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Abstract 

The key stylized facts of the housing market are positive serial correlation of price 
changes at one year frequencies and mean reversion over longer periods, strong 
persistence in construction, and highly volatile prices and construction levels 
within markets. We calibrate a dynamic model of housing in the spatial 
equilibrium tradition of Rosen and Roback to see whether such a model can 
generate these facts.  With reasonable parameter values, this model readily 
explains the mean reversion of prices over five year periods, but cannot explain 
the observed positive serial correlation at higher frequencies.  The model predicts 
the positive serial correlation of new construction that we see in the data and the 
volatility of both prices and quantities in the typical market, and it can account for 
substantial variation on construction intensity across markets.  However, the 
model cannot explain the most volatile markets in terms of low frequency price 
changes.  More research is needed to determine whether measurement error-
related data smoothing or market inefficiency can best account for the persistence 
of high frequency price changes.  The best rational explanations of the volatility 
in high cost markets are shocks to interest rates and unobserved income shocks.       
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I. Introduction 

Housing constitutes nearly two-thirds of the typical household’s portfolio, and 

more than $18 trillion worth of real estate is owned within the household sector.1   

Despite the enormous size of this sector, economists’ understanding of many features of 

the housing market remains incomplete.2   For example, in the sample of 115 

metropolitan areas from 1980 to 2005 for which we have Office of Federal Housing 

Enterprise Oversight (OFHEO) constant quality house price series, a $1 increase in real 

house prices in one year is associated with a 71 cent increase the next year.  A $1 

increase in local market prices over the past five years is associated with a 32 cent 

decrease over the next five year period.  This predictability of price changes seems to 

pose a challenge for an efficient markets view (Case and Shiller, 1989; Cutler, Poterba, 

and Summers, 1991).   

The large amount of inter-temporal volatility in prices within markets is also 

puzzling.  The standard deviation of three-year real changes in our sample of 

metropolitan area average house prices is $26,354 (in 2000 dollars throughout the paper), 

which is about one-fifth of the median price level.  Over one, three, and five year periods, 

the standard deviation of house price changes is at least three times the mean price 

change.  Can this volatility be the result of real shocks to housing market or must it 

reflect bubbles and animal spirits?   

Another more subtle puzzle is that house price appreciation in the 1990s was 

negatively correlated with that in the 1980s (as shown in Figure 1), while housing unit 

growth was positively serially correlated over the same time periods (see Figure 2).  

Demand-driven housing models predict that prices and quantities should move 

symmetrically.  The mismatch of quantity and price movements seems to suggest that 

models of housing prices need to more firmly embed supply as well as demand.   

                                                 
1 The portfolio share is from Tracy, Schneider, and Chan (1999).  The dollar value figure is for the fourth 
quarter of 2005 and is from Table B.100 Balance Sheet of Households and Nonprofit Organizations which 
may be downloaded at http://www.federalreserve.gov/RELEASES/z1/Current/data.htm.  The Federal 
Reserve’s data includes market value estimates for second homes, vacant homes for sale, and vacant land 
owned by the household sector.  
2 The debate over whether the recent boom was a bubble is only the latest example.  See McCarthy and 
Peach (2004), Himmelberg, Mayer and Sinai (2005), and Smith and Smith (2006) for recent analyses that 
conclude there is no large-scale bubble in housing prices.  Shiller (2005, 2006) and Baker (2006) argue to 
the contrary that the bubble is both real and very large.  
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Many housing models also put great stock in macroeconomic variables such as 

interest rates and national income, but most variation in housing price changes is local, 

not national.  Less than eight percent of the variation in price levels and barely more than 

one-quarter of the variation in price changes across cities can be accounted for by 

national year-specific fixed effects.3  The large amount of local variation and its 

relationship with macroeconomic variables is another challenge for a consistent economic 

explanation of housing market dynamics.   

In this paper, we present a dynamic, rational expectations model of house price 

formation to see whether such a framework can explain these salient moments of housing 

price and quantity changes.  The model follows the urban tradition of Alonso (1962), 

Rosen (1979) and Roback (1982) in which housing prices reflect the willingness to pay 

for one location versus another.  In this approach, housing prices are determined 

endogenously by local wages and amenities, so that local heterogeneity is natural.  Our 

model then extends the Alonso-Rosen-Roback framework by focusing on high frequency 

price dynamics and by incorporating endogenous housing supply.   

 In Section II of this paper, we present the model and four propositions regarding 

its implications.  The model shows that the predictability of housing price changes is 

compatible with a no-arbitrage rational expectations equilibrium. Slow construction 

responses and mean reverting wage shocks imply that prices will mean revert.  And, 

positive serial correlation of labor demand shocks at high frequencies can generate 

positive serial correlation of housing prices.   

 The model can also explain the apparent puzzle of mean reverting prices and 

persistent quantity changes shown in Figures 1 and 2.  Proposition 4 shows that long-term 

trends to city productivity or local amenities will create persistence in population and 

housing supply changes, but will have a much smaller impact on prices, since those 

trends are anticipated and incorporated into initial prices.  Price changes are driven by 

unexpected high frequency shocks, which themselves mean revert, while quantity 

changes are driven by anticipated low frequency trends that persist.   

The model also serves as the basis for the calibrations discussed in Sections III 

and IV of the paper.  Section III presents our estimates of the model’s key parameters: the 

                                                 
3 The regression results underlying these claims are provided in the appendix. 
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real rate of interest, the degree to which construction responds to higher prices, and the 

variance and serial correlation of local demand shocks.   We assume constant interest 

rates for most of the paper, but turn to time-varying interest rates in Section V.  We 

estimate supply side parameters using data on construction costs and permitting intensity.  

The literature on housing demand provides our estimates of the heterogeneity in 

preferences for particular locales.  And, we use Bureau of Economic Analysis (BEA) and 

Home Mortgage Disclosure Act (HMDA) income data to infer the time series properties 

of local income shocks.   

In Section IV, we compare the moments of the real data with the moments 

predicted by the model based on the parameter estimates from Section III.  We first 

investigate the serial correlation properties of prices and quantities.  The parameter values 

described in Section III predict that housing prices will mean revert over five year periods 

at almost exactly the same rate that we see in the data.  This mean reversion is the result 

of new construction satisfying demand and the observed mean reversion of economic 

shocks to local productivity.  We fit the modest mean reversion of construction quantities 

less perfectly, but the patterns in the real data are quite compatible with reasonable 

parameter values.  

Over one year periods, we predict strong serial correlation of new construction, 

but in the data serial correlation of new permits is even greater than the level that our 

model predicts.  The model does not predict the strong serial correlation of price changes 

at one and three year intervals.  This serial correlation could be due to the artificial 

smoothing of the underlying data or less rational factors.  Persistence itself is not enough 

to reject a rational expectations model, but the mismatch between data and model at 

annual frequencies indicates that Case and Shiller’s (1989) conclusion regarding 

inefficiency could be right.  Future work needs to deal with the data smoothing problem 

to see whether the actual serial correlation still is far too high relative to the model.    

 Reasonable parameter values predict variances of new construction and price 

changes that are quite close to the variances seen in the median metropolitan area in our 

sample.  The model also does a reasonably good job accounting for the extensive 

heterogeneity in new construction intensity across markets.  We do overestimate the 

volatility of price changes at annual frequencies, but that could be the result of data 
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smoothing.  The model does not predict ‘too much’ variation for three and five year 

changes, where smoothing should be less of an issue.   

The second major shortcoming of the model is that it does not fit the price 

volatility observed in many coastal markets (California especially), which have huge 

price changes.  To examine the robustness of the model in this respect, we consider four 

additional potential sources of volatility: amenity fluctuation, local taxes, unmeasured 

income volatility, and volatile interest rates.  The one high frequency amenity variable 

that we have—crime rates—shows little ability to increase predicted demand and price 

variability.  Variation in state taxes also are shown to have little impact on the variation 

of house price changes.  Using data from the Home Mortgage Disclosure Act (HMDA) 

files, we examine whether the volatility of incomes for recent home buyers is higher than 

the volatility for average income, and find that it is.  The variance of income in areas with 

big price change areas also is higher than the variance of incomes for the average market. 

These factors may explain the high variation of prices in the most volatile markets on the 

east coast, but do little to help us understand most of coastal California, where measured 

income volatility is not especially high.       

Volatile interest rates will not increase the volatility of prices or construction in 

markets with prices close to construction costs (or to the national median price in our 

model), but they can increase the predicted variance for places with permanently high 

amenities or productivity.  For interest rates to generate high levels of volatility, shocks to 

interest rates must be extremely high and areas must be innately extremely attractive, but 

these conditions may be true for California over the last two decades.    

 

II. A Dynamic Model of Housing Prices 

Our dynamic model of housing prices is based on three equilibrium conditions.  

Following Rosen (1979) and Roback (1982), we require consumers to be indifferent 

across space at all points in time, which requires utility U(W, A, R) to be equal across 

space, where W refers to wages, A to amenities, and R to the flow cost of housing.  Our 

simplifying assumption that this spatial equilibrium must hold in all periods is the 

housing equivalent of assuming no financial transaction costs (as in Hansen and 

Jagannathan, 1991).   Our second equilibrium condition is in the housing markets: we 



 5

require the expected returns from making a house (its expected price) to be equal to the 

cost of construction.  If the city is not growing, this equilibrium condition need not hold 

(as in Glaeser and Gyourko, 2005), but we make the simplifying assumption that the city 

is always adding new units.  Our final equilibrium condition concerns wages, which must 

equal the marginal product of labor to firms in the city.   

We implement the spatial equilibrium condition by assuming that there is a 

“reservation locale” that delivers utility of )(tU  in each period “t” and that the cost of 

building a home there always equals “C,” which reflects the physical costs of 

construction.  Since housing can be built in the reservation locale freely at cost C, we 

assume that the price of a house there always equals C.4   The reservation locale 

represents the many metropolitan areas in the American hinterland with steady growth 

and where prices stay close to the physical costs of construction (Glaeser, Gyourko and 

Saks, 2005).5   The annual cost of living in the reservation locale equals the difference 

between the price of the house at time t and the discounted value of the house at time t+1, 

or C-C/(1+r) = rC/(1+r), where r is the assumed fixed rate of interest.6   We abstract from 

taxes, maintenance costs and allow time-varying interest rates only in Section 5.7     

The spatial equilibrium requires all cities at all times to deliver to the marginal 

resident the same utility that always is available in the reservation locale.  We focus on 

the dynamics in a single representative city (which is different from the reservation city).  

The utility flow for person i living in that city during period t is ),(),( tiAtiW + , or wages 

plus amenities.  We assume that there are a fixed number of firms each of which has 

output that is quadratic in labor.  This assumption ensures that the marginal product at 

                                                 
4 While it is possible that prices will deviate around this value because of temporary over- or under-
building, we simplify and assume that the price of a house always equals C.   
5 Van Neiuwerburgh and Weill (2006) present a similar model in their exploration of long run changes in 
the distribution of income (also studied by Gyourko, Mayer and Sinai, 2006).  Our paper was produced 
independently of theirs, and our focus on high frequency variation in prices and quantities is quite different 
from their focus on changes in the long run distribution of housing prices.  More generally, the approach 
taken here differs from most research into housing prices, which employs the user cost approach introduced 
by Hendershott and Slemrod (1983) and Poterba (1984).  That branch of the literature is too voluminous to 
describe in detail.  The first three papers referenced in footnote 2 employ a user cost framework to examine 
the recent housing boom.    
6 This difference would also be the rent that a landlord earning zero profits would charge a tenant.   
7  If maintenance costs are independent of housing values and constant over space, they will not change the 
analysis.  If maintenance costs scale with housing and if there are property taxes, then the cost of owning a 
house would be higher than the after-tax interest rate.  For this reason, we will assume a relatively high real 
rate in our simulations.  See below for more on that.   
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each firm is linearly decreasing with the number of workers and that wages in the city are 

linearly decreasing with the number of workers.  These labor demand schedules 

generated by firm optimization underpin our assumption that wages at the city level 

include a stochastic time-varying component and a component that is linearly decreasing 

in total city population. 

We assume that the time-specific and individual-specific effects that make up the 

net utility flow from the city are separable so )(),(),( tUtiAtiW −+  can be written as 

)()( itD θ+ .  The composite variable D(t) reflects wages and amenities, which in turn 

reflect exogenous shocks and city size.  We let N(t) denote the housing stock in the city 

and assume that the city’s population and labor force equal a constant times the amount 

of housing.8  We further assume that D(t) moves linearly with city population to allow for 

the fact that wages and amenities may fall due to congestion or rise because of 

agglomeration economies as city size increases.  We assume that )(iθ  is a uniformly 

distributed taste for living in this particular locale, so that the value of )(iθ  for the 

marginal resident at time t (denoted ))(*( tiθ ) is also linearly decreasing in locale size.      

The exogenous components of city amenities and wages include a city-specific 

component (denoted D ), a city-specific time trend (denoted qt) and a mean zero 

stochastic component (denoted x(t)).  Thus, the flow of utility for the city’s marginal 

resident at time t with index i*(t) relative to the reservation locale, ))(*()( titD θ+ , can 

be written )()( tNtxqtD α−++ , where α captures the assumption that wages, amenities 

and the taste of the marginal resident for living in the locale can fall linearly with city 

size.  We further assume that x(t) follows an auto regressive moving average (ARMA) (1, 

1) process so that )1()()1()( −++−= tttxtx θεεδ , where 10 << δ , and the )(tε  shocks 

are independently and identically distributed with mean zero. 

The expected cost of housing in the representative locale equals )(tH  minus 

)1/())1(( rtHEt ++ , where (.)tE  denotes the time t expectations operator.  The 

difference between the cost of housing in the representative city and housing costs in the 

reservation locale, rC/(1+r), should be understood as the cost of receiving the extra utility 

                                                 
8 Glaeser, Gyourko and Saks (2006) provide evidence showing that population is essentially proportional to 
the size of the housing stock.   
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flow associated with locating in the city.  If extra housing costs in the city equals extra 

utility delivered by the city then:   

(1)   )()(
11

))1((
)( tNtxqtD

r
rC

r
tHE

tH t α−++=
+

−
+
+

− . 

Equation (1) represents a dynamic version of the Rosen-Roback spatial indifference 

equation where differences in housing costs equal differences in wages plus differences 

in amenities.  We assume a transversality condition on housing prices such that 

0
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jtH .9  If housing supply was fixed, so N(t)=N (as might be the case in 

a declining city as analyzed in Glaeser and Gyourko, 2005) then:  

(2) 
δ
θεα

−+
++

+
+

+
+−+

+=
r

ttxr
r

qr
r

qtNDrCtH
1

)()()1()1())(1()( 2  . 

Housing prices are a function of exogenous population and exogenous shocks to wages 

and amenities.  The derivative of housing prices with respect to a one dollar permanent 

increase in wages will be (1+r)/r.  Note that house price changes are predictable in this 

framework as long as there are predictable components to changes in urban wages and 

amenities.  The ARMA(1,1) structure of the shocks makes it possible to have the positive 

correlation of changes at high frequencies and the negative correlation at low frequencies 

that we see in the data. 

 The city can grow with new construction so that )(tN equals )()1( tItN +− , where 

I(t) is the amount of construction in time t. 10  The physical, administrative and land costs 

of producing a house are )1()( 210 −+++ tNctIctcC , where 21 cc >  because current 

housing production should have a bigger impact on current construction costs than 

housing production many years ago.11  Investment decisions for time t are made based on 

time t-1 information, and there is free entry of risk neutral builders.  Thus, if there is any 

building, construction costs will equal the time t expected housing price as described in 

equation (3):  

                                                 
9 This assumption limits the possible role of housing bubbles.  While our focus here is on a purely rational 
model, we expect that future work will consider dropping this assumption.   
10 For simplicity, we do not allow depreciation which may be reasonable for shorter term housing 
dynamics, but would not be appropriate for a very long term analysis of city population changes.   
11 We deviate from the investment cost assumptions of Topel and Rosen (1988) by assuming that costs are 
increasing with the total level of development and not with changes in the level of investment.   
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(3) )1()())(( 2101 −+++=− tNctIctcCtHEt .   

As mentioned above, we assume that demand for the city is sufficiently robust so that 

there is always a positive quantity of new construction and this equation always holds.12   

Equations (1) and (3) then together describe housing supply and demand.   

These equations give us the steady state values of housing prices, investment and 

housing stock: t
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If x(t)=0 for all t, and )()(ˆ tNtN = for some initial period, then these quantities would 

fully describe this representative city.13  Secular trends in housing prices can come from 

trend in housing demand as long as 02 >c , or the trend in construction costs as long as  

0>α .  If 02 =c  so that construction costs don’t increase with total city size, then trends 

in wages or amenities will impact city size but not housing prices.  If 0=α and city size 

doesn’t decrease wages or amenities, then trends in construction costs will impact city 

size but not prices.      

   Proposition 1 describes housing prices and investment when there are shocks to 

demand and when )()(ˆ tNtN ≠ .  All proofs are in the appendix. 

 

Proposition 1: At time t, housing prices equal 
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12 The model can be extended to allow for the possibility that, in some states of the world, new construction 
will be zero.  This adds much complication and only a modest amount of insight into our questions.  
13 In this case, the assumption that there is always some construction requires that 0)1( rcrq >+ . 
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where φ  and φ  are the two roots of 
0))(1())1()2(( 2121

2
1 =−++−+++− ccrycrcryc α  and 011 ≥>≥+≥ φφ r . 

 

This proposition describes the movement of housing prices and construction 

around their steady state levels.  A temporary shock,ε , will increase housing prices by 
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)(
)1(

1 δφ
θδ

−
++

c
r .  Higher values of δ ( i.e., more 

permanent shocks) will make both of these effects stronger.  Higher values of 1c  mute the 

construction response to shocks and increase the price response to a temporary shock (by 

reducing the quantity response).  These comparative statics provide the intuition that 

places which are quantity constrained should have less construction volatility and more 

price volatility.   

 The next proposition provides implications about expected housing price changes.  

 

Proposition 2:  At time t, the expected home price change between time t and jt +  is 
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the expected change in the city housing stock between time t and jt +  is  
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Proposition 2 delivers the implication that a rational expectations model of 

housing prices is fully compatible with predictability in housing prices.  If utility flows in 

a city are high today and expected to be low in the future, then housing prices will also be 

expected to decline over time.  Any predictability of wages and construction means that 

predictability in housing price changes will result in this rational expectations model.    
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The predictability of construction and prices comes in part from the convergence 

to steady state values.  If 0)()( == ttx ε  and initial population is above its steady state 

level, then prices and investment are expected to converge on their steady state levels 

from above.  If initial population is below its steady state level and 0)()( == ttx ε , then 

price and population are expected to converge on their steady state levels from below.   

The rate of convergence is determined by r and the ratios 
α

1c  and 
α

2c .  Higher levels of 

these ratios will cause the rate of convergence to slow by reducing the extent that new 

construction will respond to changes in demand.   

The impact of a shock, x(t), is explored in the next proposition. 

Proposition 3: If )(ˆ)( tNtN = , 0)1()1( =−=− ttx ε , 0>θ , 02 =c , and 0)( >tε , then 
investment and housing prices will initially be higher than steady state levels, but there 
exists a value *j  such that for all *jj > , time t  expected values of time jt +  
construction and housing prices will lie below steady state levels. The situation is 
symmetric when 0)( <tε .   

 

Proposition 3 highlights that this model not only delivers mean reversion, but 

overshooting.  Figure 3 shows the response of population, construction and prices relative 

to their steady state levels in response to a one time shock.  Construction and prices 

immediately shoot up, but both start to decline from that point.  At first, population rises 

slowly over time, but as the shock wears off, the heightened construction means that the 

city is too large relative to its steady state level. Eventually, both construction and prices 

end up below their steady state levels because there is too much housing in the city 

relative to its wages and amenities.  Places with positive shocks will experience mean 

reversion, with a quick boom in prices and construction, followed by a bust.   

Finally, we turn to the puzzling empirical fact that, across the 1980s and 1990s, 

there was strong mean reversion of prices and strong positive serial correlation in 

population levels.  We address this by looking at the one period covariance of price and 

population changes.  We focus on one-period for simplicity, but we think of this 

proposition as relating to longer time periods.  Since mean reversion dominates over long 

time periods, we assume 0=θ  to avoid the effects of serial correlation: 
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Proposition 4: If )0(ˆ)0( NN = , 0=θ , )0()0( ε=x , cities differ only in their demand 
trends q and their shock terms )0(ε , )1(ε  and )2(ε , and the demand trends are 
uncorrelated with the demand shocks, then: 
(a) the coefficient estimated when regressing second period population growth on first 
period population growth will be positive if and only if 
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Proposition 4 tells us that positive correlation of quantities and negative 

correlation of prices are quite compatible in the model.  The positive correlation of 

quantities is driven by the heterogeneous trends in demand across urban areas. As long as 

the variance of these trends is high enough relative to the variance of temporary shocks, 

then there will be positive serial correlation in quantities as in Figure 2. 

 The mean reversion of prices is driven by the shocks, and as long as 2c  is 

sufficiently low, prices will mean revert.  As discussed above, when 2c  is low, trends will 

have little impact on steady state price growth.  The positive trends show up mainly in the 

level of prices.  However, regardless of the value of 2c , unexpected shocks impact prices 

and, if these shocks mean revert, then so will prices.   

This suggests two requirements for the observed positive correlation of quantities 

and negative correlation of prices: city-specific trends must differ significantly and the 

impact of city size on construction costs must be small.  The extensive heterogeneity in 

city-specific trends is much commented on, with the recent papers by Gyourko, Mayer, 

and Sinai (2006) and Van Nieuwerburgh and Weill (2006) attempting to explain the 

phenomenon.  The literature on housing investment suggests that the impact of city size 

on construction costs is small (Topel and Rosen, 1988; Gyourko and Saiz, 2006).  Thus, 

we shouldn’t be surprised to see positive serial correlation in quantity changes and 

negative serial correlation in price changes.    
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III. Key Parameter Values for the Calibration Exercises 

We now use the model as a calibration tool to see what moments of the data, 

including its serial correlation properties and variances, can and cannot be explained by 

our framework.  We focus on the movements in prices and construction intensity around 

steady state levels.  The appendix contains the formulae for the predicted values of these 

moments.14   The model’s predictions about variances and serial correlations depend on 

seven parameters:  the real interest rate (r), the degree to which demand declines with city 

population (α ), the degree to which construction responds to higher costs (c1 and c2),  

the time series pattern of local economic shocks (δ  and θ), and the variation of those 

shocks (σε2).  Table 1 reports the value of these parameters which are used in the 

calibration exercise, with the remainder of this section discussing how we estimate or 

impute them. 

The Real Interest Rate (r)  

The first row of Table 1 shows that we use a real interest rate (r) of 4 percent in all 

calibrations.  This value is higher than standard estimates of the real rate because it is also 

meant to reflect other facets of the cost of owning, such as taxes or maintenance 

expenses, that might scale with housing.  The core simulation results are robust to a wide 

range of alternative values of r (e.g., from 2.5-5 percent). 

Supply Side Parameters:  c1 and c2 

The housing cost parameters are critical for the model, but we have little guidance 

from the literature on their values.  The parameter c1 reflects the extent that construction 

costs, including land assembly, permitting and physical construction costs, rise with the 

level of current construction activity.  The c2 parameter measures the sensitivity of costs 

to the level of overall development, or market size. 

Recent work on housing supply emphasizes the heterogeneity across space in both 

physical construction costs and local land use regulation (Gyourko and Saiz, 2006;  

Gyourko, Saiz and Summers, 2006).  Housing supply is quite different in Las Vegas, 
                                                 
14 We do not use the high frequency correlations of prices with other variables to pin down parameter 
values.  Changes in house prices and changes in income accompany each other at longer horizons (e.g., 
over the past twenty years, the correlation of the two changes is over 50 percent), but the correlation is 
much weaker at higher frequencies.  Higher frequency correlations are difficult to interpret because the real 
world information structure may not match that presumed in our model.  For example, if income shocks are 
known a period earlier, this will not matter much for predicted variances and serial correlations, but it will 
dramatically alter the predicted relationship between income and price changes. 
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which is extremely pro-growth, and Greater Boston, which has a web of regulations that 

make construction extremely difficult (Glaeser and Ward, 2006).  We will calibrate using 

a range of construction cost parameters to capture this heterogeneity.   

To determine reasonable values for c1, we begin by examining the relationship 

between physical construction costs and permitting levels over time for a large number of 

metropolitan areas.  The construction cost data are taken from Gyourko and Saiz (2006) 

and are based on figures from the R.S. Means Company, a consultant to the 

homebuilding industry.  The R.S. Means Company provides estimates of the costs to 

construct homes of given qualities.  We use annual cost data from 1980-2004 for a 2,000 

square foot ‘economy’ quality home that meets all building code and regulatory 

requirements in each market.15 

The baseline specification regresses physical construction costs per square foot of 

a standard home on annual housing permits and a time trend, which controls for the 

secular decline in costs in most markets (Gyourko and Saiz, 2006).  The range of 

parameter values reported below for c1 is based on estimations that pool across markets 

within the nine census divisions.16  

 Higher permitting activity is associated with the lowest increase in physical 

construction costs in the markets in the South Atlantic (FL, GA, NC, SC, VA, WV), 

Mountain (AZ, CO, ID, MT, NM, NV, UT, WY), and West South Central (AR, LA, OK, 

TX) divisions.  The regression results imply that one thousand additional permits is 

associated with a $120 increase in the cost of building a standard house in the Mountain 

                                                 
15 More specifically, the R.S. Means Company assumes this standard home is built according to a common, 
national specification.  It then disaggregates construction of this unit into different tasks that require 
materials and labor, and surveys local suppliers and builders to determine local prices for the inputs into 
each construction task.  Local physical construction costs are the sum of the materials and labor costs 
needed to complete each task.  
16 We were able to obtain data on both construction costs and permits over the 1980-2004 period for 161 
markets and use   We use information from all those areas in determining the range of parameter values for 
c1.  However, if we restrict the analysis to the 115 markets for which OFHEO reports a constant quality 
price index since 1980, the results are not materially different.  We also estimated the relationship for each 
metropolitan area and comment below on some of those results.  As expected, the range of parameter 
values obtained when pooling to the census division level is smaller than that resulting from the individual 
metropolitan area estimations, but those differences are not great, as the variation in supply side conditions 
across census divisions is substantial.  All underlying regression results are available upon request.  
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division market and a $140 increase in the South Atlantic and West South Central 

division areas.  In these areas, housing supply seems quite elastic.17 

 Higher permitting is associated with the biggest increase in construction costs in 

the markets in the New England census division (CT, MA, ME, NH, RI, VT).  Here, one 

thousand extra permits implies a $1,900 increase in construction costs for our 2,000 

square foot home.  In the Pacific census division (CA, OR, WA), we find that 1000 extra 

units increases construction costs by $3,680 for the Santa Barbara-Santa Maria 

metropolitan area and $1,740, for the San Francisco area, but supply seems to be much 

more elastic in the many interior California markets.  We interpret the data as suggesting 

that something around $2,000 is a reasonable upper bound for the impact of an additional 

1,000 permits on physical construction costs. 18   

Given the per unit basis on which the model is calibrated, these estimates suggest 

that each new unit is associated with increases physical construction costs of between 15¢ 

and $2.  These ordinary least squares estimates are surely biased downwards both 

because of the endogeneity of new units and because our costs estimates do not include 

expenses associated with obtaining regulatory approval or land assembly.  The 

importance of these costs probably is quite low in high growth, low regulation markets 

such as Phoenix and Las Vegas.  However, they are likely to be as much as three quarters 

of costs in some coastal markets (Glaeser and Gyourko, 2003).  Hence, we report 

simulation results for seven values of c1 ranging from 15¢ to $50 dollars.  We think that a 

value of 50¢ or less is appropriate for the high unit growth markets with very few 

restrictions on new building activities.  For the median market, we believe that a c1 value 

of around $2 best captures the reality of the supply side.   In high cost areas, the value of 

c1 could well be $20 or more, with $50 representing what we believe is an upper bound.     

This range can be compared to values of c1 implied by the housing supply 

elasticites estimated by Topel and Rosen (1988).  Those authors used national data and 

estimated a supply elasticity ranging from 1.4 and 2.2.  This supply elasticity is the 

                                                 
17 Naturally, there is variation about that mean estimate when one looks at individual markets.  While the 
results are not precisely estimated for each metropolitan area, the bulk of the results imply that an 
additional permit is associated with a 10-20 cent increase in physical constructions costs.  For example, the 
estimate for Dallas is 7 cents, that for Phoenix is 12 cents, Atlanta is 18 cents, and Tampa is 26 cents. 
18 For example, looking at the metropolitan areas containing the  Connecticut and New Jersey suburbs of 
New York City finds estimates ranging from $2.43 (New Haven) to $3.48 (Trenton). 
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relationship between the logarithm of investment and the logarithm of price, which in our 

model equals )(/)( 1 tIctH .  Using the mean values of investment and housing prices 

across our cities and an elasticity of 1.8, this generates a range of 1c  from 1 to 151.  The 

median value is 18, which seems high since it implies that a thousand additional permits 

(which is not a large number for the typical American metropolitan area) would imply an 

$18,000 increase in house cost.  Hence, we prefer the lower range associated with our 

estimation.    

 There is even less of a literature to guide our choice of c2.  We assume that this 

parameter scales with c1, as both reflect general supply conditions in the area.  More 

specifically, we consider a range of ratio of c2 to c1 (henceforth denoted ω), that includes 

0.0, 0.25, and 0.50.19 

Increases in Population and the Marginal Valuation of an Area:  α 

The value of α reflects the impact that an increase in the housing stock will have 

on the willingness to pay to live in a locale.  If population was fixed, equation (2) tells us 

that the derivative of housing prices with respect to the housing stock equals - rr /)1( α+ , 

which can be seen as the slope of the housing demand curve.  Typically, housing demand 

relationships are estimated as elasticities. Consequently, we must transform estimated 

demand elasticities into a levels estimate by multiplying by r/(1+r).     

While many housing demand elasticity estimates are around one (or slightly 

below, in absolute value), there is a wide range in the literature, so we experiment with a 

range from 0 to 2.  We begin the transformation from an elasticity to a level by 

multiplying by the ratio of price to population, which produces a range of estimates for 

rr /)1( α+  of from 0 to 3.  Multiplying this span by r/(1+r) yields a range from 0 to 0.15.  

We will use a parameter estimate of 0.1 in our simulations which implies that for every 

                                                 
19 An alternative method of estimating these parameters suggests a value of 0.25 for ω.  That approach to 
estimating the construction cost parameters follows Rosen and Topel (1988) in inverting the construction 
cost equation to obtain I(t) = (1/c1)(Et-1[H(t) – C) – (c2/c1)(Nt-1).  In empirically implementing this equation, 
we used total housing permits in period t to proxy for new construction in period t+1, and actual house 
prices to measure expected values.  Obviously, the use of actual prices in lieu of expected prices introduces 
some bias, but it should be small since the annual time period over which price is measured is relatively 
short.  We also imputed the housing stock (N(t)) each year as described above.  A simple regression of each 
market’s resulting c2 value on its c1 value (with no intercept, as suggested by our assumed functional form) 
yielded a coefficient of 0.25.  The estimated coefficient is 0.21 if we allow for an intercept.  The simple 
correlation between c1 and c2  values estimated this way is quite high at 0.92. 
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10,000 extra homes sold, the marginal purchaser likes living in the area $1,000 less per 

year (see row 5 of Table 1).  This estimate seems high to us, but lower estimated values 

of α  do not significantly change the simulations.  

Time Series Properties and Variance of Shocks:  δ, θ, and σε2 

The model does not separately address wages and amenities.  There is little 

evidence on high frequency changes in amenities, except for crime rates which we will 

discuss in Section V.  Consequently, we assume here that the high frequency movement 

in demand is driven by changes in labor demand, not changes in the valuation of 

amenities.  More specifically, observed wages )(tW are presumed to equal 

))0()(()()0( 10 NtNtxtwNw −−++− γγ , where )0(0 Nw γ−  is a component of D , 1w  is 

a component of q and γ  is a component of α .  Controlling for a city-specific fixed effect 

and trend will eliminate the term twNw 10 )0( +− γ , and the residual component of wages 

equals ))0()(()( NtNtx −− γ .20 

The most difficult part of estimating the x(t) process is our attempt to control for 

the impact of population changes, but while our procedure is debatable, it has little 

impact on the estimated properties of x(t).  The parameter γ represents the impact that an 

increase in city size will have on wages, which is proportional to the impact of labor 

supply on wage (or the slope of the labor demand function).  Customarily, labor demand 

is estimated as an elasticity, 
ForceLabor

Wage
Wage

ForceLabor
∂

∂ , and most estimates of this 

elasticity are statistically indistinguishable from zero (e.g., Card and Butcher, 1991).  

Borjas (2003) finds a higher estimate of -0.3, although this is at the national level.  We 

use this upper-bound estimate, but note that it has little differential effect on our results 

compared to assuming an elasticity of zero. 

Just as with housing demand, we must convert this elasticity into an estimate of 

γ .  Our baseline calibration uses BEA data on personal income per capita in each 

metropolitan area as the measure of local wages.21  For our sample of metropolitan areas, 

                                                 
20 Unfortunately, the distinguished literature on regional shocks (e.g. Blanchard and Katz, 1992) does not 
yield the parameter estimates that we need to calibrate the model.   
21 This is a very broad measure that covers both owners and renters.  We experiment below with another 
income measure based on a large sample of recent home buyers.  Those data, from the HMDA files, exhibit 
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the mean of this variable in 1990 (the middle of our sample period) was $26,965 (in 

$2,000).  Mean employment in 1990 across these metropolitan areas was 539,215, so our 

ratio of wage to the labor force is about 0.05 (~26,965/539,215).   Based on these 

numbers, an elasticity of -0.3 suggests that each worker is associated with 1.5 cents less 

annual income in the city.  In our sample, there are on average 1.26 workers per home, so 

each extra home is associated with 1.9 cents per year less annual income, which serves as 

our estimate ofγ .   

The per capita income series is converted into household income by multiplying 

by 2.63 (the average ratio of people per household in our sample in 1990).  We then 

adjust this income measure for the size of the local market using our estimate of 0.019 for 

γ .  We use the housing stock to reflect market size.  While this has many advantages 

over other candidate variables such as employment which fluctuate in ways not linked to 

permanent changes in market size, we must impute the housing stock (the N(t-1) term) 

because the census provides actual counts of the stock only once each decade.  For each 

metropolitan area, we know the housing stock at the beginning and end of each decade 

and the permits issued each year in between.  Our estimate of the housing stock at time 

t+j is ))()10(()( 9

0

1

0 tNtN
Permits

Permits
tN

i it

j

i it −++
∑
∑

= +

−

= + , where N(t) and N(t+10) are the housing 

stocks measured during the two closest censuses.  Thus, the change in housing stock is 

portioned across years based on the observed permitting activity.   

With this corrected income series, we can estimate the time series properties of 

income shocks at the local level, by fitting an ARMA(1,1) to the wage series that is first 

demeaned with city and year fixed effects and then corrected for city size changes as 

discussed above.  As shown in Table 1, this estimation procedure yields estimates of 

δ=0.87, θ=0.17, and σε2= $3,603,463.22       

 
                                                                                                                                                 
much more volatility than the BEA measure.  See the discussion in Section V for more on the implications 
of greater local income shock volatility. 
22 Largely because γ is so small throughout its relevant range, this adjustment to wages does not have a 
material impact on our results.  If we use a value of 0 forγ , we estimate a value of δ = 0.86, an estimate of 
θ  = 0.18, and an estimate of  σε2=$3,408,250  In addition, we attempted joint maximum likelihood 
estimation of δ, θ, and σε2 for given trend effects and metropolitan area fixed effects, but the program would 
not converge because the panel was too short relative to the number of markets.   
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IV. Calibrating the Model and Matching the Data 

In this section, we calibrate the model using the parameters values discussed 

above.  We then compare this calibration to the moments of the real data.  We first 

discuss the time series coefficients of prices and construction, and then discuss the 

volatility of these series.  Our “real data” sample is a set of 115 metropolitan areas for 

which we have continuously defined price data from 1980-2005.   

Short-Term Momentum and Longer-Term Mean Reversion in Prices, Rents and Permits 

The top row of Table 2 provides evidence on momentum and mean reversion in 

OFHEO house prices within market over time.  We use absolute price changes rather 

than changes in the logarithm of prices in order to be compatible with the model, but our 

empirical results are not sensitive to such changes in functional form.  Since the OFHEO 

index only provides price increases relative to a base year, we convert this into an implied 

price series by using the median housing value in the metropolitan area in 1980 as a base 

price in the metropolitan area and then scaling that value by the appreciation in the 

OFHEO index each year.23    

The results are estimates from a regression of the current change in prices on the 

lag change in prices  

(6)   ( )jttYearMSAtjt iceiceiceice −+ −++=− PrPrPrPr βγα ,  

for j equal to one, three and five years.  Because fixed effects estimates such as these 

which remove market-specific averages can be biased (with spurious mean reversion 

produced especially when the number of time periods is relatively low), in the first row of 

Table 2, we report Arellano-Bond estimates which use lagged values of the dependent 

variable (price changes) as instruments.24 

 Our one year estimate of price change serial correlation is 0.71, implying that a $1 

increase in housing prices between time t and t+1 is associated with a 71 cent increase 

between time t+1 and t+2.  This estimate is larger than that reported by the pioneering 

work of Case and Shiller (1989).  It is now well understood that smoothing of the 

                                                 
23 This procedure essentially provides the real price for a constant quality house with the quality being that 
associated with the median house in 1980.  We have experimented with using values from the 1990 and 
2000 censuses as the base.  All the results reported below are robust to such changes. 
24 See Arellano and Bond (1991) for more detail on this estimation procedure.  More specifically, we use 
the “xtabond” Stata command with year and area fixed effects.   
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underlying data series can bias one towards finding short-run momentum.  Case and 

Shiller (1989) were able to address this problem by splitting their sample, which 

consisted of extensive micro data on sales transactions in four markets (Atlanta, Chicago, 

Dallas, and San Francisco).  They report coefficients ranging from 0.2-0.5, although they 

use the logarithm, not the level, of prices so the results are not exactly comparable.  

Because we cannot perform any comparable procedure with the OFHEO data, our 

estimate is surely biased upwards.25   

Over three years, there is still momentum.  The estimate of 0.27 means that a $1 

increase in housing prices between time t and t+3 is associated with a 27 cent increase 

between time t+3 and t+6.  Over five year periods, we estimate a mean reversion 

coefficient of -0.32, so a $1 increase between times t and  t+5 is associated with a 32 cent 

decline between time t+5 and t+10.26   These estimates are not an artifact of the Arellano-

Bond procedure.  The analogous ordinary least squares estimates over 1, 3, and 5 year 

horizons are 0.74, 0.18 and -0.39, respectively. 27   

The mean reversion in prices that we estimate over five-year horizons is quite 

similar in magnitude to that observed for financial assets by Fama and French (1988).  

Unfortunately, the short time period for which we have constant quality price data at less 

than decadal frequencies makes it difficult to know whether this mean reversion is a 

permanent feature of urban life or whether it represents the impact of shocks that are 

specific to the post-1980 time period.  Cutler, Poterba and Summers (1991) also find this 

                                                 
25 The OFHEO index includes data on repeat sales or refinancings of the same house.  The latter typically 
rely on an appraisal, not a market sale price.  Undoubtedly, this results in smoothing of the series and biases 
upward our estimate of short-run momentum.  Even the Case and Shiller (1989) estimates, which rely only 
on actual sales, could be upward biased.  Working with a split sample, bias can result if, randomly, some 
fraction of homes on which a buyer and seller agree on a price have delayed closings that move their 
reported sales dates into the next reported period (quarter, year, etc.).  Whatever shock there was in period t 
that influenced the agreed upon price, some of its measured impact will spill over into period t+1.  
Obviously this is potentially more of a problem the shorter the measurement period. 
26 As noted in the Introduction, decadal changes also find significant mean reversion across the 1980s and 
1990s.   
27 We also addressed concerns about spurious mean reversion by estimating specifications without 
metropolitan area fixed effects.  If we estimate the following equation, 

( )55 PrPrPrPr −+ −++=− ttYeartt iceiceiceice βγα , the mean reversion coefficient drops to -0.11 and 
becomes only marginally significant.  However, as soon as we include percent of adults with college 
degrees as a control, the coefficient becomes -0.18 with a t-statistic of three.  If we estimate the same 
change regression using the logarithm of prices instead of the levels, the coefficient is -0.20 (-0.22 with the 
college graduate control) and has a t-statistic of four.      
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pattern of short run momentum and longer- run mean reversion for housing and a number 

of other asset markets. 

Table 3 reports the comparable results for prices based on our simulations using 

the different c1 and c2 values discussed above.  All other parameter values are fixed at the 

values listed in Table 1.  The first three columns show results for annual serial correlation 

in prices, the next three columns present the analogous findings over three year periods, 

with the final three columns being for five year periods.  Within each time horizon, the 

twenty-one cells correspond to the twenty-one (c1, c2) pairs reported in Table 1. 

The first three columns document the model’s failure to match the positive serial 

correlation observed in the annual data.  In fact, our calibration predicts mean reversion 

even at such a high frequency.  The predicted mean reversion is much higher in low cost, 

more elastic supply areas than in high cost, inelastic supply areas because more new 

construction will cause housing prices to fall more rapidly in the first group of markets.  

The results for three year horizons reported in the middle columns of Table 3 also find a 

mismatch with the data.  Assuming the middle case for omega (ω=0.25, column 4), we 

predict mean reversion coefficients from -0.17 to -0.45, not the positive persistence we 

see in the data as reported in Table 2.   

Our model does a much better job of fitting the -0.32 mean reversion seen at five 

year intervals (columns 6-9).  At five year horizons, if c1 takes on a value from 2 to 5 and  

ω=0.25, then we come within ten percent of matching the data (see rows 4 and 5, column 

8).  In fact, almost all of the construction cost parameter values predict levels of mean 

reversion that are close to those seen in the data.  Only in areas with extremely elastic 

supply do we predict mean reversion that substantially differs from observed levels.   

Thus, the predictable mean reversion of prices at five year intervals cannot be seen as a 

challenge for a rational expectations model of housing price movements.  

In the model, mean reversion reflects both the tendency of shocks to mean revert 

and of new construction to cause future declines in prices.  New construction will only 

decrease future housing prices when housing demand is downward sloping, so when 

demand for housing is perfectly elastic (i.e., α=0), the only force for mean reversion is the 

mean reversion of shocks.  When we assume that α=0, the predicted baseline level of 

mean reversion is about -0.25, so only a small amount of mean reversion in the average 
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market is due to new construction.  By contrast, if we set δ=1, so that there is no mean 

reversion in the shocks, then the predicted mean reversion disappears almost entirely, 

especially in markets with high values of c1 and c2. In those markets, the model suggests 

that the mean reversion of shocks, not new construction activity, drives the mean 

reversion of prices.  In market with lower values of c1 and c2, new construction plays a 

more important role in generating the mean reversion of prices.  In these more elastic 

markets, if α=0, then predicted mean reversion over five year periods falls by a quarter 

relative to Table 3.  In these markets, both new construction and mean reverting shocks 

play a role in explaining the mean reversion of prices.    

Short run momentum in asset price changes is thought by some to provide 

evidence of anomalies in the asset markets.  If this momentum reflected some asset 

market quirk, then presumably it should not also appear in rents.  In the second row of 

Table 2, we report the results from rental regressions of the form in equation (7), 

(7)   ( )jttYearMSAtjt ntntntnt −+ −++=− ReReReRe βγα . 

Rental data on apartments is collected by an industry consultant and data provider, REIS 

Inc.  Their data covers only a limited number of metropolitan areas (46 in our sample), 

and in general, rental units are not similar to owner-occupied housing.28 

 Over one- and three-year horizons, there is strong evidence of persistence, with 

the Arellano-Bond estimates being 0.27 in both cases.  Over five year time horizons, we 

estimate a mean reversion parameter of -0.64.  The presence of high frequency 

momentum and low frequency mean reversion in rents suggests that these features do not 

reflect something unique to housing asset markets, but rather something about the 

changing demand for cities.29 

Table 4 then reports the predicted values of serial correlation from the simulations 

of the model.  At annual frequencies, we predict serial correlation ranging from -0.26 to 

0.09 when ω=0.25 (column 2).  Even though there is no predicted mean reversion in 

higher cost, more inelastic markets, these estimates still are well below the 0.27 estimate 

                                                 
28 Rental units are overwhelmingly in multi-unit buildings, while owner-occupied housing is 
overwhelmingly single-family detached housing.  These differences in housing types and the problem of 
accurately measuring maintenance costs are two reasons why it is extremely difficult to tell whether 
housing prices are high or low relative to rents.   
29 The ordinary least squares estimates of these coefficients are 0.28, 0.08 and -0.51 for one, three and five 
year horizons, respectively.  
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observed in the data.  Over three year horizons, we consistently predict mean reversion, 

while there is still a positive serial correlation of rents in the data.  For five year intervals, 

we predict that rent changes should have a mean reversion coefficient of between -0.31 

and -0.37 if we assume that c1 lies between 2 and 5 and ω=0.25 (row 3 and 4, column 8).  

Higher mean reversion is predicted if c1 is lower, but our estimates still are only about 

one-half of the observed mean reversion in that case.  

We are again unable to explain the strong positive serial correlations at shorter 

time horizons.  Since there are many reasons to be suspicious about the properties of the 

rental data, especially because of artificial smoothing, we do not attach much importance 

to the quantitative mismatch with the data here.30  However, the short run momentum and 

long run mean reversion of rents, which are predicted by the model, suggest that these 

features could reflect something other than irrationality in an asset market. 

To examine the dynamics of housing quantities, we look at housing permit data 

from the Census of Construction.  The final set of results reported in Table 2 use housing 

permits estimated  in the following regression:  t
jtYearMSA

jt
t PermitsPermits −
+ ++= βγα , 

where t
jtPermits − refers to the number of permits issued between time t-j and time t.  The 

one-three and five year Arellano-Bond coefficient estimates are 0.84, 0.43, and -0.07, 

respectively.  Thus, construction also displays high frequency momentum, but little or no 

persistence or mean reversion at longer horizons.31  

The calibration results for this variable are provided in Table 5.  For the case 

where c1=5 and ω=0.25, the predicted coefficients are 0.60, 0.28 and 0.05, for one, three, 

and five year horizons, respectively.  These are reasonably close to the actual parameters, 

and minor changes in the values of one or both of the supply side parameters enable us to 

fit the data more exactly.  While the predictions about the serial correlation of 

construction are not as accurate as the predictions about the mean reversion in prices, the 

moments of the real data cannot be said to reject the model.     

                                                 
30 For example, smoothing is a greater problem in the rental data.  The industry consultant that provides the 
rent data does not survey actual renters, but the landlord owners of apartment buildings.  Undoubtedly, 
averages are being reported. 
31 As is the case with the other data, this pattern is not an artifact of our estimation procedure.  The 
analogous ordinary least squares coefficients are 0.82, 0.37, and 0.07, respectively.   
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In sum, the model does a reasonable job at fitting the time series properties of new 

building and an excellent job at fitting the long term mean reversion of prices.  It does a 

very poor job of fitting the high frequency positive serial correlation of price changes.  

This failure may be the result of data smoothing causing us to empirically overestimate 

momentum, or as Case and Shiller (1989) suggest, it could reflect some sort of 

irrationality in the housing market. 

House Price Change and Construction Variances Across Markets 

Table 6 reports the variance of price changes and of new construction in our 

sample.32  The volatility of both prices and construction varies enormously across cities.  

The distribution is quite skewed, with the mean variance much higher than the median 

variance.  To address this heterogeneity, we first run a regression for each outcome using 

all of our markets controlling for year effects, and then compute the variance of the 

residuals from this regression by metropolitan area.  This variance gives us the volatility 

of prices and construction, respectively, within a metropolitan area controlling for 

nationwide effects.   

The top panel of Table 6 shows that that the variance of one year price changes 

equals $14 million in the tenth percentile metropolitan area and $209 million in the 90th 

percentile market.  The median market has a one year price change variance of $34 

million, which is much smaller that the sample mean of $83 million.  This skewness is 

driven primarily by California markets and Honolulu.  The variance of one-year price 

changes in Honolulu is $763 million, which is the largest in our sample.  Five other 

markets—San Jose, San Francisco, Santa Barbara, Santa Ana and Salinas--had variances 

that were at least ten times greater than the sample median. 

 The second and third columns of this top panel of Table 6 report the distribution 

of variances of three and five year price changes.  The distribution of longer horizon 

price changes is also quite skewed, with the mean price change substantially exceeding 

the change for the median area.  The volatility of price changes is very high at longer 

horizons.  The variance in five-year price changes is $625 million for the median 

market, and one quarter of the metropolitan areas have variances of at least $1.1 billion.   

                                                 
32 Since the rent data are smoothed, we do not believe much, if any, weight should be put on measured 
variance of rents.  Hence, that variable is excluded from this part of the analysis.   
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Table 7 reports predicted price change variances from our simulations with the 

results arrayed in the same manner as in the serial correlation tables above.   At annual 

frequencies (columns 1-3), we predict a range of price change variances from a low of 

$16 million to a high of $190 million.  Not surprisingly, price change volatility is lower 

with smaller values of c1 and c2.  In those markets, quantities can respond readily to 

changes in demand.  The actual $34 million price variance of the median market does lie 

within this large range of predicted values, but it is only compatible with a very low value 

of  c1 : 0.5.  For more reasonable values of c1, we predict much higher variation in one 

year price changes than we see in the data. 

Data smoothing would bias measured price volatility downward over short time 

periods, and if so, we would expect this problem to be less severe for longer time periods.  

Our ability to match the volatility of price changes in the median does increase with the 

horizon over which those changes are measured.  If c1=2 (and ω=0.25), the predicted 

price variance over three-year horizons is $182 million, which is quite close to the $185 

variance found in the median market.  If c1=0.5 (and ω=0.25), the predicted variance 

almost exactly matches that found in the 10th percentile market in the data.  At this longer 

horizon, the model fails to match the high price volatility seen in the top quartile of 

housing markets.  Even assuming very little quantity variation (i.e., c1=$20 or $50), we 

do not predict a house price change variance much above the $445 million observed in 

the 75th percentile market. 

For the 5-year price change variance predictions listed in the final three columns 

of Table 7, our range of predictions runs from $29 to $756 million.  This captures the 

lower half of the distribution of actual price change variation reported in the third column 

of Table 6 (top panel), but our model generally predicts too little price change volatility at 

this low frequency.  For example, if c1 equals 5 and ω=0.25, then we predict a five year 

price variance of $421 million, which still is well below the sample median ($625 

million).  Higher c1 values, of course, allow us to come much closer, but no reasonable 

values of c1 predict the very high price change volatility found in the top quarter of 

markets.  We return to this issue in the next section.  Table 7 shows that the model 

overestimates price volatility at high frequencies, but not at lower frequencies.  This 
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pattern could be explained by artificial smoothing of price change data, but it could also 

reflect a flaw in our model.    

   The bottom panel of Table 6 reports the variance in units permitted across our 

115 metropolitan area sample.  As with price changes, there is substantial heterogeneity 

in the volatility of construction intensity across markets, and this distribution is skewed 

by a few outliers.  For example, the bottom quartile of markets has a new construction 

variance of about 2 million units per annum, while the top quartile is at least five times 

more volatile.  Moreover, this distribution is skewed by relatively few markets in the 

right tail that have variances of at least 38 million units (column 1, bottom panel of Table 

6).  Six markets—Phoenix, Dallas, Riverside-San Bernardino, Atlanta, Los Angeles, and 

Houston---stand out in this regard, having construction intensity variances that are at least 

double the next six highest variance markets.  There also is great heterogeneity in 

construction intensity variance over longer horizons, as the second and third columns of 

this part of Table 6 document.   

Table 8 reports the construction intensity variance estimates from our standard set 

of simulations.  Our model essentially can predict almost any construction variation given 

the full range of construction costs estimates.  At annual periods, the range of actual 

variances, which run from two million in the 10th percentile market to 38 million at the 

90th percentile of the distribution, lies within the range of values predicted when c1 ranges 

from 50 cents to ten dollars and ω=0.25.  The median market in our sample has a one 

year standard deviation of 3 million which is in the 2-5 million unit range predicted when 

c1 lies between 5 and 10 and ω=0.25. 

Over three year horizons, the data also roughly fits the model.  For example, the 

three-year construction variance in the median market is 26 million units (middle column, 

bottom panel of Table 6).  The range of predicted variances is between 11 and 30 million 

if c1 lies between 5 and 10 and ω=0.25. The most volatile markets are also compatible 

with the model, if c1 is sufficiently low.  For example, the variance of 328 million  

observed for the 90th percentile market, is close to the variance predicted for a market 

where c1 equals 0.5 and ω=0.25. 

At five year intervals, the actual median market has a variance of 59 million units, 

which is quite close to the variance of 62 million predicted when c1 equals 5 and ω=0.25.  
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The 10th-90th percentile range in the data lies between 29-760 million units.  When 

ω=0.25, the predicted range is between 22 and 986 million when c1 ranges from 0.15 to 

10.   Overall, the construction variances in the data are well within the range of variances 

predicted by the data.  The values of c1 and c2 must be quite low to explain the places 

with extremely volatile construction levels, but we find that plausible for a number of 

American housing markets.   

It is a fair complaint that the model fails to give tight predictions about 

construction variation.  Perhaps future work will yield tighter estimates of the 

construction cost parameters and this will lead to tighter predictions, but the spirit of our 

calibration exercise is to ask what moments of the data are incompatible with our simple 

spatial model.  This exercise does suggest that supply elasticity can explain a significant 

amount of the high construction volatility in the Sunbelt, but supply inelasticity cannot 

explain much of the high price volatility in coastal markets.  Hence, we now ask whether  

extensions to the model can explain the high volatility of house price changes in those 

markets.    

   

V. Explaining the High Volatility of Housing Prices 

The simplest explanation of highly volatile housing prices are omitted demand 

shocks, such as changes to local tax rates and amenities, and mismeasurement of income 

shocks.  We examine those hypotheses first and then turn to the potential role of time-

varying real interest rates.   

Local Tax Rates and Amenities 

Changes in local tax rates and amenity flows could increase housing volatility.  

We use data from the NBER TAXSIM website on the average tax rate on wage income 

earned in a given state each year to create an after-tax income measure for each market.  

Our analysis of after-tax income showed that controlling for this factor cannot be 

responsible for more than a 10 percent increase in local demand variability which would 

translate into a ten percent increase in price and construction volatility.  While Appendix 

II provides the details, we conclude that changes in state level tax rates cannot be driving 

the high price volatility in the top quartile of markets.   
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Unlike taxes, most amenities are relatively permanent characteristics of a place, 

(e.g., the weather, local architecture). The demand for these amenities may change slowly 

over time as a society becomes richer or more unequal or as new technologies become 

available, but it is hard to imagine that their value will fluctuate a lot at annual 

frequencies.  Crime represents one of the few amenities that does change relatively 

rapidly and for which there is available data.  Hence, we collected violent crime rates for 

the largest cities in each of our metropolitan areas using continuous crime data from 

1985-2005.33  We then created an adjusted income variable that subtracted the negative 

effect of crime from our BEA real income measure.  As detailed in Appendix III, the 

results showed almost no impact on the variability of local demand from controlling for 

crime.  We infer from this that we are unlikely to find an amenity with high frequency 

variation that can explain much of the observed volatility in prices or construction.   

Measurement of Income Shocks 

 There are two reasons why our estimates of income volatility might understate the 

true magnitude of income shocks in high volatility markets.  First, our use of BEA per 

capita income makes no allowance for the possibility that the volatility of the marginal 

home buyer’s income could be relatively high.  Second, our estimate of σε2 is based on all 

115 markets in the sample, and if income variability were systematically higher in the 

high price change variance markets, then our estimates of price volatility would be biased 

downward in those markets.   

 The puzzle of high price change variance could be at least partially explained if 

our measure of income variance understates the true year-to-year variation in the returns 

from living in a given market for the marginal homebuyer.  For example, if marginal 

buyers are young, then their incomes might be more volatile.  In cities with vibrant 

economies, buyers on the margin might be people in the cities’ fastest growing and most 

volatile industries (e.g., finance in New York and technology in San Francisco). 

 To investigate this hypothesis, we turned to the HMDA files which provide 

reported income on mortgage applications for recent purchasers of homes in all markets 

across the United States.  The Home Mortgage Disclosure Act was enacted to monitor the 

                                                 
33 We emphasize that this measure is for the local political jurisdiction, which we then impute to the 
metropolitan area. 
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loan behavior of all Federal Depository Insurance Corporation (FDIC) member banks.  

The dataset includes several variables concerning the race, sex, location, and income of 

the applicants for mortgage loans, as well as information concerning the amount and 

purpose of the loan (e.g., purchase, home improvement, refinancing).   

 We use the incomes of those mortgage applicants who were approved for loans to 

purchase a home as a proxy for the income of recent homebuyers.  We use all available 

years, which span 1990-2004.34  Each observation contains state and county identifiers, 

so we can readily match to the 115 metropolitan areas in our sample.  One of the 

attractive features of the HMDA data is its large sample size.  Over the 15 year period 

from 1990-2004, there are nearly 45 million observations across our 115 metropolitan 

areas.  Even for smaller markets such as Akron, OH, there are about 10,000 observations 

per year.  For larger markets such as Chicago and Los Angeles, the number of 

observations typically is 10 to 20 times larger. 

Using the median income for each year and MSA of those who were approved for 

a mortgage for the stated purpose of buying a home, we then adjust the HMDA-based 

income series for market size as described above for the BEA measure.  Because the 

micro data on buyers’ incomes in the HMDA files only date back to 1990, we re-estimate 

the ARMA (1,1) specification on both income series to allow comparison of the volatility 

of income shocks over a common time period.   Doing so finds that variance of income 

shocks (σε2) based on the HMDA income data of actual buyers is roughly double ($5.7 

million) that found in the mean per capita income series reported by the BEA ($2.8 

million).35    

To look at the impact of heterogeneous income variability across markets, we 

focus on coastal markets that have particularly volatile housing prices.  Working first 

                                                 
34 The data were purchased from the FDIC.  The HMDA data goes back into the 1980s, but micro data on 
individual loan applicants is available only beginning in 1990.  For more detail, see “Home Mortgage 
Disclosure Act Raw LAR and TS Public Data” (1990-2004).  Federal Financial Institutions Examination 
Council,  Board of Governors of the Federal Reserve System .  20th & C Streets, N.W. Mail Stop 502 
Washington, D.C. 20551.  On the web,see http://www.ffiec.gov/hmda.   
 
35Given that the income shock variance since 1980 for the BEA series is $3.6 million suggests that income 
volatility was relatively high in the 1980s.  Shocks also appear to have been less permanent since the 
1990s.  The estimate of δ is 0.67 in both series (compared to 0.87 for the BEA series since 1980).  The 
moving average component is weaker, too, as θ=0.08 using the HMDA data and equals 0.14 in the BEA 
data since 1990.   
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with the BEA series, we re-estimated σε2 for a sample of 31 markets whose centers are 

within 50 miles of the Atlantic or Pacific Oceans.  While the AR (δ) and MA (θ) 

components were little changed from those reported for the 115 market national sample, 

the estimate of σε2 is almost 50 percent higher in the 31 coastal markets:  $5.3 million 

versus $3.6 million.  Not surprisingly, income volatility is even higher for recent buyers 

in these same markets.  The σε2 estimate from the HMDA series is $7.8 million.   This 

difference in volatility of local wage shocks across different types of markets is large, and 

to our knowledge, has neither been well-documented nor well-understood.  Highly 

productive coastal areas might specialize in volatile idea-intensive industries, but this is 

an appropriate topic for future research. 

Because the key outstanding price-related puzzle for our model is the high 

volatility of lower frequency price changes in the top quartile of metropolitan areas, the 

top panel of Table 9 provides new estimated variances of five-year price changes for 

markets with high c1 values of at least 10, assuming more variable local demand shocks.36  

We use the two estimates of σε2 from the HMDA data, $5.6 million and $7.8 million, to 

reflect the range of higher income shock volatilities. 

The first column in Table 9 simply reproduces our baseline estimates from 

column 8 of Table 7 which assume that σε2=$3.6 million.  The next two columns report 

predicted variances assuming the two higher estimates of local demand variability.  The 

first row of the third column indicates that one still needs an extremely high (c1, c2) pair 

to match the price change volatility of the 75th percentile market.  However, if σε2 is 

doubled, as seems plausible for the coastal markets using the HMDA data, predicted 

price change volatility comfortably reaches the $1.17 billion level observed in the data 

for the 75th percentile market (see the final column of the top panel in Table 9).    

This still leaves the model unable to account for the very high price change 

variances seen in the top ten percent of markets, which are generally all on the Pacific 

coast.  The 12 most volatile markets in are sample are made up of Honolulu and much of 

coastal  California.37  There are no east coast markets in this group, with the Nassau-

                                                 
36 We also assume that ω=0.25 in each simulation. 
37 The top ten percent of the most volatile metropolitan areas in terms of five-year price changes (in 
ascending order from #104-#115) are as follows:  Oakland-Fremont-Hayward, Santa Cruz-Watsonville, 
San Luis Obispo-Paso Robles, San Diego-Carlsbad-San Marcos, Oxnard-Thousand Oaks-Ventura, Los 
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Suffolk and Bethesda-Gaithersburg-Frederick metropolitan areas having the 15th and 16th 

biggest price change volatilities. 

  The bottom panel of Table 9 shows that the combination of elastic supply side 

conditions and higher local income shock variation allow the model to match most of the 

highest construction intensity variation markets in the country.  We allow demand side 

volatility to increase only to $5.7 million in these simulations because there are no coastal 

markets with such low c1 and c2 values.  We don’t need extremely low values for 

construction costs to account for the construction intensity variation in the most volatile 

markets if income volatility is more accurately reflected in the HMDA data.  Given that 

we would expect the volatility of the marginal buyer’s income to be greater than the 

average used in the baseline simulations, these results suggest that high construction 

volatility is not a puzzle.   

Time-Varying Interest Rates 

We have so far assumed that interest rates are fixed for reasons of tractability, but 

we do recognize that many authors have claimed that the dramatic rise in house prices, 

especially in high cost markets, over the past decade is best understood as a response to 

declining interest rates that make housing in those areas more affordable (e.g., 

Himmelberg, Mayer and Sinai, 2005).  A full treatment of interest rates would require an 

analysis of long period mortgages and prepayment that lies well beyond the scope of this 

paper.  We can, however, adjust the model modestly to acquire some understanding of 

the potential impact of time-varying interest rates. 

To do so, we decompose interest rates into permanent and transitory components, 

r  and )(tρ , resprectively, where )()( trtr ρ+= , and use the approximations  

rtr +
≈

+ 1
1

)(1
1  and ))(())(())()(( CHtCtHrCtHtr −+−=− ρ , where H  is meant to 

reflect the average housing price in the city.38  If we adjust equation (2) for time-varying 

interest rates using these approximations, equation (2’) results:  

                                                                                                                                                 
Angeles-Long Beach-Glendale, San Jose-Sunnyvale-Santa Clara, Salinas, Santa Ana-Anaheim-Irvine, San 
Francisco-San Mateo-Redwood City, Santa Barbara-Santa Maria, and Honolulu. 
38 The first approximation is minor and would have been unnecessary if we assumed that the utility flow 
was received at the end of the period rather than the beginning of each period.  The second approximation 
eliminates interactions between transitory changes in value and transitory changes in the interest rate and it 
may be more consequential.  
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difference equation remains linear, the model can be solved in a relatively 

straightforward fashion. 

 This results in equation (9)’s description of prices,   
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This differs from the price equation in Proposition 1 because of its last term which 

multiplies 
Ψ+−

Ψ+
)(1

1

δφ
φ

c
c  times the interest rate shock times CH −  (the gap between 

average housing prices in the area and construction costs).  This term reflects the fact that 

a decline in interest rates essentially is a positive demand shock for high amenity and 

productivity places.  The shock makes it cheaper to live in such places, pushing up 

demand and prices.        

Since our regressions correct for year effects, this interest rate effect can have no 

impact on our empirical estimates for the average market which will have prices close to 

construction costs.  The interest rate effect does, however, have the capacity to generate 

increased variance in both price changes and construction levels for places that are 

considerably more expensive on average.  We consider four different values of )( CH − : 

$25,000, $50,000, $100,000 and $200,000, which over the past 25 years captures most of 

the range of American metropolitan areas.39 

Initially, we set c1 and c2 equal to 3.5 and 0.875, respectively, in order to focus on 

interest rates effects.40  We assume that λ=0.90, but experimentation with values as high 

                                                 
39 For example, in 1980 the highest price metropolitan area had a median house value that was about 
$170,000 greater than in the median market.  The real value of median market’s median house price is 
barely changed between 1980 and 2000.  Except for a handful of markets in the upper tail of the 
metropolitan area price distributions, gaps in excess of $200,000 with the median market do not exist.  
Finally, we omit runs with a value of zero because they correspond to the simulations from the previous 
section. 
40 These represent the mid-point between c1=2 and c1=5 (assuming ω=0.25), which we believe represent 
typical supply side conditions. 
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as 0.95 yield similar results.  The variance of interest rates is far more important for the 

results, and we use a range of standard deviations for η(t) from 0.005 to 0.02 which 

appears to encompass most assessments of the amount of real rate variation.41   

Simulations suggest that these changes to our baseline model make little 

difference to the amount of predicted mean reversion.  Thus, the results in Table 10 focus 

on the impact of interest rate volatility on the variance of price changes.  This table shows 

that including interest rates shocks can generate significant increases in the variance of 

price changes if the interest rate shock is quite high and if the market has house prices 

much greater than the average (and, thus, has prices well above construction costs).  For 

example, comparing the predicted variances in Table 10 for markets $25,000 or $50,000 

above the average market with those reported in Table 7 for similar (c1, c2) parameter 

values shows that interest rate volatility does not increase the predicted volatility of price 

changes much at all.  To generate a predicted variance near the $209 million observed 

over annual periods for the 90th percentile metropolitan area (see Table 6) requires that 

H-C be $200,000 if the standard deviation of η(t) is one percent.     

At three year intervals, the predicted variance without interest rate shocks is 

between $182-$298 million (see the middle cells of Table 7 for c1=2 and c1=5, assuming 

ω=0.25).   Including interest rate shocks with a standard deviation of 0.01 and a $100,000 

gap between prices and construction costs increases the predicted variance to $317 

million, which still is well below the sample mean and the value observed for the 75th 

percentile city (see Table 6).   To approach fit the 90th percentile city’s price change 

variation of $1.38 billion, the gap between average prices and construction costs needs to 

be $200,000 dollars and the standard deviation of interest rates needs to be much greater 

than 0.01.  We view both assumptions as extreme, although there are a few markets with 

such house prices.  

At five year intervals, including interest rate shocks again increases the predicted 

variation significantly in the most attractive or productive markets, but the predicted 

variation is still far less than is actually observed in the most volatile markets according 

                                                 
41 Campbell’s (2000) review of the asset pricing literature notes that the standard deviation on a one period 
riskless asset is 1.76 percent, but concludes that “… perhaps half … is due to ex post inflation shocks (p. 
1519).”  Thus, the lower half of this range may be more plausible.  Recent asset pricing papers such as 
Bansal, Kiku, and Yaron (2006) assume a standard deviation of 1 percent. 
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to the data in Table 6.  A 0.01 standard deviation interest rate shock and a $100,000 gap 

between housing prices in the city and construction costs again increases the predicted 

variance modestly given our supply side parameter assumptions.  To get the much higher 

variances that we seen in the data, the gulf between prices and construction costs again 

must be well over $100,000 and the shock to interest rates much have a standard 

deviation greater than 0.01.42 

Table 11 shows that interest rate shocks do not have much influence on predicted 

variation in construction intensity.  There is some increase in predicted construction 

variance, but it is quite modest.  Generally speaking, unless both CH −  equals $200,000 

and the standard deviation of interest rate shocks is 0.02, the predicted construction 

volatilities are within the range of values reported in our baseline simulations for markets 

with c1 values between 2 and 5 (see Table 8).  

  One clear implication of the model is that if interest rate shocks are important, 

then the variance of price changes and construction should be higher in high price areas.  

Figure 4 graphs the variance of one year price changes for each metropolitan area against 

its average price in 1980.  The graph shows a strong positive relationship, just as 

predicted by the role of interest rates.  The most volatile places in the country are places 

that were most expensive in 1980.  Interest rate shocks are one explanation of this 

phenomenon.  However, another possible explanation is that these places had high costs 

because they restricted construction, so that Figure 4 is showing the impact of restricted 

construction on volatility.  However, a quick comparison of Table 7 and Table 10 shows 

that interest rates can generate this high level of price volatility more readily than 

restricted construction without interest rate shocks.  We suspect both phenomena are at 

work in high cost, high volatility areas.   

 In Figure 5, we graph the variance of one year construction rates on the average 

price in the metropolitan area in 1980. In this case, there is no visible relationship, 

perhaps because restrictions on construction in high cost areas ensure low levels of 

construction volatility.  Nonetheless, we think that both Tables 10 and 11 and Figures 4 
                                                 
42 The assumptions about the supply side parameter values do matter, but predicted price volatility still is 
not high enough to explain the coastal California markets even if we assume c1=10 and c2=2.5.  Roughly 
speaking, the predicted price change variances are 1.5 times greater than those reported in Table 10.  This 
still does not allow us to match the volatility observed in the top ten percent of markets without assuming 
interest rate volatilities much higher than 1 percent. 
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and 5 suggest that interest rates shocks can plausibly play a role in explaining some of the 

observed price volatility in high cost areas.     

 

VI. Conclusion 

This paper presents a dynamic rational explanations model of housing markets 

based on a cross-city spatial equilibrium.  The model predicts that housing markets will 

be largely local, which they are, and that construction persistence is fully compatible with 

price mean reversion.  The model is also consistent with price changes being predictable.   

The model has successes and failures at fitting the real data.  The model can 

explain the serial correlation of construction quantities reasonably well and can explain 

the five year mean reversion of prices almost perfectly.  However, the model cannot 

explain the high frequency positive serial correlation of price changes.  The model can 

explain the price and construction volatility of a typical housing market.  It does a good 

job of accounting for the heterogeneity in construction intensity variation across most 

markets in the country.  However, it does a poor job of explaining the most volatile 

markets in terms of low frequency price changes.  This is almost exclusively a coastal 

California phenomenon.     

Time-varying interest rates can in principle explain some of the price variation in 

high cost markets.  Across cities, price volatility is concentrated in high costs areas, 

which is a prediction of the model when it includes interest rates.  Construction volatility 

is concentrated in lower cost markets, which the model suggests should have little 

responsiveness to interest rates.  There are two problems with concluding too much from 

our interest rate findings.  First, on a theoretical level, we have omitted many important 

features of mortgage contracts such as a the prepayment option which seem crucial to us 

in understanding the impact the interest rates will have on price dynamics.  Second, 

empirically, interest rates explain only a small portion of price volatility even in high 

price areas.   We hope that future research will focus more on this important topic.  

 Finally, the value of this model is as much in what it cannot explain as in what it 

can explain.  It suggests that housing economists should focus their attention on high 

price volatility in coastal markets and on the positive serial correlation of high frequency 

price changes.  The average volatility and longer-term mean reversion of prices should no 
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longer be viewed as puzzles.  In addition, the time series properties of new construction 

and the volatility of changes in building activity are well understood by a dynamic, 

rational equilibrium model of housing markets.    
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Table 1:  Model Parameters 

r  0.04 
δ 0.87 
θ 0.17 
σε2  $3,603,463 
α 0.1 
c1 $0.15, $0.50, $2.00, $5.00, $10.00, $20.00, $50.00 (per housing unit) 
c2 c2 can be 0%, 25%, or 50% of c1;  hence, there are 21 different combinations of 

(c1, c2) pairs 
 
 

 

Table 2:  Variation in Prices and Quantities Within-Market Over Time 
Arellano-Bond Estimates of Coefficients on Lagged Dependent Variable 

1, 3, & 5 year horizons 
Dependent Variable 1-year 

changes 
3-year changes 5-year changes 

House Price Change 0.71 
(0.01) 

N=2,819 

0.27 
(0.04) 
N=690 

-0.32 
(0.07) 
N=345 

Rent Change 0.27 
(0.03) 

N=1,007 

0.27 
(0.08) 
N=274 

-0.64 
(0.17) 
N=91 

New Permits 0.84 
(0.01) 

N=2,645 

0.43 
(0.04) 
N=690 

-0.07 
(0.06) 
N=460 

Notes: 
1. Sample for house price, employment, and permit specifications is 115 metropolitan 
area sample described in text. 
2. Sample for rent specification is 46 metropolitan areas tracked by REIS. 
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Table 3: Predicted Mean Reversion of Prices 
 One-Year Three-Year Five-Year 
 
 

c2/c1 = 
0 

c2/c1 = 
0.25 

c2/c1 = 
0.5 

c2/c1 = 
0 

c2/c1 = 
0.25 

c2/c1 = 
0.5 

c2/c1 = 
0 

c2/c1 = 
0.25 

c2/c1 = 
0.5 

c1 = .15 -0.24 -0.27 -0.29 -0.46 -0.45 -0.40 -0.51 -0.47 -0.41 
c1 = .50 -0.15 -0.18 -0.18 -0.39 -0.37 -0.30 -0.48 -0.42 -0.34 
c1 = 2 -0.08 -0.10 -0.09 -0.28 -0.27 -0.22 -0.39 -0.34 -0.28 
c1 = 5 -0.06 -0.07 -0.06 -0.23 -0.22 -0.19 -0.34 -0.30 -0.26 
c1 = 10 -0.05 -0.06 -0.05 -0.20 -0.19 -0.18 -0.30 -0.28 -0.25 
c1 = 20 -0.04 -0.05 -0.05 -0.18 -0.18 -0.17 -0.28 -0.26 -0.25 
c1 = 50 -0.04 -0.05 -0.04 -0.17 -0.17 -0.17 -0.26 -0.25 -0.25 
 
 
Table 4: Predicted Mean Reversion of Rents 
 One-Year Three-Year Five-Year 
 
 

c2/c1 = 
0 

c2/c1 = 
0.25 

c2/c1 = 
0.5 

c2/c1 = 
0 

c2/c1 = 
0.25 

c2/c1 = 
0.5 

c2/c1 = 
0 

c2/c1 = 
0.25 

c2/c1 = 
0.5 

c1 = .15 -0.21 -0.26 -0.32 -0.45 -0.46 -0.47 -0.50 -0.49 -0.48 
c1 = .50 -0.08 -0.14 -0.21 -0.36 -0.39 -0.40 -0.46 -0.45 -0.43 
c1 = 2 0.03 -0.02 -0.07 -0.24 -0.28 -0.27 -0.36 -0.37 -0.33 
c1 = 5 0.06 0.03 0.01 -0.19 -0.22 -0.20 -0.30 -0.31 -0.28 
c1 = 10 0.08 0.06 0.05 -0.16 -0.18 -0.17 -0.27 -0.28 -0.26 
c1 = 20 0.09 0.08 0.07 -0.15 -0.16 -0.15 -0.25 -0.26 -0.24 
c1 = 50 0.09 0.09 0.09 -0.14 -0.14 -0.14 -0.24 -0.24 -0.24 
 
 
Table 5: Predicted Mean Reversion of Construction 
 One-Year Three-Year Five-Year 
 
 

c2/c1 = 
0 

c2/c1 = 
0.25 

c2/c1 = 
0.5 

c2/c1 = 
0 

c2/c1 = 
0.25 

c2/c1 = 
0.5 

c2/c1 = 
0 

c2/c1 = 
0.25 

c2/c1 = 
0.5 

c1 = .15 0.36 0.28 0.18 0.04 -0.02 -0.08 -0.14 -0.17 -0.20 
c1 = .50 0.54 0.43 0.29 0.22 0.10 -0.01 -0.01 -0.10 -0.17 
c1 = 2 0.70 0.55 0.36 0.43 0.23 0.04 0.20 -0.00 -0.14 
c1 = 5 0.76 0.60 0.39 0.54 0.28 0.06 0.33 0.05 -0.13 
c1 = 10 0.80 0.61 0.39 0.60 0.31 0.07 0.42 0.07 -0.12 
c1 = 20 0.82 0.62 0.40 0.65 0.32 0.07 0.48 0.08 -0.12 
c1 = 50 0.84 0.63 0.40 0.69 0.33 0.07 0.55 0.09 -0.12 
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Table 6:  Variance in House Price Changes and Construction Intensity 

1, 3, and 5 Year Horizons 
 House Price Change Variance (millions of $2000) 
 1 year 3 years 5 years 
10th percentile market $14 $69 $183 
25th percentile market $26 $124 $452 
50th percentile market $34 $185 $625 
75th percentile market $70 $445 $1,170 
90th percentile market $209 $1,380 $3,580 
Sample mean $83 $484 $1,310 
  Construction Intensity Variance (millions of units) 
 1 year 3 years 5 years 
10th percentile market 2 13 29 
25th percentile market 2 19 41 
50th percentile market 3  26 59 
75th percentile market 11 84 212 
90th percentile market 38 328 760 
Sample mean 21 160 417 
 
  Table 7: Predicted Variance of Prices, Millions 
 One-Year Three-Year Five-Year 
 
 

c2/c1 = 
0 

c2/c1 = 
0.25 

c2/c1 = 
0.5 

c2/c1 = 
0 

c2/c1 = 
0.25 

c2/c1 = 
0.5 

c2/c1 = 
0 

c2/c1 = 
0.25 

c2/c1 = 
0.5 

c1 = .15 16 16 18 27 27 28 29 29 32 
c1 = .50 28 33 40 59 67 82 70 80 105 
c1 = 2 54 76 97 134 182 239 180 245 337 
c1 = 5 80 117 140 209 298 365 293 421 528 
c1 = 10 102 146 164 272 382 436 391 550 637 
c1 = 20 125 167 179 336 446 481 489 650 708 
c1 = 50 151 184 190 410 496 513 604 728 756 
 
 
Table 8: Predicted Variance of Construction, Millions 
 One-Year Three-Year Five-Year 
 
 

c2/c1 = 
0 

c2/c1 = 
0.25 

c2/c1 = 
0.5 

c2/c1 = 
0 

c2/c1 = 
0.25 

c2/c1 = 
0.5 

c2/c1 = 
0 

c2/c1 = 
0.25 

c2/c1 = 
0.5 

c1 = .15 117 141 172 538 587 634 946 986 1016 
c1 = .50 48 62 80 275 313 337 544 575 569 
c1 = 2 13 17 19 87 95 87 191 189 153 
c1 = 5 4 5 5 32 30 23 74 62 41 
c1 = 10 2 2 1 13 11 7 31 22 13 
c1 = 20 1  1 0.4 5 3 2 12 7 4 
c1 = 50 0.2 0.1 0.1 1 1 0.3 3 1 1 
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Table 9:  The Impact of Greater Local Demand Variability 
 Five-year Price Change Variance ($millions) 
 Baseline σε2 (=$3.6) σε2 = $5.7 σε2 = $7.8  
c1=10;  c2=2.5 550 871 1,192 
c1=20;  c2=5 650 1,029 1,408 
c1=50; c2=12.5 728 1,153 1,577 
 Five-Year Quantity Change Variance (millions of units) 
 Baseline σε2 (=$3.6) σε2 = $5.7 
c1=0.15; c2=0.0375 986 1,561 
c1=0.50; c2=0.1250 575 910 
c1=2;  c2=0.75 189 299 
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Table 10:  Predicted Variance of Price Changes ($millions):  Interest Rate Volatility 

1, 3, and 5 Year Horizons 
c1=3.5, c2=0.875;  all other parameter values as reported in Table 1. 

 One-Year Three-Year Five-Year 
CH −  Stand. 

Dev. (η) 
= 0.005 

Stand. 
Dev. (η) 
= 0.01 

Stand. 
Dev. (η) = 
0.02 

Stand. 
Dev. (η) 
= 0.005 

Stand. 
Dev. (η) = 
0.01 

Stand. 
Dev. (η) = 
0.02 

Stand. 
Dev. (η) 
= 0.005 

Stand. 
Dev. (η) = 
0.01 

Stand. 
Dev. (η) = 
0.02 

$25,000 100 102 107 253 256 268 350 355 372 
$50,000 102 107 127 256 268 317 355 372 441 
$100,000 107 127 206 268 317 511 372 441 714 
$200,000 127 206 522 317 511 1288 441 714 1808 
Note:  All parameter values are as reported in Table 1, expect that c1=3.5 and c2=0.875. 

                                    
Table 11:  Predicted Variance of Construction (millions of units):  Interest Rate Volatility 

1, 3, and 5 Year Horizons 
 One-Year Three-Year Five-Year 

CH −  Stand. 
Dev. (η) 
= 0.005 

Stand. 
Dev. (η) 
= 0.01 

Stand. 
Dev. (η) = 
0.02 

Stand. 
Dev. (η) 
= 0.005 

Stand. 
Dev. (η) = 
0.01 

Stand. 
Dev. (η) = 
0.02 

Stand. 
Dev. (η) 
= 0.005 

Stand. 
Dev. (η) = 
0.01 

Stand. 
Dev. (η) = 
0.02 

$25,000 8 8 9 49 50 53 100 101 107 
$50,000 8 9 11 50 53 63 102 107 128 
$100,000 9 11 17 53 63 104 107 128 214 
$200,000 11 17 44 63 104 270 128 214 558 
Note:  All parameter values are as reported in Table 1, expect that c1=3.5 and c2=0.875. 
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Figure 3:  One-Time Shock 
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 Appendix 1: Proofs of Propositions 

 
Proof of Proposition 1: We use the change of variables )(ˆ)()( tItmtI += , 

)(ˆ)()( tNtntN += , and )(ˆ)()( tHtztH += .  Substituting in our definitions of Î , N̂ , and 
Ĥ , we reduce the core pricing equation 

r
tHE

r
rCtNtxqtDtH t

+
+

+
+

+−++=
1

))1((
1

)()()( α  to  

r
tzE

tntxtz t

+
+

+−=
1

))1((
)()()( α , (*) 

the optimality condition for production ))1(()()1()1( 210 +=+++++ tHEtNctIctcC t  
to 

))1(()()1( 21 +=++ tzEtnctmc t , (**) 
and the defining equation )()1()1( tNtNtI −+=+  to 

)()1()1( tntntm −+=+ . (***) 
We seek functions n, z, and m that satisfy the starred equations. 
 

Define 
1c

u α
≡  and 

1

2

c
cv ≡ ; u≤0 and 10 <≤ v by the conventions in force.  Then 

( )))1((2)1()2)(1(2)1(2
2
1 2222 urrvururrvrvurr +−+++++++−−+++=φ  

and 

( )))1((2)1()2)(1(2)1(2
2
1 2222 urrvururrvrvurr +−++++++++−+++=φ . 

Because 10 <≤ v , the expression under the radical is positive.  Note that 
0)1)(1()1(2 >++>−+++=+ urvurrφφ  and 0)1)(1( >−+= vrφφ , so 0, >φφ .  

Also, >+−+++++++ ))1((2)1()2)(1(2 2222 urrvururrvr  

rururrurururr +>++++>+−++++ 1)1()1)(1(2)1(2)1()2)(1(2 2222 , 
so  

( ) 111)1(1
2
1

>+≥+++++> rrurrφ , 

which in turn gives 

11)1)(1(0 ≤−<
−+

=≤ vvr
φ

φ . 

 
Now define n by the difference equation  

))((
)(

1)1()( 1
1

txE
c

rtntn t−−
+

=−−
δφ

φ .  (1) 

A unique solution n exists because δφ >> 1 ensures 0≠−δφ and because |φ | 1<  
allows us to solve for n explicitly as 
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∑
∞

=
−−

+
=

0
1

1

))((
)(

1)(
i

t
ii txEL

c
rtn φ
δφ

 (2), 

where L denotes the lag operator.  Now that we have defined n, we set 

)(
1

)1())1((1)()( tn
r

rtxEtxtz t φ
α

δφ −+
+

−+
−

+≡   (3) 

and 

)()1())1((
)(

1)1(
1

tntxE
c

rtm t φ
δφ

−−+
−
+

≡+ .  (4) 

With these choices for z and m, (*) reduces to 

( ) ))1((
)1)((

1)()1(
1

+
+−

−−
=−+

−+
txE

r
rtntn

r tδφ
φφ

φ
α ,  (5) 

which by (1) is equivalent to 

))1((
)1)((

1))1((
))(1(

)1(
+

+−
−−

=+
−−+

+ txE
r

rtxE
r

ru
tt δφ

φ
δφφ

, 

which is true, as one sees from cross-multiplying the coefficients and using the 
previously established formulas for the product and sum of φ  and φ .  (**) reduces to 

( ) ))1((1)())1(
)1(

1)1(
1

)1(
21 +

−
−−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

+
−+

−+
−+
+ txErtncc

r
rtn

r
r

tδφ
φφ

α
φ

φ
α , 

which is equivalent to (5), and thus true, because 

( )
)1(

)1)(1())1(
)1(

1
21 ru

vrcc
r

r
+

−−−+
=−−

+
−+

=
φφφ

α
φφ , 

itself evident from cross-multiplying and using the fact that φ  satisfies the quadratic 
equation 0)1)(1())1(2(2 =−++−+++− vryvurry .  Finally, (***) reduces to (1).  
This shows that our choices for n, z, and m solve the starred equations.  To recover 
Proposition 1, we use )(ˆ)()( tItmtI += , )(ˆ)()( tNtntN += , and )(ˆ)()( tHtztH += .  
[The result then follows from )()())1(( ttxtxEt θεδ +=+ .]   
 
Proof of Proposition 2: First note that by induction on 1≥i , 
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Using (4) and (6), we next find that 
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To recover Proposition 2, we use )(ˆ)()( tItmtI += , )(ˆ)()( tNtntN += ,  
and )(ˆ)()( tHtztH += with equations (3), (8) , (4), (7), and (6).   
 
Proof of Proposition 3:  Given the hypotheses, we have 
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which holds for sufficiently large j  because 10 <≤ φ .  This shows that there exists *j  
such that for all *jj > , time t  expected values of time jt +  construction and housing 
prices will lie below steady state levels.  When 0)( <tε , we swap >  and <  to recover the 
symmetric case.  
 
Proof of Proposition 4:  By assumption, 0)0( =n , so from (1), we have  
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which is negative if and only if 
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Appendix II:  The Contribution of Taxes Local Demand Variance 
 

 Data on the average tax rate paid each year in each state was matched to our 
metropolitan areas using files from the NBER’s TaxSim web page.  We then multiplied 
our income numbers by one minus the average tax rate, and calculated new values of δ , 
θ  and σε2 for this adjusted after-tax income measure.   The new “after-tax” values of the 
three parameters are very similar to those used in our simulations:  δ=0.87, θ=0.18, and 
σε2=$3.3 million.  The latter is 92 percent of the $3.6 million figure obtained without any 
adjustment for taxes.  Hence, correcting for taxes creates an eight percent reduction in the 
variance and almost no change in the other parameters.  Consequently, we conclude that 
including state level tax rates does not offer any hope of explaining the particularly high 
volatilities. 
 
 

Appendix III:  The Contribution of Crime to Local Demand Variance 
 
We began by drawing on the hedonic literature on the costs of crime.  The range 

of estimates of the elasticity of property value with respect to the violent crime rate ran 
from 0.05 to 0.15.43  To turn these housing price elasticities into estimates of the impact 
of crime on the flow of utility measured in dollar units, we multiply the elasticity by the 
average housing price per crime to obtain a relationship between the price of housing and 
the level of crime.  We then followed our model and multiplied this figure by r/(1+r) to 
generate an estimate of the impact of crime on the flow of utility measured in dollars. 

   
Using this method, our elasticity range from 0.05 to 0.15 implies that the impact 

of violent crime on the flow of well-being ranges from $35 to $105.  The upper bound 
estimate of $105 dollars implies that, if the violent crime rate in a city increases from 12 
violent crimes per 1,000 inhabitants (the national mean) to 24 violent crimes per 1,000 
inhabitants, then this is equivalent to an income loss of about $1,260 dollars, which we 
believe is a reasonable result. 

   
We then used this upper bound impact to adjust the underlying BEA real income 

variable and δ , θ  and σε2.   As with taxes, crime had little impact on the volatility of the 
local income shock.  Specifically, there is only a 1.4 percent greater shock variance when 
controlling for crime.44  While the crime data is far from perfect for our purposes, this 
exercise leads us to conclude that variation in local amenities will explain little of the 
high variance price change or construction markets.  
 

                                                 
43 See Thaler (1978) for the lower bound estimate and Schwartz, Susin, and Voicu (2003) for the upper 
bound number. 
44 We were able to obtain crime data for the major cities of 105 of our 115 metropolitan areas.  The ARMA 
estimates of δ and θ are virtually unchanged depending upon whether income is adjusted for crime in these 
105 markets.  As noted, the variability of the ‘after-crime’ income shock is marginally higher. 
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Appendix IV:  Year and Metropolitan Area Fixed Effects Regression Results 
 
 Each specification described below was estimated using the data on real house 
prices (in $2000, created from the OFHEO constant quality price index as described in 
the text) for the 115 metropolitan areas for which we have continuous annual 
observations from 1980-2005. 
 

1. Price Levels and Year Fixed Effects (R2=0.08, nobs=2,990) 
 
Pricei,t = α + βt*Yeart + εi,t 
 
where i represents the metropolitan area, t the year, Yeart is a vector of dichotomous 
year dummies, βt is the vector of regression coefficients on those year dummies and 
εi,t is the standard error term. 
 
2. Annual Price Changes and Year Fixed Effects (R2=0.27, nobs=2,875) 

 
∆Pricei,t = α + βt*Yeart + εi,t 
 
where i represents the metropolitan area, t the year, Yeart is a vector of dichotomous 
year dummies, βt is the vector of regression coefficients on those year dummies and 
εi,t is the standard error term. 
 
3. Price Levels and Metropolitan Area Fixed Effects (R2=0.78, nobs=2,990) 

 
Pricei,t = α + γi*MSAi + εi,t 

 
where i represents the metropolitan area, t the year, MSAi is a vector of dichotomous 
metropolitan area dummies, γi is the vector of regression coefficients on those 
metropolitan area dummies and εi,t is the standard error term. 
 
4. Price Levels with Year and Metropolitan Area Fixed Effects (R2=0.86, 

nobs=2,990) 
 
Pricei,t = α + βt*Yeart + γi*MSAi + εi,t 
 
where i represents the metropolitan area, t the year, Yeart is a vector of dichotomous 
year dummies,  βt is the vector of regression coefficients on those year dummies, 
MSAi is a vector of dichotomous metropolitan area dummies, γi is the vector of 
regression coefficients on those metropolitan area dummies, and εi,t is the standard 
error term. 
 

 


