
1 Data with Independence

Define a function which is continuous in the parameters θ, h̃(θ, Zi) ≡ hi(θ), and the average

h(θ) =
1
n

∑
i

hi(θ) (1)

For consistency we assume regularity conditions and the identifying assumption that

E [hi(θ)] = 0 (2)

if and only if θ = θ∗. Motivated by the analogy principle, we define the estimator θ̂ by

0 = h(θ̂) (3)

Consistency follows from the identifying assumption and continuity of probability limits.
For asymptotic normality, we strengthen continuity of h(·) to differentiability and assume regularity conditions and the

existence of

V
[√
nh(θ∗)

]
= Σ (4)

By virtue of the iid assumption, we can put some structure on Σ. In particular, we know that

Σ = V
[√
nh(θ∗)

]
= nV [h(θ∗)] = n

1
n2

∑
i

V [hi(θ∗)] = V [hi(θ∗)] (5)

and we traditionally estimate

Σ̂ = V
[√

nh(θ̂)
]

=
1

n− 1

∑
i

(
hi(θ̂)− h(θ̂)

)(
hi(θ̂)− h(θ̂)

)′
=

1
n− 1

∑
i

hi(θ̂)hi(θ̂)′ (6)

Taking a first order Taylor approximation centering h(θ̂) around θ∗, we have

0 = h(θ̂) = h(θ∗) +H(θ∗)
(
θ̂ − θ∗

)
+ op(1) (7)

where

H(θ) = Dθh(θ) =
1
n

∑
i

Dθhi(θ) (8)

From the first order Taylor approximation and invertibility of H(θ∗), we have
√
n
(
θ̂ − θ∗

)
= −H(θ∗)−1

√
nh(θ∗) + op(1) (9)

By a weak law of large numbers, H(θ) converges in probability under regularity conditions to H∗(θ) for every value of θ.
By a central limit theorem,

√
nh(θ∗) converges in distribution under regularity conditions to a normal distribution with

mean zero and variance Σ. Consequently, under regularity conditions and by Slutsky’s theorem,
√
n
(
θ̂ − θ∗

)
converges

in distribution to a normal distribution with mean zero and variance

Ω = H∗(θ∗)−1ΣH∗(θ∗)′−1 (10)

under regularity conditions. We then approximate

Ω̂ = H(θ̂)−1Σ̂H(θ̂)′−1 (11)

For example, if we are analyzing a weighted least squares problem with hi(θ) = (Yi −X ′iθ)XiWi, then

H(θ) = Dθh(θ) = − 1
n

∑
i

WiXiX
′
i and Σ̂ =

1
n− 1

∑
i

XiW
2
i

(
Yi −X ′i θ̂

)2

X ′i (12)

and we approximate

Ω̂ =

{
1
n

∑
i

WiXiX
′
i

}−1
1

n− 1

∑
i

XiW
2
i

(
Yi −X ′i θ̂

)2

X ′i

{
1
n

∑
i

WiXiX
′
i

}−1

(13)

A similar approach can be used to approximate covariances. Maintaining the previous example, suppose that we want
to approximate the covariance between weighted and unweighted least squares. Let θ̂ continue to denote the weighted
least squares estimate and let θ̂OLS denote unweighted least squares. Then approximate

√
nĈ
[
θ̂ , θ̂OLS

]
=

{
1
n

∑
i

WiXiX
′
i

}−1
1

n− 1

∑
i

XiWi

(
Yi −X ′i θ̂

)(
Yi −X ′i θ̂OLS

)
X ′i

{
1
n

∑
i

XiX
′
i

}−1

(14)
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2 Data with a Grouping Structure

Now suppose

h(θ) =
1
n

J∑
j=1

nj∑
i=1

hji(θ) (15)

and define H(θ) = Dθh(θ) = 1
n

∑
j

∑
i hji(θ) as before. We now replace the iid assumption with the less restrictive

assumption that hji(θ) is independent of hj′i′(θ) for j 6= j′. Note that this means hji(θ) is not assumed to be independent
of hji′(θ) for i 6= i′. This leads to a different approximation for Σ. Note that

Σ = V
[√
nh(θ∗)

]
= nV [h(θ∗)] = n

1
n2

J∑
j=1

V

[
nj∑
i=1

hji(θ∗)

]
=

1
n

J∑
j=1

V

[
nj∑
i=1

hji(θ∗)

]
(16)

Since we have independence across groups j, we can approximate

V̂

[
nj∑
i=1

hji(θ̂)

]
=

1
J − 1

J∑
j=1


(

nj∑
i=1

hji(θ̂)

)
− 1
J

J∑
j=1

(
nj∑
i=1

hji(θ̂)

)

(

nj∑
i=1

hji(θ̂)

)
− 1
J

J∑
j=1

(
nj∑
i=1

hji(θ̂)

)
′

(17)

=
1

J − 1

J∑
j=1

(
nj∑
i=1

hji(θ̂)

)(
nj∑
i=1

hji(θ̂)

)′
(18)

which leads to the estimate

Σ̂ =
1
n

J

J − 1

J∑
j=1

(
nj∑
i=1

hji(θ̂)

)(
nj∑
i=1

hji(θ̂)

)′
(19)

and the limiting variance of
√
n
(
θ̂ − θ∗

)
can then be approximated as

Ω̂ = H(θ̂)−1Σ̂H(θ̂)′−1 (20)

It is instructive to rewrite this as follows. Define

gj(θ) =
nj∑
i=1

hji(θ) and Gj(θ) =
nj∑
i=1

Hji(θ) (21)

This then implies

h(θ) =
1
n

∑
j

gj(θ) , H(θ) =
1
n

∑
j

Gj(θ) and Σ̂ =
1
n

J

J − 1

∑
j

gj(θ̂)gj(θ̂)′ (22)

and

Ω̂ =

 1
n

∑
j

Gj(θ̂)


−1

1
n

J

J − 1

∑
j

gj(θ̂)gj(θ̂)′

 1
n

∑
j

Gj(θ̂)′


−1

(23)

Note that the rank of the matrix Ω̂ is J −1. This follows from the fact that each matrix gj(θ̂)gj(θ̂)′ is rank 1 and from the
fact that the moments evaluated at θ̂ by construction sum to zero overall in the sample. This means that it is impossible
to test any hypothesis involving more than J − 1 restrictions using this approach.

Specializing again to the weighted least squares case, we thus have

Ω̂ =

 1
n

∑
j

∑
i

WjiXjiX
′
ji


−1

1
n

J

J − 1

J∑
j=1

(
nj∑
i=1

Wji(Yji −X ′jiθ̂)Xji

)(
nj∑
i=1

Wji(Yji −X ′jiθ̂)Xji

)′

×

 1
n

∑
j

∑
i

WjiXjiX
′
ji


−1
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and the same approach can be used to approximate covariances. For weighted and unweighted least squares, approximate

√
nĈ
[
θ̂ , θ̂OLS

]
=

 1
n

∑
j

∑
i

WjiXjiX
′
ji


−1

1
n

J

J − 1

J∑
j=1

(
nj∑
i=1

Wji(Yji −X ′jiθ̂)Xji

)(
nj∑
i=1

(Yji −X ′jiθ̂OLS)Xji

)′

×

 1
n

∑
j

∑
i

XjiX
′
ji


−1

3 Panel Data

Now suppose we have data on groups over time with individuals observed within groups at any point in time. Time is
indexed by t. We believe in independence across groups, but there may not be very many groups, i.e., J may be small.
Redefine

h(θ) =
1
n

J∑
j=1

Tj∑
t=1

njt∑
i=1

hjti(θ) ≡
1
n

J∑
j=1

Tj∑
t=1

gjt(θ) (24)

where gjt(θ) =
∑njt

i=1 hjti(θ) by analogy with the previous notation. If J is large, then the strategy from the previous sec-
tion can be used; this allows for arbitrary serial correlation patterns. However, if J is small (below, say, 10), that strategy
performs poorly in finite samples. When J is small it may thus be worth considering imposing time series assumptions as
well in order to improve finite sample coverage. Intuitively, when the restrictions are correct, this replaces noisy estimates
of zero with true zeros and results in improved finite sample performance.

Recall that for any variable ξjt, V [
∑
t ξjt] =

∑
t

∑
τ C[ξt, ξτ ]. Then note that

Σ = V
[√
nh(θ∗)

]
=

1
n

J∑
j=1

V

 Tj∑
t=1

njt∑
i=1

hjti(θ∗)

 =
1
n

J∑
j=1

V

 Tj∑
t=1

gjt(θ∗)

 (25)

=
1
n

J∑
j=1

Tj∑
t=1

Tj∑
τ=1

C [gjt(θ∗), gjτ (θ∗)] ≡ 1
n

J∑
j=1

TjSj (26)

where Sj is defined as

Sj =
1
Tj

Tj∑
t=1

Tj∑
τ=1

C [gjt(θ∗), gjτ (θ∗)] (27)

Following Newey and West (1987), define

D̂jm =
1
Tj

Tj∑
t=m+1

gjt(θ̂)gj,t−m(θ̂)′ (28)

Ŝj = D̂j0 +
M∑
m=1

(
1− m

M + 1

)(
D̂jm + D̂′jm

)
(29)

where M is either fixed (Theorem 1) or increases slowly with the number of time series observations (Theorem 2). This
approach approximates

Σ̂ =
1
n

J∑
j=1

TjŜj =
1
n

J∑
j=1

Tj

{
D̂j0 +

M∑
m=1

(
1− m

M + 1

)(
D̂jm + D̂′jm

)}
(30)

or a linear combination of Newey-West variance matrices for the various groups.
Specializing this result to weighted least squares, we have

Ω̂ =

 1
n

∑
j

∑
t

∑
i

WjtiXjtiX
′
jti


−1

1
n

J∑
j=1

TjŜj

 1
n

∑
j

∑
t

∑
i

WjtiXjtiX
′
jti


−1

and as before, a similar approach works for covariances. For weighted and unweighted least squares, redefine D̂jm as

D̂jm =
1
Tj

Tj∑
t=m+1

(
njt∑
i=1

Wjti(Yjti −X ′jtiθ̂)Xjti

)(
njt∑
i=1

(Yj,t−m,i −X ′j,t−m,iθ̂OLS)Xj,t−m,i

)′
(31)
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Then define Ŝj as before and approximate

√
nĈ
[
θ̂ , θ̂OLS

]
=

 1
n

∑
j

∑
t

∑
i

WjtiXjtiX
′
jti


−1

1
n

J∑
j=1

TjŜj

 1
n

∑
j

∑
t

∑
i

XjtiX
′
jti


−1

Note that when M = 0 and setting aside degrees of freedom corrections, this approach reduces to the “cluster” approach
from the preceding section, where independence is assumed across j and t. This is useful as a check on computing.

4


