1 Model

Latent variables:

$$
\begin{align*}
Y_{i}(0) & =\alpha_{0}+\beta_{0}^{\prime} X_{i}+\varepsilon_{i}^{0} \tag{1}\\
Y_{i}(1) & =\alpha_{1}+\beta_{1}^{\prime} X_{i}+\varepsilon_{i}^{1} \tag{2}\\
T_{i}^{*} & =\alpha_{T}+\beta_{T}^{\prime} X_{i}-u_{i} \tag{3}
\end{align*}
$$

where we asssume that the pair $\left(\varepsilon_{i}^{0}, \varepsilon_{i}^{1}\right)$ is mean zero and independent of X_{i}, that u_{i} is mean zero and independent of X_{i}, and further that the pair $\left(\varepsilon_{i}^{0}, \varepsilon_{i}^{1}\right)$ is independent of u_{i}. We never observe any of $Y_{i}(0), Y_{i}(1)$, or T_{i}^{*}. Rather, we see (X_{i}, T_{i}, Y_{i}), where

$$
\begin{align*}
T_{i} & =\mathbf{1}\left(T_{i}^{*}>0\right) \tag{4}\\
Y_{i} & =T_{i} Y_{i}(1)+\left(1-T_{i}\right) Y_{i}(0) \tag{5}
\end{align*}
$$

Parameters:

$$
\begin{align*}
A T E & =\mathbb{E}\left[Y_{i}(1)-Y_{i}(0)\right] \tag{6}\\
T O T & =\mathbb{E}\left[Y_{i}(1)-Y_{i}(0) \mid T_{i}=1\right] \tag{7}
\end{align*}
$$

2 Regression

Plug in (1) and (2) into (5):

$$
\begin{align*}
Y_{i} & =Y_{i}(0)+T_{i}\left(Y_{i}(1)-Y_{i}(0)\right) \tag{8}\\
& =\alpha_{0}+\beta_{0}^{\prime} X_{i}+\left(\alpha_{1}-\alpha_{0}\right) T_{i}+\left(\beta_{1}-\beta_{0}\right)^{\prime} T_{i} X_{i}+\varepsilon_{i} \tag{9}
\end{align*}
$$

where $\varepsilon_{i}=\varepsilon_{i}^{0}+T_{i}\left(\varepsilon_{i}^{1}-\varepsilon_{i}^{0}\right)$ is a composite (heteroskedastic) error term. This motivates a regression of Y_{i} on X_{i}, T_{i}, and their interactions. Then note that

$$
\begin{align*}
A T E & =\mathbb{E}\left[Y_{i}(1)-Y_{i}(0)\right]=\alpha_{1}-\alpha_{0}+\left(\beta_{1}-\beta_{0}\right)^{\prime} \mathbb{E}\left[X_{i}\right] \tag{10}\\
T O T & =\mathbb{E}\left[Y_{i}(1)-Y_{i}(0)\right]=\alpha_{1}-\alpha_{0}+\left(\beta_{1}-\beta_{0}\right)^{\prime} \mathbb{E}\left[X_{i} \mid T_{i}=1\right] \tag{11}
\end{align*}
$$

so that a natural way to estimate these parameters is to estimate the regression in (9) and then to use the sample mean to compute $\mathbb{E}\left[X_{i}\right]$ or $\mathbb{E}\left[X_{i} \mid T_{i}=1\right]$.

3 Reweighting

The reason why we have to control for X_{i} in the regression approach is that treatment is associated with X_{i}. An alternative approach is to use Bayes' Rule to reweight observations so that the covariates are similar between treatment and control. Note that for any function $g(\cdot)$, we have

$$
\begin{align*}
\mathbb{E}\left[g\left(X_{i}\right) \mid T_{i}=1\right] & =\mathbb{E}\left[\left.g\left(X_{i}\right) \frac{p\left(X_{i}\right)}{1-p\left(X_{i}\right)} \frac{1-q}{q} \right\rvert\, T_{i}=0\right] \tag{12}\\
\mathbb{E}\left[\left.g\left(X_{i}\right) \frac{q}{p\left(X_{i}\right)} \right\rvert\, T_{i}=1\right] & =\mathbb{E}\left[\left.g\left(X_{i}\right) \frac{1-q}{1-p\left(X_{i}\right)} \right\rvert\, T_{i}=0\right]=\mathbb{E}\left[g\left(X_{i}\right)\right] \tag{13}
\end{align*}
$$

where $p\left(X_{i}\right)=P\left(T_{i}=1 \mid X_{i}\right)$ is the propensity score, or the conditional probability of treatment given covariates. Equation (12) means that we can reweight the sample so that the distribution of X_{i} among control units is the same as the distribution of X_{i} among treated units. Equation (13) means that we can reweight the sample so that the distribution of X_{i} among control units is the same as the distribution of X_{i} in the population, and likewise for treated units. Both of these equations are easy to prove using iterated expectations. For example, we have

$$
\begin{align*}
\mathbb{E}\left[\left.g\left(X_{i}\right) \frac{q}{p\left(X_{i}\right)} \right\rvert\, T_{i}=1\right] & =\frac{1}{q} \mathbb{E}\left[T_{i} g\left(X_{i}\right) \frac{q}{p\left(X_{i}\right)}\right]=\mathbb{E}\left[\mathbb{E}\left[\left.T_{i} g\left(X_{i}\right) \frac{1}{p\left(X_{i}\right)} \right\rvert\, X_{i}\right]\right] \tag{14}\\
& =\mathbb{E}\left[\mathbb{E}\left[T_{i} \mid X_{i}\right] g\left(X_{i}\right) \frac{1}{p\left(X_{i}\right)}\right]=\mathbb{E}\left[g\left(X_{i}\right) \frac{p\left(X_{i}\right)}{p\left(X_{i}\right)}\right]=\mathbb{E}\left[g\left(X_{i}\right)\right] \tag{15}
\end{align*}
$$

The other results follow from these kinds of calculations, and you can check them yourself. That suggests the following estimators for TOT (the case of ATE is analogous):

$$
\begin{equation*}
\widehat{\theta}=\frac{\sum_{i=1}^{n} T_{i} Y_{i}}{\sum_{i=1}^{n} T_{i}}-\frac{\sum_{i=1}^{n}\left(1-T_{i}\right) \frac{p\left(X_{i}\right)}{1-p\left(X_{i}\right)} \frac{1-q}{q} Y_{i}}{\sum_{i=1}^{n}\left(1-T_{i}\right)} \tag{16}
\end{equation*}
$$

where we assume $p\left(X_{i}\right)$ and q are known, which is almost always wrong. More practically, people implement this idea as

$$
\begin{equation*}
\widehat{\theta}_{N}=\frac{\sum_{i=1}^{n} T_{i} Y_{i}}{\sum_{i=1}^{n} T_{i}}-\frac{\sum_{i=1}^{n}\left(1-T_{i}\right) \frac{\widehat{p}\left(X_{i}\right)}{1-\widehat{p}\left(X_{i}\right)} Y_{i}}{\sum_{i=1}^{n}\left(1-T_{i}\right) \frac{\widehat{p}\left(X_{i}\right)}{1-\hat{p}\left(X_{i}\right)}} \tag{17}
\end{equation*}
$$

where the weights are additionally forced to sum to one. This is a good idea. Here is the standard algorithm for estimating a reweighting estimator for TOT:

1. logit T X1 X2 X3 X4
2. predict double phat
3. gen double W=phat/(1-phat)
4. reg $Y \mathrm{~T}$ [aw=W]

The reweighting estimate of TOT is the coefficient on T in this regression. Usually people take the standard error on treatment as the standard error. If $n>300$ or so, this works quite well. You can prove that to yourself using the techniques from the last problem set.

4 Matching

Keep the focus on TOT, as before. Here, the idea is to use various notions of distance to "match" observations. Let $W(i, j)$ denote the proximity of unit i to unit j. The definition of $W(i, j)$ depends on the matching approach in question. These estimators can be written as
where

$$
\begin{align*}
\widetilde{\theta} & =\frac{\sum_{i=1}^{n} T_{i}\left\{Y_{i}-\widehat{Y}_{i}(0)\right\}}{\sum_{i=1}^{n} T_{i}} \tag{18}\\
\widehat{Y}_{i}(0) & =\frac{\sum_{j=1}^{n}\left(1-T_{j}\right) W(i, j) Y_{j}}{\sum_{j=1}^{n}\left(1-T_{j}\right) W(i, j)} \tag{19}
\end{align*}
$$

is the imputed counterfactual outcome for unit i.
Programming matching estimators is a pain, because you have to loop over observations, which is slow. You also typically need to choice tuning parameters, such as a bandwidth. So you often end up resorting to crossvalidation to choose them, which means recomputing the matching estimator, or an analogue of it, again and again. In other words, if looping over observations is slow, then cross-validating an estimator that loops over observations is really slow. (But computers are fast, so maybe this isn't such a big deal.)

