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1. Introduction 

The idea that differential adoption of new technologies can explain variations in 

productivity across regions is by now well accepted in the macroeconomics literature.  

Parente and Prescott (1994) found that surprisingly small differences in the rates of 

technological adoption could imply large disparities in country levels of income. 

Similarly, Eaton and Kortum (1999) estimated that a large fraction of OECD productivity 

growth occurred through the international diffusion and adoption of new technology.  

Their results suggested that countries realized just two-thirds of the potential productivity 

gains (relative to autarky) because of the slow diffusion and adoption of ideas across 

borders.  

  There is a parallel literature in medicine documenting similar lags in adoption, 

and with similar adverse effects on overall productivity.  For example, despite powerful 

evidence from a 1601 experiment demonstrating the effectiveness of lemon juice in 

preventing scurvy, the British Navy did not require foods containing vitamin C until 1794 

(Berwick, 2003).1  Yet during the 18th century, more men in the British Navy died of 

scurvy than were lost to battle casualties (Lee, 2004).  More recently, β blockers, drugs 

costing pennies per dose, were shown during the early 1980s to reduce mortality 

following a heart attack by as much as 25 percent (Yusuf, et. al., 1985).  Yet by 

                                                 
1 In his 1601 voyage to India, Captain James Lancaster fed sailors in one of his ships 3 
teaspoons of lemon juice every day, while in the other three ships, no lemon juice was 
provided.  By the midpoint of the journey, 110 of the 278 sailors in the control group had 
died of scurvy (40 percent), while none of the sailors in the treatment group had been 
affected.  Despite additional clinical evidence, and the remarkable results from Captain 
Cook’s circumnavigation in 1768-71, in which citrus fruits and sauerkraut avoided any 
cases of scurvy, the British Navy did not set dietary regulations until 1794. 
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2000/2001, the median state-level use of β Blockers among appropriate patients was still 

only 68 percent (Jencks, 2003).      

In this paper, we first develop a model where output depends on factor inputs 

(capital and labor services) and technology used in the hospital.  The firm (or hospital) 

seeks to maximize the social value of lives saved minus resource and learning costs.  To 

better understand differences across hospitals in both the speed of adopting specific and 

highly effective technology, we consider a search model where physicians face differing 

marginal costs of search to learn about new technologies.  Physicians may be innovators, 

learning from primary scientific evidence (or their own colleagues), or imitators, learning 

from outside their institution (Bass, 1969).   The nature of the search process has testable 

empirical implications, and yields estimates of the implicit informational barriers that 

must, in equilibrium, be facing physicians who are slow to adopt new and effective 

innovations.  

We apply this model to the hospital-level treatment of patients diagnosed with a 

heart attack, or more precisely, with acute myocardial infarction (AMI).  Past studies of 

health care productivity have focused on heart attacks because of the accuracy with 

which the diagnosis is identified, the importance of survival as an endpoint, and the 

cascade of new innovations in the treatment of AMI during the past several decades (e.g., 

Cutler et. al. 1998; Cutler and McClellan, 2001; Cutler, 2004).2  We examine empirically 

three major innovations in the treatment of AMI – aspirin, β blockers, and reperfusion 

within 12 hours of the heart attack.  (Reperfusion consists either of thrombolytic “clot-

                                                 
2   There is another literature measuring hospital efficiency, but these typically focus on 
costs per hospital day rather than on survival or other health outcome.  See for example 
Chirikos and Sear (2000) and references therein. 
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busting”drugs, or surgical angioplasty.)  These treatments are distinguished by the 

following unique characteristics:  (a) well-established scientific evidence that the 

treatment saves lives, (b) a lack of serious financial barriers to adoption,3 and (c) the 

adoption decision is made by the physician, not by the supine heart attack patient.   

We test the model using a sample of 2.8 million heart attack patients drawn from 

the fee-for-service Medicare population during 1986-2004, combined with detailed chart 

review information about adoption of the three innovations during 1994/95.   Hospitals 

are further categorized into quintiles based on their propensity to adopt these effective 

treatments.   The most striking result is that these quintiles of technology adoption 

explain large variations across hospitals in risk-adjusted survival, far larger than what can 

be explained by differences in expenditures either across hospitals or over time.     

The empirical patterns of hospital productivity are remarkably similar to those 

found in countries.  Like Comin and Hobijn (2004), who study country-level data, we 

find that hospitals with rapid diffusion in one highly effective technology are most likely 

to adopt other technologies. As well, we find no evidence of convergence; hospitals that 

are initially high-quality are just as likely to be high-quality after nearly two decades, and 

if anything there is some evidence of divergence through the early 2000s.    

And like Eaton and Kortum (1999), we find substantial lags in the extent to which 

some hospitals lag behind others, with a steady-state gap of more than 3 percentage 

points in survival between the highest (or “frontier”) diffusion hospitals compared to the 

slowest diffusion hospitals, nearly one-third of the overall  improvement in outcomes 

during the 1986-2004 period.  The time-series patterns are roughly consistent with a 
                                                 
3   For hospitals facing financial barriers, thrombolytics provide nearly all of the potential 
benefits relative to angioplasty.  
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technology “frontier” model as in Nelson and Phelps (1966), but there is some suggestion 

too of an imitation or contagion effect, although the results are very sensitive to model 

specification.  

One nagging question is: why are some physicians so slow to adopt?  

Unfortunately, none of the economist’s standard models is much help in explaining the 

slow adoption rates.  When aspirin and β blockers cost pennies and all physicians have 

had at least 20 years of education, it’s difficult to harness models relying on 

heterogeneity in profitability  (Griliches, 1957), acquired skills in the old technology that 

precludes adoption of the new (Jovanovic and Nyarko, 1996), complementarities between 

adoption and human capital (Nelson and Phelps, 1966) or technological growth favoring 

skilled workers (Caselli and Coleman, 2006).  Instead, the patterns we observe can really 

only be rationalized by remarkably high implicit informational or search costs, generated 

either by very high discount rates (as in a model of procrastination), or barriers to 

learning about new technologies when looking at blueprints or reading an article about β 

blockers just isn’t enough (Keller, 2004)).  Indeed, these informational barriers to 

adoption might have been viewed forty years earlier as evidence of “X-inefficiency” 

(Leibenstein, 1966).  

2. The Model  

In this section, we develop a simple model of hospital productivity that 

distinguishes between inputs that require substantial contributions of capital and labor 

(e.g., hospital bed-day or surgical procedures) and technology innovations where barriers 

are unlikely to arise solely from financial constraints.   
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Suppoe that medical care per patient (e.g. quantity of medical services) at hospital 

i in year t (mcit) is produced with constant returns technology:   

(1)                                                ϕϕ −= 1
itititit klAmc

where lit and kit  represent labor and capital inputs per patient, and  captures the 

technology in use at hospital i in year t.  While it seems reasonable to assume constant 

returns for producing medical care (doubling staff and beds at a hospital can produce 

twice the number of admissions), we presume that medical care per patient has declining 

returns in terms of patient survival (or quality adjusted life years). We assume a 

particularly simple form for the relationship between survival per patient (yit,) and 

medical care per patient: 

itA

(2) ( ) ( ) ( ) ( ) ( )ititititit klAmcy ln1lnlnln ϕββϕββ −++==  

In this specification, the marginal return to medical care is declining, with 

ititit mcmcy β=∂∂ .  The linearly separable form of equation 2 is convenient for what 

follows because the marginal product of labor and capital (in terms of survival) does not 

depend on technology, making the decisions to invest in technology separable from the 

decision to choose other inputs.  However, we believe that a more general specification 

that made these decisions interdependent would yield qualitatively similar results. 

 For the moment, assume that technology Ait is held constant.  Then the social 

planner’s objective in each period is to maximize 

(3)                                            )]([∑ +−Ψ
i

ittittit krlwy

where wt is the wage rate, rt the cost of capital, and Ψ is the implicit value to society of an 

extra life-year or quality-adjusted life.    
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The first-order conditions for capital and labor set the marginal return (in terms of 

the additional value of survival) equal to the cost:  

  (4)                                 ( )
t

it

r
k

=
−Ψ ϕβ 1  and t

it

w
l

=
Ψβϕ   

These imply that total costs are determined by Eit = βΨ.  With this specific functional 

form and under the strong assumptions that all hospitals are maximizing output with 

respect to the social planner’s optimum, overall expenditures depend only on the value of 

life and the marginal return to medical care (through the parameter β) but not on the level 

of Ait.   This is a reasonable assumption in health care, where some innovations (e.g., 

invasive surgical techniques) increase the returns to labor and capital intensive 

treatments, while others (e.g, inexpensive pharmaceutical treatments) lower the returns to 

labor and capital intensive treatments (e.g., Chandra and Staiger, 2007; Stukel et. al., 

2005).   

The key variable of interest is , the hospital-specific productivity factor. We 

model this as the sum of many separate innovations, each of which may have been 

adopted by the physicians in the hospital to some degree.  For simplicity, we assume that 

one new innovation becomes available each year (the model could be easily extended to 

allow the arrival rate of innovations to be stochastic). Letting j index the year that each 

innovation was first available yields:  

itA

(5)                                                ( ) ∑=
=

t

j
jitjit xA

1
ln α

In equation (5), xijt is the proportion of physicians who have adopted innovation j by time 

t, while jα  is the return to adopting innovation j.  We define the frontier technology 
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available at time t ( )*
tA as the technology that could be achieved if a hospital had fully 

adopted all innovations available, i.e.: 

(6)                                                ( ) ∑
=

=
t

j
jtA

1

*ln α

Thus, the (log) frontier increases by tα in each year t, and the (proportional) distance that 

any hospital lags behind the frontier depends on the rate at which its physicians have 

adopted all available innovations.  Thus hospitals do not generate their own innovation, 

but instead take the body of scientific knowledge as given.4       

Adoption of innovations by physicians 

 We assume that the technology in use at each hospital is the result of search 

conducted by individual physicians at that hospital.  Physician search might include 

reading medical journals, talking to or working with colleagues (“tactile” diffusion as in 

Keller, 2004), or attending professional meetings. Whatever the mechanism for the 

origins of the knowledge, individual physicians optimally choose their search intensity, 

based on the cost and benefits of search which vary across hospitals, and their search 

intensity determines the rate at which they adopt new innovations. Hospitals where 

physicians have low costs of search (e.g., teaching hospitals) or high benefits of search 

(e.g, those treating a high patient volume) will tend to search more intensively. 

More specifically, we model the adoption process as a simple search model.  In a 

given year, each physician searches for information on new innovations by taking  

random draws from a known distribution (where the physician subscript is suppressed to 

simplify notation). Thus, represents the search intensity of a representative physician in 

itn

itn
                                                 
4   We therefore ignore the possibility of learning-by-doing leading to some hospitals 
either innovating on their own or moving to a point outside of the frontier. 
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hospital i in year t. The cost of an additional draw (the marginal cost of search) is positive 

and varies across hospitals, and is assumed to be the same for all physicians at a hospital:   

(7)                                           ( ) 0>=′ iit cnc         

On each draw, the physician learns about an existing innovation j with a small 

probability (λjt).5  Thus, the probability of not learning about innovation j from a single 

draw is (1- λjt), while (1- λjt)n  represents the probability of not learning about innovation 

j from n draws.  Learning about a new innovation j leads to adoption and increases 

productivity by jα . 

We assume that λjt increases with the fraction of the national population that has 

already adopted ( 1−jtx ): 

(8)                                          )( 1−+= jtjt xμπλ  

This specification is closely related to the Bass (1969) diffusion model, a commonly used 

empirical specification for diffusion processes that includes logistic ( 0=π ) and 

exponential ( 0=μ ) models as special cases. A common interpretation of the Bass model 

is that the first term (π) corresponds to “innovation”, and captures the rate at which 

individuals independently discover a new technology, while the second term ( 1−jtxμ ) 

corresponds to “imitation”, and captures the rate at which individuals learn from 

interactions with others who have already adopted the innovation. Thus, the “innovation” 

rate is constant over time, while the “imitation” rate grows as more physicians adopt a 

new innovation.  For simplicity, we assume that the parameters π and µ are the same for 

all innovations, but one could extend the model to allow these parameters to vary across 

innovations. 
                                                 
5 Implicitly, λjt =0 when t<j, prior to discovery of innovation j. 

 8



At the time of choosing search intensity the physician does not know the exact 

nature of the new innovations yet to be adopted. Thus, jα and 1−jtx  are uncertain, but are 

drawn from known distributions.6 Let f(.) be the distribution function for 1−jtx , and letα  

be the expected value of jα (which is the expected annual growth in productivity at the 

frontier). Because our model assumes that there is one new innovation per year, each 

physician will know the number of potential innovations remaining to be adopted 

( ). Based on these assumptions, the expected social value of the 

productivity gain (Ψ ) from taking draws is given by: 

adoptedalreadytI it #−=

itAΔ itn

(9)                       ( ) ( ){ } ( )∫ −−−−−Ψ=ΔΨ jtjt
n

jtitit xdxfxIAE it
1111ln μπβαβ  

In other words, the expected gain in productivity from search is equal to the number of 

innovations that could be found times their expected impact on the (dollar) value of the 

productivity gain times the probability each will be discovered. 

 We assume that physician-specific knowledge does not decay and that physicians 

choose search intensity to maximize the expected discounted present value of patient 

survival benefits net of search cost.  The total patient survival benefits in a given year 

are , where  is the number of patients treated at hospital i (assumed for 

simplicity to be constant across years). The total costs of search in each year are 

simply . Thus, letting

iti yNΨ iN

itinc δ be the 1-period discount factor, and assuming the physician 

shares the social value of saving lives, her value function is given by: 
                                                 
6 Note that the distribution of 1−jtx  will depend on the number of potential innovations 
remaining to be adopted ( ), and will have a lower mean when 
the number of remaining innovations is small (since these will tend to be more recent 
innovations). We have suppressed this argument from the distribution function to 
simplify the discussion. 

adoptedalreadytI it #−=
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(10a)                                        { }),(}{max),( 11 +++−Ψ= ittitiitinitt yIVEncyNyIV δ  

where the transition equations are: 

 (10b)                                        
[ ]

)}({1

ln

1

1

ititit

it
it

it
itit

nEII

n
n

AEyy

κ

βα

−+=
⎭
⎬
⎫

⎩
⎨
⎧

∂
Δ

+=

+

+    

and δ is the discount rate, with κ(n), the integral in equation (9), the expected number of 

new innovations found in period t. The value function for the physician reflects both the 

current-year benefits of additional search, and the future impact of such search, which 

includes the higher value of yit+1 (because innovations do not depreciate).  However, 

searching harder today also has an impact on the value of search in the next period; while 

the t+1st innovation will appear on schedule (the one on the RHS of 10b), any innovations 

discovered in period t will reduce the number of remaining innovations to find next year.7   

The first-order condition with respect to n is: 

(11)                          0ln][)( =
⎭
⎬
⎫

⎩
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
Δ

+−+−
it

it
yIi n

AEVnVEc βακδ  

That is, physicians trade off the marginal cost of an incremental search ci today, 

against the future social benefits (in terms of survival) for the N patients (reflected in the 

marginal valuation function, Vy) times the marginal probability of an incremental search 

actually finding one of the Iit remaining undiscovered innovations.  Offsetting this clear 

future benefit is the chance that, should the search uncover a new innovation this year, 

there will be one fewer innovation along which to search next year (the first term in the 

                                                 
7  Analytically the model is complicated by the retirement of old physicians with their 
acquired knowledge.  We implicitly assume that the replacement physician knows at least 
as much as the retiring physician, for example in residency.   
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brackets).   Note also that optimal search intensity ( ) rises as the marginal cost of 

search ( ) declines, and as the number of patients ( ) rises. 

itn

ic iN

The first order condition in equation (11) is stochastic, since the expected 

productivity gain depends on the number of potential innovations remaining to be 

adopted ( ), which depends on the random outcomes of search in prior years. However, 

the marginal return to taking an additional draw is increasing in , which in turn implies 

that the optimal number of draws is increasing in .  Because of this property, a 

physician who finds less (more) than the expected number of innovations in one year will 

increase (decrease) search intensity the next year.  Thus, there will be a steady state 

search intensity ( ) around which each physician will fluctuate.  In other words, the 

model implies that there will not be convergence in output across hospitals:  The 

productivity of physicians with high search costs or low numbers of patients will 

persistently lag behind the frontier, on average by an amount equal to

itI

itI

itI

*
in

α*iI . 

Empirical Implications 

 Because the model yields a constant steady-state search intensity ( ), the 

probability that a physician discovers a new innovation in any given year is written  

*
in

 (12)   ( ) ( ) 1
****

111| −+=≅−−=− jtiijti
n

jt xnnntbyadoptnottatadoptpr i μπλλ  

(The final approximation is based on a first-order Taylor approximation.) In words, the 

adoption hazard depends on both the difficulty of finding information for a specific 

innovation, λjt, and the intensity of search, . *
in
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One important empirical implication of equation 12 is that the hospital adoption 

of all innovations can be described by a one-factor model, where search intensity ( ) 

represents the common factor linking adoption of different innovations.  To see this, note 

that the probability that a physician adopts a given innovation by time t is given by: 

*
in

(13)  ( ) ( ) ∑∏
==

≅−−=
t

js
jsi

t

js

n
js nttimebyjadoptiphysicianpr i λλ **

11

Equation 13 uses the fact that the probability of not adopting by year t is the product of 

the probability of not adopting in every year up to and including year t, and again takes a 

first-order Taylor-series approximation. Using this approximation, the proportion of a 

hospital’s physicians who have adopted a given innovation by time t is given by: 

(14)  ( ) ∑
=

=Γ+Γ≡+=
t

js
jsjtijtijtijtijt wherenttimebyjadoptiphysicianprx λξξ ,*

Equation 14 is a factor model, in which the dependent variable is the proportion of 

physicians who have adopted a given innovation by a given year, the common factor ( ) 

captures the intensity of search at a given hospital, and the factor loading ( ) reflects 

the length of time the innovation has been available. 

*
in

jtΓ

A second empirical implication of our model is that the constant adoption hazard 

represented in equation 12 implies a partial adjustment model for the proportion of 

physicians adopting each technology of the form: 

(15) ( )( ) ( )( ) jitjtiijitjitjitjtiijitjitjit xxxxnnxxx εμπεμπ ++−+≡++−+= −−−−−− 1111
**

11
~~11 ,  

The expected proportion of physicians who have adopted innovation j in time t is equal to 

the proportion that had adopted at t-1 plus a fraction of the physicians who have not yet 

adopted an existing innovation.  Moreover, the adoption hazard is given by a Bass 
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diffusion model ( )1
~~

−+ jtii xμπ  in which the diffusion parameters vary in proportion to 

each hospital’s search intensity (see Young, 2006). 

Summing equation (13) across all innovations (as in equation 5) and simplifying 

yields a partial adjustment model for technology: 

(16) ( ) ( ) itj

t

j
ijtjtiittiitit xxAAAA ναμπ +−+−+= ∑

=
−−−−

1
111

*
1 1~lnln~lnln   

where ∑
=

=
t

j
jjitit

1

αεν  

In the absence of the “imitation” effect ( 0~ =iμ ), equation 15 represents a partial 

adjustment model for technology, in which a hospital’s technology adjusts part way 

toward the frontier each year.  This partial adjustment model is commonly used in the 

growth literature, and was first proposed by Nelson and Phelps (1966).8  The presence of 

the imitation effect ( 0~ >iμ ) introduces a term that captures the additional impact of 

imitation on technological progress.  This term is always positive, but is largest for 

hospitals that lag far behind the frontier, i.e. hospitals with low values of . Thus, the 

imitation affect has little impact on hospitals near the frontier, while having a larger 

impact on the rate of technology adoption for hospitals lagging far behind the frontier. 

1−ijtx

Restating this in terms of output, and rearranging terms, yields a fairly simple 

specification for output: 

(17) ( ) ( ) itj

t

j
ijtjtitiitiit xxyyy βναμβππ +−++−= ∑

=
−−−

1
11

*
1 1~~~1   

                                                 
8 In their original reduced-form application, the focus was on how human capital affects 
the speed of adjustment.  Our model derives this from an underlying model of optimal 
search.. 

 13



Equation 17 states that output is a weighted average of last years output and output at the 

frontier ( ), with the coefficient on lagged output expected to be lower for hospitals 

with more intensive search (high , and therefore high 

*
ty

*
in iπ~ ).  Intuitively, survival rates 

will be more persistent in hospitals that are slow adopters of innovations, e.g. if by 

chance a hospital has failed to adopt innovations in the past, it will take longer to recover 

for a hospital that is a slow adopter.  However the additional term introduced by the 

imitation effect will offset the persistence among very slow adopters, by increasing their 

rate of adoption.  

Equation 17 has a number of additional implications for how the steady-state 

distribution of survival rates depends on the speed of adoption. It is straightforward to 

derive the following properties of survival in the steady state distribution: 

 (18.a) ( ) ( ) α=−=− −−
*

1
*

1 ttitit yyEyyE  

(18.b) ( )
i

i

i

i
itt

g
yyE

ππ
π

α ~~
~1* −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=−  

 The first equation states that there is no convergence.  In steady state, productivity 

growth is the same at all hospitals. As already discussed, this property is a direct 

implication of our search model, in which the steady state search intensity required 

physicians to lag the frontier by a constant amount. Moreover, this property has been 

noted in other papers using the Nelson-Phelps partial adjustment model of technology. 

 The second equation states that the steady-state distance that a hospital lags 

behind the frontier is the sum of two terms.  We have already argued from the first order 

condition of the search model that there is a steady state search intensity ( ) that is 

negatively related to the number of potential innovations remaining to be adopted in 

*
in
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steady state ( ).  Thus, physicians with lower search intensity will lag further behind the 

frontier.  Equation 18.b breaks down this distance from the frontier into two distinct 

effects.  

*
iI

The first term in equation 18.b depends only on the rate of “innovative” adoption, 

and represents the amount that a hospital would lag behind the frontier if there were no 

“imitative” adoption. Since α  represents the average annual gain in survival at the 

frontier, the term
i

i
π

π ~
~1−  represents the number of years a hospital lags behind the 

frontier.  For example, a hospital with an “innovative” adoption hazard of 10% would lag 

9 years behind the frontier, while a hospital with an “innovative” adoption hazard of 50% 

would lag 1 year behind the frontier.   

The second term in equation 18.b captures the mitigating impact of “imitative” 

search, where we let gi represent the value in steady state of the “imitative” term from 

equation 17.  While there is no simple closed form solution for this term, it can be shown 

to be positive, declines to zero as the importance of “imitative” adoption ( iμ~ ) declines to 

zero, and declines with search intensity ( ).  Thus, this term implies that greater 

“imitative” adoption moves a hospital closer to the frontier in steady state, and is 

particularly important for hospitals with low search intensity. 

*
in

Equation (17) can be simplified to yield an equation more amendable to 

estimation: 

(19)      ( ) ittitiitiiiit uYyyy +++−−= −− 1
*

1
~~~~1 μπωμπ  

where 
∑
∑ −

=≈
ijt

j
ijtjt

iti w

wx 1

ωω  
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is assumed constant over time for each type of hospital, and wijt = αjxijt.  The ωi term is a 

weight that reflects the correlation between the individual hospital’s speed of adoption 

and the average, so if (for example) a hospital is a below-average adopter, the weighting 

factor will be larger given that each of their (old) innovations will have been adopted by 

other hospitals already, so that 1−jtx will be approaching one, or complete adoption.  (For 

truly sluggish hospitals who are the last to adopt, ωi = 1) If instead a hospital at the 

frontier derives much of its productivity from new innovations, ω will be correspondingly 

lower.   

 This simple model yields a number of strong implications.  First, when use of an 

innovation can be observed at the patient level, we show that the rate of use of all such 

innovations in each hospital is described by a factor model, where the common factor is 

proportional to the optimal search intensity being used at each hospital. Second, our 

model of physician search implies a generalization of the partial adjustment model as in  

Nelson and Phelps (1966). Third, our model predicts that hospitals with higher adoption 

rates (higher search intensity) will have higher patient survival, and there will be no 

convergence across hospitals as growth in survival is expected to be the same at all 

hospitals.  Finally, our model has ambiguous implications regarding how search intensity 

affects the persistence in patient survival rates at a given hospital. In the absence of 

“imitative” adoption, the model predicts that survival is less persistent in hospitals with 

high search intensity.  But if “imitative” adoption is present, survival may also be less 

persistent in hospitals with low search intensity, with intermediate levels of search 

intensity potentially being associated with the highest levels of persistence in patient 

survival. 
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3. Data 

We focus on the “production” of survival following acute myocardial infarction 

(AMI).  There are compelling reasons to focus on heart attacks.  Nearly every AMI 

patient who survives the initial attack is admitted to a hospital, and ambulance drivers 

generally take the patient to the nearest hospital, so nearly every patient who survives the 

initial attack is admitted to a hospital.  The outcome, survival, is accurately measured and 

there is broad clinical agreement that survival is the most important endpoint, particularly 

in the elderly population.  The measurement of inputs is also accurate, whether reflecting 

pharmaceutical treatments or demographic and health information (including the type of 

heart attack). 

In their pioneering work, David Cutler and colleagues focused on productivity 

gains in AMI using similar measures of one-year survival and one-year inpatient costs 

although at the national level and not at the hospital level as we do here.9  They found 

dramatic improvements in health outcomes, and demonstrated that at least for AMI 

during this period, spending was “worth it” for Medicare patients.  Thus AMI represents 

an important case study of technological advances in medicine, but it should be stressed 

that it is not representative of most health care, where productivity gains are far more 

modest, particularly among non-cardiac diseases.10   

The primary dataset is a 20% sample of the Medicare Part A (hospital) claims 

data for all heart attack (AMI) patients age 65 and over in the U.S. during 1986 – 1991, 

and a 100% sample from 1992 through 2004, with updated information on mortality 

                                                 
9   See Cutler, et. al. (1998), Cutler and McClellan (2001), and Cutler (2004). 
   
10   See Cutler, Rosen, and Vijan, 2006. 
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through 2005. The original sample comprises 3.3 million people, but in order to create a 

full 19-year panel of hospitals we limit the sample to 2.8 million people.     The Medicare 

claims data includes detailed information on comorbidities (i.e., preexisting conditions), 

as well as the type of heart attack (e.g., inferior, anterior, and non-Q wave).11  The data 

was pooled and checked to ensure that, at least during this period, there had been no 

previous AMIs in the sample.12   We also consider Part A (inpatient) Medicare 

reimbursements, expressed in 2004 dollars using the GDP deflator, and risk-adjusted 

using the same set of covariates in a linear model.13

A categorical variable was created for each 5-year age bracket, by sex and race.  

(There are 5 ages x 2 sexes x 2 race variables in all.)  The initial risk-adjustment 

regression is shown in Table 1 along with relevant means of the independent variables for 

the entire sample, for both one-year survival and one-year expenditures.  

Information on the adoption of technology was measured in the Cooperative 

Cardiovascular Program (CCP) dataset, which involved chart reviews for over 160,000 

AMI patients over age 65 during 1994/95, matched to the admitting hospital.  We chose 

                                                 
11      Comorbidities are the presence of vascular disease, pulmonary disfunction, 
dementia, diabetes, liver disfunction, renal failure, cancer, and metastatic cancer.   Heart 
attack type is measured as anterior, inferior (denoting the location of the blockage, with 
anterior the most serious) and non-Q wave or subendocardial infarction.  For non-Q AMI, 
the affected area does not extend the entire width of the heart muscle and is therefore 
associated with a much better clinical prognosis. 
   
12   Focusing on the first AMI, avoids bias resulting from mortality occurring as frailer and 
older AMI survivors experiencing a second MI die as a result.   
 
13   Part B physician reimbursements are also available in some years, but the sample size 
is so small (5 percent prior to 1998, 20 percent thereafter) that these measures were not 
used in this analysis.  A previous study focusing on the regional level (Skinner, Staiger, 
and Fisher, 2006) suggested that there was no substitution effect between Part A and Part 
B expenditures; if anything regions with higher Part A spending were more likely to 
experience higher Part B spending.   
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three measures of low-cost but effective innovations. The first, aspirin, reduces platelet 

aggregation and helps to limit clotting, thereby improving blood flow to the oxygen-

starved tissue, and reduces mortality substantially (e.g., ISIS-2, 1988).  Indeed, 

Heidenrich and McClellan (2001) viewed aspirin as the single most important factor in 

explaining why 30-day mortality rates declined during 1975-95.  By 1994/95, most 

hospitals had adopted aspirin, with an average compliance rate of 80 percent, but with a 

substantial minority of hospitals with rates of 60% or below.   

The second, a β blocker, is an inexpensive drug that by blocking the beta-

adrenergic receptors reduces the demands on the heart. In a meta-analysis from 1985, 

Yusuf et. al. summarized the existing literature as “Long-term beta blockade for perhaps 

a year or so following discharge after an MI is now of proven value, and for many such 

patients mortality reductions of about 25% can be achieved.” (p. 335)  By 1994/95, 

diffusion fell far short of ideal: average use among AMI patients was just 46 percent.  

Furthermore, during this time there was considerable variation in the adoption of β 

blockers; some hospitals had fully adopted (near 100 percent), while others were not 

using them at all.   

Figure 2 shows this graphically for three states: Iowa, Massachusetts, and 

Mississippi.  On the horizontal axis is the cumulative distribution of patients, ranging 

from 0 to 1.00, sorted by β blocker use in the hospital to which they were admitted.  On 

the vertical axis is the fraction of patients treated at that hospital with β blockers.14 

                                                 
14 One can also construct this graph using the fraction of patients “ideal” for β blockers 
who actually receive such treatments.  However, the criterion for ideal appears far too 
restrictive, and so we simply look at overall rates – thus the optimal rate may be below 
100 percent because of patients for whom β blockers are contraindicated. 
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Clearly, Mississippi is lagging behind the other two states with regard to β blocker 

adoption; the 70th  percentile of AMI patients were admitted to hospitals with a 33 

percent rate of β blocker use, which is the use rate at the hospital to which the 1st 

percentile of Massachusetts AMI  patients were admitted.  But it is still noteworthy that 

there are hospitals in Mississippi with rates of β blocker use that were above those in 

Massachusetts and Iowa.  The use of β Blockers has since risen substantially; in 

2000/2001 the median state was at 68 percent compliance (with Iowa one of the best), 

and currently it is rare to find hospitals using β blockers for fewer than 90 percent of 

AMI patients.15   

One could interpret these patterns as reflecting demand; patients in Massachusetts 

ask for and get β blockers.  But it seems unlikely that this could explain the patterns we 

observe; these are elderly heart attack patients who are in quite serious condition and 

unlikely to be well schooled in the latest methods of AMI treatment.  More to the point, 

hospitalized patients should not have to ask their physicians for β blockers, aspirin, or 

reperfusion. 

The third measure is reperfusion within 12 hours of the AMI.  The objective is to 

get blood to the oxygen-starved heart muscle quickly, and this can be effected either by 

using thrombolytics, drugs which help break down the clots blocking the blood, or 

angioplasty, in which a “balloon” is threaded through a vein into the blocked artery and 

expanded, thus restoring blood flow (Since 1995, cardiologists have increasingly adopted 

stents, cylindrical wire meshes, to maintain blood flow.) The two treatments are 

                                                 
15   See www.hospitalcompare.hhs.gov for a complete listing of reporting U.S. hospitals and 
their measures of β blocker use.  The reporting is not complete for all hospitals, leading 
to the possibility of upward bias.  
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substitutes because thrombolytics reduce the patient’s ability to clot.  Randomized trials 

have shown both to be highly effective, but with most studies showing slightly larger 

benefits for angioplasty.  By 1994/95, many larger hospitals had catheterization 

laboratories, but thrombolytics were a viable option for all hospitals.16     

4.  Model Estimation and Results 

We begin with summary statistics on productivity in the treatment of AMI.  

Figure 1 shows risk-adjusted one-year survival and one-year expenditures by year.  

Survival rose rapidly during the late 1980s and early 1990s (the period of analysis in 

Cutler et. al., 1998), but since then has flattened out, particularly in the late 1990s, before 

assuming a more modest upward trend in the 2000s.  What can explain this pattern of 

sharply diminishing returns to technology after the mid-1990s?  One potential 

explanation comes from Heidenrich and McClellan (2001), who identified aspirin as the 

primary engine of productivity growth, followed by treatments such as β blockers, 

thrombolytics, and primary angioplasty.  By 1995, with average rates of use of aspirin at 

80 percent, the extent of further productivity gain was limited.  But continued growth in 

other treatments such as β blockers, thrombolytics, and PTCA should have resulted in at 

least some additional benefits, and why these gains were not observed is something of a 

mystery.17

                                                 
16   We consider only angioplasty within 12 hours of the AMI, when there is still a chance 
of recovering heart muscle.  The vast majority of angioplasties are performed for AMI 
patients after 12 hours, or for people with cardiac ischemia.  For these patients, there are 
no well-established survival benefits, although there may be modest improvements in 
functioning (e.g., Boden, et. al., 2007).   
 
17   See also Ash, et. al. (2003) who find a similar flattening in mortality.  Sample 
selection during the era of growth in Medicare managed care is another possibility, but 
Skinner et. al. (2006) argues that this trend was unlikely to explain the plateau. 
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As shown in Figure 1, there has also been a dramatic increase in expenditures 

during the late 1980s and early 1990s, and while the 1997 Balanced Budget Act 

legislation flattened Part A reimbursements, expenditures have since resumed an upward 

trend.  It is not difficult to see a close correlation between the two time-series, and we 

consider this correlation in more detail below at the hospital level after estimation of the 

factor model.  

Estimating the factor model  

 Consider first the hospital-level data on adoption rates of the three recent 

innovations to estimate the factor model in Equation (14).  The factor model was 

estimated using the proportion of patients receiving each treatment for each hospital in 

1994/95, and assuming a single common factor. Predictions of each hospital’s factor were 

constructed using standard methods.  These predictions are simply a weighted average of 

the three dependent variables, where the weights are derived from the parameters of the 

factor model. Factor analysis normalizes the underlying factor to have a mean of zero and 

variance of one, so the units of the estimated factor have no particular interpretation.  

Table 2a presents the correlation coefficients among the three variables (aspirin, β 

blockers, and reperfusion) and the common factor.  The correlation of each input with the 

common factor ranges from 0.87 for β Blockers to 0.30 for reperfusion, demonstrating 

that hospitals that adopt one innovation early are also more far more likely to adopt other 

innovations.  In Table 2b, we show that the quintiles based on this factor show clear 

differences in the use of β blockers (from 64 percent in the highest adopting quintile to 

27 percent in the lowest) and  aspirin (90 percent to 62 percent), with more modest 
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differences in reperfusion (21 percent to 14 percent).18  Consistent with our model, 

hospitals in the quintiles with quicker adoption also have higher patient volume, and are 

more likely to be major teaching hospitals.   

 There are also clear differences in risk-adjusted survival for each of the quintiles 

of adoption.  Figure 3 shows survival rates for each of the five quintiles by year.  On 

average, the gap in survival between the slowest and most rapid adopters was more than 3 

percentage points, with the difference widening to 3.5 percent by 2004.  

Figure 4a displays Medicare reimbursements again by quintile of adoption.  There 

are modest differences in expenditures, with Quintile 1, the most rapidly adopting 

hospitals, consistently higher.  However, this difference is based primarily on higher 

reimbursement rates rather than more inputs per se.  The Medicare reimbursement system 

is based on diagnostic related groups (DRGs) where each procedure is assigned a 

common resource “weight”, with payments varying across hospitals because of cost 

adjustments, the number of residents, and supplemental payments to compensate for 

serving low-income patients.  Figure 4b shows expenditures by quintile using a 

normalized “price” per DRG weight based on the national average.  As is clear, there are 

no differences in resource inputs across hospital quintiles.19  

Convergence 

Equation 17a states that survival rates should grow at the same rate for all 

hospitals.  Figure 3 demonstrated a lack of convergence in survival by quintile.  We test 

                                                 
18  These averages are for all patients and not for “ideal” patients.  In practice it is difficult 
to identify ideal patients.  While nearly all patients should receive β blockers and aspirin, 
the optimal rate for revascularization is below 100 percent.  
19   Also see Skinner, Staiger, and Fisher (2006) and Fisher et. al. (2003a,b). 
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this further in Figure 5 which shows the average hospital-level variance in risk-adjusted 

survival for each year, adjusted for differences in the sample size of each hospital.20 

Figure 5 displays the standard deviation of this distribution, which ranges from 3 to 5 

percentage points, and does not suggest convergence over the time period.  If anything 

there is a marked divergence in the 2000s.   

Estimating a production function 

While the log-linear specification of the production function has strong 

implications for the constancy of expenditures over time from Equation (4), holding Ψ 

constant, this does not preclude us from estimating Equation (3) with a measure of factor 

inputs on the right-hand side of the equation.  While we cannot distinguish exactly 

between capital and labor, we can think of “inpatient” and “outpatient” inputs to health, 

where our measure of factor inputs for inpatient care, whether Medicare reimbursements 

or DRG weights, is accurate and can be compared both across hospitals and over time.  

Table 3 presents the coefficient estimates from a series of regressions involving a 

measure of factor inputs and technology adoption on the RHS, and survival on the LHS, 

of the estimating equation.  Depending on the specification of the model, we may include 

year effects, hospital effects, or adoption quintiles in the regression.  All regressions are 

weighted by the number of AMI patients in each year-hospital measure (with a minimum 

of 5 patients per hospital).   

                                                 
20  This is done by subtracting an estimate of the “noise” component of the variance, equal 
to σ2

u/Nh where σ2
u is the variance of the hospital-level risk-adjustment equation and Nn 

is the measured volume of AMI patients at hospital h.   Recall that prior to 1992, the 
sample size is just 20% rather than 100%.  Thus the relative smoothness of the transition 
between 1991 and 1992 is at least suggestive that the adjustment for “noise” is doing an 
adequate job. 
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In the first row of Table 3, we replicate a regression in the spirit of the Cutler 

studies (e.g., Cutler et. al., 1998) that compared changes in survival rates and Medicare 

Part A expenditures without year-specific effects.   In this regression at the hospital level, 

the coefficient on the log of costs is 0.0227 (t = 12.2) which translates to an implicit cost-

effectiveness ratio of $196,000 per life year, which is not a particularly favorable cost-

effectiveness ratio.21  Strictly speaking, Equation (3) implies that quantities should matter 

more than expenditures, and so we re-estimated the model using log DRG weights 

instead.22  For the period prior to 1995 considered by Cutler et. al., factor inputs are 

estimated to be highly productive, with a cost-effectiveness ratio of $42,000 per life year.  

Since 1995, however, there is no association between factor inputs and survival, so the 

cost-effectiveness ratio is not defined. 

There is considerable variability in the magnitude of the factor input effects 

depending on whether hospital effects and quintiles of adoption are used, as shown in 

Rows 4-7 of Table 2.  There is also strong evidence that the estimate of β varies across 

technology adoption quintiles.  Figure 6 shows predicted outcomes for the quickest 

adopting hospitals (Quintile 1), the middle group, and the slowest adopting hospitals 

(Quintile 5) using coefficients from a model with log (DRG) and year dummy variables, 

stratified by quintile (Rows 8-10 in Table 3).  At every level of expenditures, hospitals in 

                                                 
21   The cost-effectiveness ratio is calculated by assuming that every additional patient 
who lives an extra year will attain 5.25 life years, the average expected lifespan of heart 
attack patients based on Cutler et. al., 1998.  Generally cost-effectiveness ratios below 
$50,000 are viewed favorably, but inflation has lead many to view $100,000 as a more 
reasonable cut-point.   
 
22  During this period, reimbursement mechanisms were adjusted to benefit some 
hospitals over others, so that cost increases were in part the result of political factors.   
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the highest adoption group dominate those in the lowest adopting group; even spending 

$50,000 per case in the low-adoption group would still result in worse outcomes 

compared to spending $10,000 per case in the high-adoption group.  The results are less 

dramatic using regression models with hospital-specific effects (Rows 11-13); these 

capture only the within-hospital effects.   Finally, the last column (Row 14) shows a poor 

incremental value for money spent in the top quintile when we use log of costs rather 

than log of DRGs (cost-effectiveness ratio of $262,000).. 

Estimating the time-series model 

  We next turn to the estimation of the model in Equation (19).  We first consider 

just the Nelson-Phelps frontier model without any imitation parameter, estimated in a 

nonlinear model without a constant term by quintile.  We experimented with a number of 

approaches to defining the “frontier” of heart attack treatments, including the US News 

and World Report “40 Best” cardiac hospitals.  (While these hospitals were in fact ahead 

of other hospitals in the 1980s, by 2004 they resembled more closely the average 

hospital.) We therefore used Quintile 1, the most rapid adopting hospitals, as the frontier, 

and test whether there are any patterns with regard to the gravitational force of the 

frontier (versus the average) for Quintiles 2-5.  Column 1 in Table 4 begins with the 

simplest Nelson-Phelps frontier approach, where survival this year is a weighted average 

of survival at the hospital last year and the frontier.  We estimate the model where last 

year’s survival is instrumented by the second lag in survival, and all estimates are 

weighted by the number of patients in each hospital.  (To reduce measurement issues we 

further restrict the sample to hospitals/years with at least 25 patients.) The non-linear 

estimates of π suggest an inverse U-shape (rather than a U-shape as suggested by the 
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model); 0.10 for the bottom quintile, 0.13 for quintile 2, but the maximum attained at 

quintile 3 (0.214).  That the monotonic association between π and adoption is not 

observed suggests that we should at least test for imitation effects. 

 The remaining columns show results that allow for values of π and μ to differ 

across hospitals.23 (Our theory assumes that the two should be a constant proportion of 

one another, but we relax that assumption in the regression analysis).  Columns 2-4 

present alternative estimates of this model; these differ either because of aggregation 

(Column 2 uses OLS with the quintile-specific aggregated survival rates) or because of 

the introduction or exclusion of a constant term (Columns 3 and 4).  The estimates are not 

stable and often outside the admissible range (e.g., μ is negative in Columns 3 and 4) and 

so no definitive conclusions can be reached.  Still, the patterns across quintiles is at least 

suggestive that the rapidly innovating hospitals are drawn most closely to the frontier, 

while lagging hospitals are relatively more influenced by imitative behavior.   

5. Conclusion 

In this paper, we have developed a search model of hospital productivity with a 

particular focus on peering inside the black box of technological innovation.  We found 

that varying rates of adoption for low-cost but highly effective treatments explained a 

large fraction of the persistent differences in risk-adjusted survival during the period 

1986-2004.  The hospital quintile with the most rapid propensity to adopt these new 

innovations (or the “frontier”) experienced survival rates 3.3 percentage points above the 

lowest quintile hospitals, or nearly one-third the entire improvement in survival since 

                                                 
23   We focus on π and μ, the free parameter ω means that there are no restrictions on the 
lagged survival coefficient as there is for the Nelson-Phelps model where there is just one 
parameter and two regression coefficients. 
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1986.  While we focused on just three innovations at a point in time, aspirin, β blockers, 

and reperfusion in 1994/95, we view the results, and the non-convergence of the quintile 

outcomes, as supportive of the view that these hospitals have continued to innovate since 

then.24  

These results have implications for both health policy and for productivity more 

generally.  With regard to health policy, there is an ongoing debate about whether we’re 

getting our money’s worth from the U.S. health care system.  Some researchers have 

pointed to the dramatic improvements in life expectancy, particularly with respect to 

cardiac diseases, and concluded that while the U.S. health care system is expensive, the 

expenditures are worth it (e.g., Cutler, 2004; Murphy and Topel, 2003).  By contrast, 

others have estimated that the U.S. health care system displays efficiency characteristics 

that rank below those in Albania (Evans, 2001).  Fisher et al (2003a,b) for example has 

found that patients in regions with greater degrees of health care intensity are not sicker 

at baseline, but do subsequently experience slightly worse outcomes, poorer access to 

care, and less satisfaction.    

These two views are entirely consistent in an environment where there are 

regional or hospital differences in the productivity of health care. Hospitals with less 

ability to adopt new innovations lag behind consistently in the quality of care, and may 

compensate by using expensive treatments to compensate for the β blocker not taken. On 

the other hand, all hospitals, high and low quality, improve at roughly the same rate as 

innovations slowly percolate back to the hospitals that are slowest to adopt.  More 

                                                 
24   Preliminary results suggest a strong positive correlation between β blocker use in 
1994/95 and the adoption of drug-eluting stents in 2003. 
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generally, productive efficiency will not depend simply on whether regions adopt 

quickly, but which treatments are adopted – are they low-cost effective treatments such as 

β blockers and aspirin for heart attacks, or are they well-remunerated procedures with 

unproven effectiveness such as instrumentation for spinal fusion (Brox, et. al., 2003)?   

Note also that our model is not a “flat of the curve” story per se.  Variations at a 

point in time across regions may show no association between expenditures and 

outcomes, but this finding is perfectly consistent with a positive upward sloping 

production curve (as we find), but where differences across regions are dominated by 

differential rates of technology adoption (Skinner, Staiger, and Fisher, 2006). 

Why are physicians so slow to adopt the low cost technologies?  There are a 

variety of economic models where maximizing behavior corresponds to slow adoption 

for some people.  For example, rational agents may wait for the price of the innovation to 

decline (e.g., flat-screen TVs), or they may have developed expertise in the older 

technology (Jovanovic and Nyarko, 1996). Alternatively, heterogeneity in production 

functions may lead to profit-maximizing differences in rates of diffusion (e.g., Griliches, 

1957), or the presence of liquidity constraints may restrict diffusion (Suri, 2006).  Finally, 

there may be differences in education across workers which affect their propensity either 

to adopt (Nelson and Phelps, 1966) or new technology may be most complementary with 

skilled workers (Caselli and Coleman, 2006).   Unfortunately, none of these models 

provides a good explanation of the non-adoption of inexpensive β blockers, aspirin, and 

thrombolytics by highly educated physicians.  Because prices do not play a large role 
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here, we instead look to informational or search barriers as an explanation for why 

physicians don’t adopt. 25   

Without solving our model explicitly, it is useful to “back out” what must be the 

barrier to adopting.  Assume that a life-year is worth $50,000, that the average physician 

has 20 patients per year, the “default” likelihood of an adoption in a given year is 20% 

(so the expected number of years until adoption if not adopted this year is 5), the discount 

rate δ is .95 and using the innovation yields an increase of 0.08 additional life years per 

patient.  A simple calculation suggests that the marginal equilibrium cost to the physician 

of raising the chance of adopting this new innovation by just 1 percent (i.e., raising the 

chance of finding the new innovation from 20 to 21 percent over the space of a year) 

would need to be $3,360 in order to satisfy first-order conditions.  This seems 

implausibly large.  Perhaps our assumed value per life-year is too high (perhaps because 

of a principal-agent problem in which physicians are not acting for “society”) or the 

assumed discount rate is too high, where hyperbolic or procrastination models would 

suggest much lower values of δ. On the other hand, this slow diffusion may also reflect 

extreme loss aversion where concerns about causing harm require the presence of another 

physician in the hospital to assist in learning about the new treatments.  Still, the non-use 

of aspirin is difficult to explain even in models of tactile diffusion (Keller, 2004). 

We are certainly not the first to point out that variations in technology appear to 

be more important in explaining output disparities than variations in factor inputs. In 

1966, Harvey Leibenstein notes that:  

                                                 
25   The distinction between “inefficient” barriers to adoption, and the slow, but optimal, 
adoption of technology for a variety of reasons, was made by Coleman (2004). 
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Frederick Harbison reports visiting two petroleum refineries in Egypt 
less than one-half mile apart. “The labor productivity of one had been nearly 
double that in the other for many years.  But recently, under completely new 
management, the inefficient refinery was beginning to make quite spectacular 
improvements in efficiency with the same labor force” [p. 373].   We may 
inquire why the management was changed only recently whereas the 
difference in labor productivity existed for many years.  It is quite possible 
that had the motivation existed in sufficient strength, this change could have 
taken place earlier. 

 

 The fundamental point of the paper is that two different firms with seemingly 

similar factor inputs experienced vastly different outputs; Leibenstein labeled the more 

efficient refinery “X-efficient.”   In hindsight, perhaps his emphasis on “motivation” was 

unfortunate; Stigler (1976) noted that if only the Romans were sufficiently motivated, 

they too could have discovered America.  We do not speculate about motivation in this 

paper, but instead focus on precisely the mechanisms by which some hospitals seems to 

attain much better productivity than others.  

Finally, one must be cautious about drawing too many parallels between the 

highly distorted market for health care and other sectors of the economy.  It is likely that 

if patients both knew about technology adoption and responded to published and reliable 

information about hospital quality, that N, the number of patients per physician, would 

respond rapidly to better technological adoption and punish laggards. Still,  when there is 

slack in markets for health care quality, or refined petroleum in Egypt, remarkably large 

inefficiencies could be generated by seemingly unimportant informational barriers.  
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  One-year 
Survival 

One-Year 
Expenditures 

 Mean Coefficient Coefficient 

Vascular Disease 0.070 -0.029 
(0.001) 

1642 
(56) 

Pulmonary Conditions 0.189 -0.082 
(0.001) 

1339 
(37) 

Dementia 0.029 -0.137 
(0.002) 

-4949 
(84) 

Diabetes 0.247 -0.041 
(0.001) 

1915 
(33) 

Liver Disease 0.003 -0.245 
(0.005) 

-2102 
(269) 

Renal Disease 0.023 -0.284 
(0.002) 

1155 
(94) 

Cancer 0.043 -0.165 
(0.001) 

-2733 
(70) 

Anterior Infarct 0.163 0.045 
(0.001) 

1509 
(46) 

Inferior Infarct 0.178 0.113 
(0.001) 

719 
(45) 

Subendocardial Infarct 
(non-Q) 0.426 -0.132 

(0.001) 
2491 
(41) 

Constant (for non-
black  male age 65-69  0.722 

(0.003) 
24308 
(166) 

Age-Sex-Race-Year 
Categorical Variables  Yes Yes 

Sample Size 2,808,171 2,808,171 2,808,170 
Note: Other type of AMI is the excluded category.  Standard error of estimate in 
parentheses. 
 
 
 
Table 1: Means and Regression Estimates: Basic Risk Adjustment 
Linear Model 
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 Common 
Factor Aspirin β Blocker Reperfusion 

Common 
Factor     

Aspirin 0.871* 
    

β Blocker 0.792* 
 

0.429* 
   

12 Hour 
Reperfusion 

0.300* 
 

0.189** 
 

0.031 
  

 Notes:  Analysis performed at the hospital level (N = 2765) in the lower left-hand 
triangle, based on data from the Cooperative Cardiovascular Project (CCP), 1994/95, 
with a sample of  151,181 AMI patients.  * denotes p < 0.001, ** p < 0.01. 
 
 
Table 2a:  Characteristics of Factor Model of Adoption: Covariance 
Structure 
 
 
 
 

 Quintile 1 
(Quickest) 

Quintile 2 Quintile 3 Quintile 4 Quintile 5 
(Slowest) 

Overall 

Aspirin 0.90 0.85 0.80 0.73 0.62 0.80 
β Blocker 0.64 0.51 0.44 0.38 0.27 0.47 
Reperfusion 
within 12 hours 0.21 0.20 0.18 0.17 0.14 0.18 

Average hospital 
volume* 95 100 94 82 59 89 

Major teaching 
hospital 0.43 0.29 0.21 0.11 0.05 0.24 

See notes above in Table 2a. *Volume for Medicare patients only.  Weighted by number of 
patients in each group 

 
 
 
Table 2b:  Characteristics of Factor Model of Adoption: Association 
with Characteristics of the Hospital 
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Regress
ion 

Input 
[Quintile if 
Stratified] 

Period 
of 

Analysis

Year 
Effects

Hospita
l 

Effects 

Adj. for 
Diffusion
Quintile 

Coefficient 
(t-statistic) 

Cost- 
Effectiveness 

(per Life Year)

1 Log(Costs) 86-04 No No No 0.0227 
(12.2) $196,000 

2 Log(DRG) 86-04 No No No 0.0758 
(28.2) $59,000 

3 Log(DRG) 86-94 No No No 0.1052 
(30.3) $42,000 

4 Log(DRG) 95-04 No No No -0.005 
(1.0) [not defined] 

5 Log(DRG) 86-04 Yes No Yes 0.0638 
(16.0) $70,000 

6 Log(DRG) 86-04 Yes Yes No 0.0518 
(18.8) $86,000 

7 Log(Cost) 86-04 Yes Yes No 0.0239 
(11.1) $186,000 

8 Log(DRG) 
[Quintile 1] 86-04 Yes  No Yes 0.0409 

(8.8) $109,000 

9 Log(DRG) 
[Quintile 3] 86-04 Yes  No Yes 0.0160 

(3.0) $278,000 

10 Log(DRG) 
[Quintile 5] 86-04 Yes  No Yes 0.0033 

(0.6) $1.3 Mill. 

11 Log(DRG) 
[Quintile 1] 86-04 Yes  Yes Yes 0.0649 

(12.9) $69,000 

12 Log(DRG) 
[Quintile 3] 86-04 Yes  Yes Yes 0.0441 

(7.3) $101,000 

13 Log(DRG) 
[Quintile 5] 86-04 Yes  Yes Yes 0.0391 

(6.6) $114,000 

14 Log(Cost) 
[Quintile 5] 86-04 Yes  Yes Yes 0.0170 

(3.5) $262,000 

Notes: N = 49932, all regression weighted by sample size, limited to hospital/year observations 
with at least 5 observations per hospital. 
Table 3: Regression Estimates of Survival and Factor Inputs  
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 Nonlinear 

(Nelson-Phelps)
OLS  

(Constant) 
IV 

(Constant) 
IV  

(No Constant) 
Innovation Parameter (π) 

Rapid Diffusion (Q1) -- -- -- -- 

Quintile 2 0.135 
(3.0) 

0.638 
(4.5) 

0.508 
(3.1) 

0.649 
(4.3) 

Quintile 3 0.214 
(5.9) 

0.288 
(1.4) 

0.668 
(4.3) 

0.770 
(5.3) 

Quintile 4 0.124 
(4.3) 

-0.023 
(0.1) 

0.170 
(1.0) 

0.278 
(1.9) 

Slow Diffusion (Q5) 0.099 
(4.2) 

0.250 
(2.3) 

0.302 
(1.8) 

0.367 
(2.4) 

Imitation Parameter (μ) 

Rapid Diffusion (Q1) -- -- -- -- 

Quintile 2  0.115 
(0.3) 

-0.697 
(4.3) 

-0.672 
(4.2) 

Quintile 3  0.798 
(1.3) 

-0.716 
(4.3) 

-0.687 
(4.2) 

Quintile 4  0.741 
(2.9) 

-0.205 
(1.3) 

-0.181 
(1.1) 

Slow Diffusion (Q5)  0.643 
(2.2) 

-0.291 
(1.7) 

-0.270 
(1.6) 

 
5266  

[Hospital by 
Year] 

76  
[Quintile by 

year] 

5266  
[Hospital by 

Year] 

5266  
[Hospital by 

Year] 
Notes: Hospitals-by-year observations included only if current, lagged, and lagged twice 
observations included at least 25 AMI patients in each hospital.  

 
Table 4: Parameter Estimates 
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Figure 1:  One-Year Risk-Adjusted Survival Rate and One-Year 
Inpatient (Part A) Hospital Expenditures Following AMI (2004$) 
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Figure 2: β Blocker Adoption in Massachusetts, Iowa, and Mississippi, 
1994/95 
 
Source: Cooperative Cardiovascular Project, 1994/95  
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Figure 3: Survival Rates by Year and Quintile of the Propensity to 
Adopt, 1986-2004 
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Figure 4a: Medicare Reimbursement by Year and Quintile of the 
Propensity to Adopt 
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Figure 4b: Normalized Medicare Reimbursements (DRG Weights 
Multiplied by Common Reimbursement Rate) 
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Figure 5:  Standard Deviation of Hospital Risk-Adjusted Survival with 
Corrections for Differences in Hospital Sample Sizes 
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Figure 6: Implicit Log Production Functions for Quintiles 1 (Fastest) 3 
(Middle) and 5 (Slowest) Hospitals, 2004 
Note: Estimates based on regression analysis reported in Table 3. 
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