of Theorem 3

We maintain the notation and the results established in the proof of Theorem 2 in Appendix A.1. Suppose
that (u, ν) and (u′, ν′) are partition-independent expected utility representation of {%π}π∈Π and that Event
Reachability is satisfied. For each π ∈ Π, let µπ and µ′π respectively denote the probability distributions
derived from ν and ν′ by Equation (1):

µπ(E) =
ν(E)∑

F∈π ν(F )
.
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Applying the uniqueness component of the Anscombe-Aumann Expected Utility Theorem to %π, we have
µπ = µ′π and u′ = au + b for some a > 0 and b ∈ R.

Note that if E, F are two disjoint nonnull events, then

ν(E)
ν(F )

=
µπ(E)
µπ(F )

=
E

F
=

µ′π(E)
µ′π(F )

=
ν′(E)
ν′(F )

.

We will next extend the equality ν(E)
ν(F ) = ν′(E)

ν′(F ) to any pair of distinct (but not necessarily disjoint) nonnull
events E and F different from S, in order to conclude that ν′ = cν for some c > 0. Let E and F be two
distinct nonnull events different from S. By Event Reachability, there exist nonnull events E1, . . . , En such
that E = E1, F = En, Ei ∩ Ei+1 = ∅ for i = 1, . . . , n− 1. Then:

ν(E)
ν(F )

=
ν(E1)
ν(E2)

× . . .× ν(En−1)
ν(En)

=
ν′(E1)
ν′(E2)

× . . .× ν′(En−1)
ν′(En)

=
ν′(E)
ν′(F )

where the second equality follows from Ei and Ei+1 being disjoint for i = 1, . . . , n − 1. Thus ν′ is a scalar
multiple of ν, determined by the constant c = ν(E)/ν′(E) for any nonnull set E.

A.4 Proof of Theorem 4

Note that if {%π}π∈Π satisfies Axioms 1–7, so that {%π}π∈Π is represented by a pair (u, ν) as in Theorem
1. Then for any events E ⊂ F ⊂ S and p, q, r, s ∈ ∆X:11

s %

(
p F

q F {

)
⇔ u(s)[ν(F ) + ν(F {)] ≥ u(p)ν(F ) + u(q)ν(F {)

(
r E

s E{

)
%

r E

p F \ E

q F {

 ⇔ u(s)[ν(F \ E) + ν(F {)] ≥ u(p)ν(F \ E) + u(q)ν(F {).

The next Claim shows that the existence of a partition-dependent expected utility representation with
a monotone set function ν implies Monotonicity. This is true even without Event Reachability, or without
the uniqueness of ν, hence is a stronger version of the necessity of the axiom required in Theorem 4.

Claim 7. If {%π}π∈Π admits a (not necessarily unique) partition-dependent expected utility representation
by (u, ν) and ν is monotone, then {%π}π∈Π satisfies Monotonicity.

Proof. Let E ⊂ F ⊂ S and p, q, r, s ∈ ∆X such that p � q and u(s)[ν(F )+ν(F {)] ≥ u(p)ν(F )+u(q)ν(F {). If
ν(F \E)+ν(F {) = 0, then the desired conclusion holds. Otherwise ν(F \E)+ν(F {) > 0 and ν(F )+ν(F {) > 0
by nondegeneracy of ν. Since ν(F ) ≥ ν(F \ E) by monotonicity, we also have:

ν(F )
ν(F ) + ν(F {)

≥ ν(F \ E)
ν(F \ E) + ν(F {)

.

But then since u(p) > u(q), the inequality:

u(s) ≥ ν(F )
ν(F ) + ν(F {)

u(p) +
ν(F {)

ν(F ) + ν(F {)
u(q)

11For notational convenience arbitrarily fix ν(S) > 0.
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implies

u(s) ≥ ν(F \ E)
ν(F \ E) + ν(F {)

u(p) +
ν(F {)

ν(F \ E) + ν(F {)
u(q).

Therefore {%π}π∈Π satisfies Axiom 9.

The next Example shows that in the absence of Event Reachability, we cannot guarantee monotonicity
of ν for every partition-dependent expected utility representation (u, ν) of {%π}π∈Π. It requires a state space
with at least three elements because otherwise, any set function ν with ν(∅) = 0 is trivially monotone.

Example 4. Consider an arbitrary state space S with |S| ≥ 3, and fix an nonempty event A ( S. Define ν

by

ν(E) =

{
1 if E ∩A 6= ∅
0 otherwise

for any event E 6= S. Note that ν is nondegenerate. Let {%π}π∈Π be represented by (u, ν) for some non-
constant u. Any event B such that A ⊂ B ( S has nonempty intersection with all nonnull events, hence
it can not be linked to any other nonnull set through sequentially disjoint nonnull sets: In the notation of
the proof of Theorem 1, such an event B’s reachability class [B] consists of only B. Hence although ν itself
is monotone, it is straightforward to verify that ν′ obtained from ν by changing ν(B) to 1

2 continues to
represent the same preference. Moreover if we choose B such that |B| ≥ 2, then there exists a C such that
C ( B and ν′(C) = 1 > 1

2ν′(B), so ν′ is not monotone.

We show in the next claim that it is possible to guarantee a weaker version of monotonicity of the set
function from the Monotonicity of {%π}π∈Π: subsets of null events should also be null.

Claim 8. Suppose {%π}π∈Π admits a (not necessarily unique) partition-dependent expected utility represen-
tation by (u, ν). If {%π}π∈Π satisfies Monotonicity, then:

E ⊂ F ( S & ν(F ) = 0 ⇒ ν(F \ E) = 0.

Proof. Suppose that there exist events E,F such that E ⊂ F ( S and ν(F \E) > ν(F ) = 0. Since ν(F ) = 0,
by non-degeneracy of ν, we have ν(F {) > 0. Let p, q, s ∈ ∆X be such that u(p) > u(q) = u(s). Then
u(s)[ν(F ) + ν(F {)] = u(p)ν(F ) + u(q)ν(F {), so by Monotonicity, we should have u(s)[ν(F \ E) + ν(F {)] ≥
u(p)ν(F \ E) + u(q)ν(F {). However the latter inequality is not possible, since u(p) > u(q) = u(s) and

ν(F\E)

ν(F\E)+ν(F {)
> 0, a contradiction.

In the next Claim, we prove the sufficiency of the Monotonicity axiom for the existence of a monotone
representation in Theorem 4, given Event Reachability and the uniqueness of the set function up to scalar
multiples.

Claim 9. Suppose {%π}π∈Π admits a unique partition-dependent expected utility representation by (u, ν). If
{%π}π∈Π satisfies Monotonicity, then ν is monotone.

Proof. We prove the contrapositive. Suppose that ν is not monotone. Then there exist events E,F such
that E ⊂ F ( S and ν(F \ E) > ν(F ). By Claim 8, we can assume that ν(F ) > 0. We also have that
ν(F {) > 0, because otherwise by Claim 8, any subevent of F { is null, hence F and F \E are nonnull events
that can not be linked by sequentially disjoint non-events, contradicting Monotonicity.
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Let p, q, s ∈ ∆X be such that u(p) > u(q) and

s =
ν(F )

ν(F ) + ν(F {)
p +

ν(F {)
ν(F ) + ν(F {)

q.

Then u(s)[ν(F ) + ν(F {)] = u(p)ν(F ) + u(q)ν(F {), so by Monotonicity, we have u(s)[ν(F \ E) + ν(F {)] ≥
u(p)ν(F \ E) + u(q)ν(F {). Together with u(p) > u(q), these imply:

ν(F )
ν(F ) + ν(F {)

≥ ν(F \ E)
ν(F \ E) + ν(F {)

,

a contradiction to ν(F \ E) > ν(F ) and ν(F {) > 0.

A.5 Proof of Proposition 5

We maintain the notation from the proof of Theorem 4. Specifically, recall Claim 8, which guarantees that
subsets of null events are null.

Given the existence of a partition-dependent expected utility representation, Strict Admissibility is equiv-
alent to to all nonempty events being nonull. The “if” part is immediate. We proceed contrapositively to
prove the “only if” part. Let {%π}π∈Π be represented by (u, ν). Now suppose that there is a nonempty null
event E. By nondegeneracy of ν, E 6= S and E{ is nonnull. By Claim 8, all subevents of E are null. If there
is an event B such that E{ ⊂ B ( S, then B is nonnull by Claim 8. Hence E{ and B are two nonnull events
that are not linked by sequentially disjoint nonnull sets, so Event Reachability fails. If there is no such event
B, then since |S| ≥ 3, E{ must consist of at least two elements. In this case, let E{ = E1 ∪ E2, where E1

and E2 are nonempty and disjoint. Then {E1, E2, E} is a partition of S where E is null, so one of the other
two events, say Ei, is nonnull by nondegeneracy of ν. But then E{ and Ei are two nonnull events that are
not linked by sequentially disjoint nonnull sets, so again Event Reachability fails.
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paper, Open University of Israel, Universitat Autònoma de Barcelona, and University of California, Davis.

(forthcoming): “Interactive Unawareness,” Journal of Economic Theory.

Kahneman, D., and A. Tversky (1979): “Prospect Theory: An Analysis of Decision under Risk,” Econometrica,
47, 263–292.

Karmarkar, U. (1978): “Subjectively Weighted Utility: A Descriptive Extension of the Expected Utility Model,”
Organizational Behavior and Human Performance, 21, 61–72.

Kreps, D. M. (1979): “A Representation Theorem for ‘Preference for Flexibility’,” Econometrica, 47, 565–576.

Li, J. (2006): “Information Structures with Unawareness,” Working paper, University of Pennsylvania.

Mukerji, S. (1996): “Understanding the Nonadditive Probability Decision Model,” Economic Theory, 9, 23–46.

Nehring, K. (1999): “Preference for Flexibility in a Savage Framework,” Econometrica, 67, 101–119.

Quiggin, J. (1982): “A Theory of Anticipated Utility,” Journal of Economic Behavior and Organization, 3, 323–343.

Savage, L. J. (1954): The Foundations of Statistics. Wiley, New York.

Schmeidler, D. (1989): “Subjective Probability and Expected Utility without Additivity,” Econometrica, 57, 571–
587.

Tversky, A., and D. Kahneman (1983): “Extensional versus Intuitive Reasoning: The Conjunction Fallacy in
Probability Judgment,” Psychological Review, 90, 293–315.

Tversky, A., and D. J. Koehler (1994): “Support Theory: A Nonextensional Representation of Subjective
Probability,” Psychological Review, 101, 547–567.

31


	Introduction
	A model of decision making with unawareness and framing
	Partition-dependent expected utility
	Axioms and characterizations
	Representations
	Uniqueness
	Monotonicity

	Measures of unawareness
	Appendix
	Proof of Theorem 2
	Proof of Theorem 1
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Proposition 5


