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Abstract: In order to lengthen prison terms, many U.S. states have limited parole boards’ 
traditional authority to grant early releases.  I develop a framework in which the welfare 
effects of this reform depend on (1) the elasticity of future recidivism with respect to time in 
prison, (2) the accuracy of boards in conditioning release dates on recidivism risk, and (3) the 
extent to which such conditioning encourages inmates to reform.  Using micro-data from 
Georgia and quasi-experimental variation arising from policy shocks and institutional 
features of its criminal justice system, I find that longer prison terms decrease recidivism, 
boards assign higher-risk inmates to longer terms, and inmates’ investment in rehabilitative 
activities falls—and their recidivism rises—when boards’ discretion is limited. Back-of-the-
envelope calculations suggest that the benefits of parole (the ability to ration prison resources 
based on recidivism risk and the creation of incentives) outweigh the costs (lost 
incapacitation due to shorter prison terms).  
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Introduction 

 The manner in which inmates are released from U.S. prisons has undergone sweeping 

change over the past 30 years.  From the late 19th century until recently, a judge typically would 

assign a convicted offender an indeterminate sentence (e.g., “ten years to life”) and a parole 

board would decide when, within that range, the prisoner would be released.  Until the 1980s, 

state and federal parole boards had the authority to release almost all felons; today less than one-

quarter of prison inmates are released via a parole-board decision (U.S. Bureau of Justice 

Statistics 2004).  The movement from traditional parole-board discretion to fixed-sentences 

regimes where judges’ decisions are binding could have potentially important effects on the 

incentives and efficiency of the U.S. criminal justice system, which currently incarcerates more 

than two million individuals and annually releases 600,000.  However, the topic has received 

little attention from economists.1 

 Evaluating the social welfare impacts of parole reform is complicated by several 

competing effects.  Policymakers’ main goal in eliminating parole boards was to increase the 

length of time inmates spend in prison, as parole boards were viewed as overly lenient and 

longer terms may incapacitate dangerous criminals and deter future crime.2  Less attention was 

paid to the possible benefits of parole.  For example, parole boards can use information about 

inmates’ future recidivism revealed after sentencing to condition release dates on expected 

recidivism risk, thus more efficiently allocating prison resources relative to a system in which 

judges must set release dates at the time of trial.  Moreover, abolishing parole could weaken 

                                                 
1 Researchers in other fields have given more attention to parole reform; useful references include Western (2006), 
Petersilia (1999), and Abadinsky (2003). 
2 Petersilia (1990) discusses how politicians and policymakers pushing for parole reform sought to increase the 
severity of punishment by limiting the discretion of parole boards, which were believed to be overly lenient. 
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prisoners’ incentives to invest in their own rehabilitation, as release is no longer tied to perceived 

risk, and thus may increase recidivism. 

I develop a framework for evaluating the movement away from parole that encompasses 

these competing effects.  The framework suggests that the difference in the social cost of crime 

under parole and fixed-sentences regimes depends on three empirical relationships: the effect of 

time served on recidivism (do longer prison terms reduce future criminal activity?); the accuracy 

with which parole boards condition release dates on expected recidivism risk (how well do 

parole boards perform their jobs?); and the effect of parole-based incentives on inmates’ 

behavior while in prison and their recidivism once released (does the hope of parole make 

prisoners reform?).  To estimate these relationships, I rely on a rich data set from the Georgia 

Department of Corrections (GDC) and on a number of institutional features and policy changes 

in the state that generate quasi-experimental variation in both time served and parole eligibility.  

 I first estimate the effect of time served on recidivism.  Because inmates with higher 

recidivism risk generally serve longer terms, and because the risk may be only partially 

accounted for by controlling for observables, standard ordinary least squares estimates of the 

treatment effect of time served on recidivism are likely to be positively biased.  The first 

identification strategy exploits an over-crowding crisis in 1981 that resulted in the release of 900 

prisoners on a single day; conditional on the original sentence, the length of time served for this 

group was determined by the date the sentence began, which is plausibly exogenous.  The second 

identification strategy uses variation in time served generated by cut-offs in parole-board 

guidelines in a regression-discontinuity design.  Both estimations suggest that recidivism falls 

with time served. 
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 I then examine the accuracy of parole boards in forecasting inmates’ expected recidivism 

risk.  The estimation is complicated by mechanical endogeneity: in most cases, the parole 

board’s recommendation is perfectly coincident with the length of time served by an inmate.  I 

again exploit the 1981 mass release, a rare instance when the parole board’s recommendation 

does not determine the date of release, as the overcrowding crisis essentially voided its decisions.  

I find that parole boards do indeed assign longer terms to those with higher initial risk, and do so 

in a manner that exactly offsets variation in inmates’ initial risk, so that inmates are released 

when their expected recidivism falls below a certain threshold.   

In an effort to confirm these results, I take advantage of the fact that parole boards can 

neither assign a recommendation beyond the original sentence nor release a prisoner before he 

serves about one-third of his sentence.  I find that for inmates assigned between 40 and 90 

percent of their sentence—that is, when boards should be unconstrained—standard covariates 

contain substantially less explanatory power than for prisoners released near the lower and upper 

boundaries, suggesting that limiting parole board discretion leads to valuable information being 

left on the table.  

 Finally, to determine whether inmates respond to the incentives generated by parole 

boards, I analyze a 1998 policy reform in Georgia that effectively eliminated the possibility of 

parole for inmates convicted of certain crimes.  Inmates in this group (who no longer had a 

chance at early release) were more likely to accumulate disciplinary infractions, less likely to 

complete courses such as GED preparation and vocational training, and more likely to return to 

prison after being released.   

Overall, back-of-the-envelope calculations of the social cost of crime suggest that the 

benefits of parole regimes outweigh their costs.  Empirically, parole appears linked to slightly 
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shorter average prison terms and thus less incapacitation and less time for rehabilitation.  

However, the ability to condition prison terms on recidivism risk and the creation of incentives 

for inmates to invest in rehabilitation while in prison appear to offset the loss due to shorter 

terms. 

The paper is organized as follows.  Section 1 provides a short history of parole in the 

United States.  Section 2 presents a framework for comparing the social cost of crime under 

parole and under a fixed-sentences regime.  Section 3 describes the Georgia data and 

demonstrates that this sample of prisoners is similar to the U.S. prison population along several 

key dimensions.  Section 4 estimates the effect of prison time on recidivism rates.  Section 5 

examines the accuracy of parole boards in conditioning release dates on inmates’ recidivism risk.  

Section 6 evaluates inmates’ sensitivity to the incentives provided by parole in terms of their 

behavior and investment while in prison and their recidivism after release.  Section 7 uses the 

empirical results to calculate the social cost of crime under a parole and under a fixed-sentences 

regime and then offers concluding remarks. 

 

1.  A brief history of parole in the United States 

 From the late 1880s—when prison policy was first centralized by state governments—

until the 1980s, inmates in nearly every state as well as the federal prison system were subject to 

the discretion of a parole board.3  Parole was an integral part of a criminal justice system 

committed to rehabilitation; differences in the rates at which inmates proceeded through the 

rehabilitative process necessitated a discretionary authority to determine when each inmate was 

ready to rejoin society.  In the 19th century, parole was often justified using religious notions of 

                                                 
3 By the time of the Great Depression, only four states did not have explicit laws authorizing parole.  See Abadinsky 
(2003) for more information on the history of parole as well as American corrections more generally. 
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redemption whereas justifications in the 20th century relied more on science and medicine, but 

the commitment to rehabilitation remained. 4     

 Beginning in the 1970s, criminologists and policy-makers on the left began to lose faith 

in the rehabilitative model, which, after all, required granting vast discretionary power to a 

government that had produced the Vietnam War and Watergate.5  The left’s disillusionment 

aligned them with those on the right, such as J. Edgar Hoover, who had long questioned the 

efficacy of rehabilitation and parole.  With no strong political constituency remaining, parole 

was replaced in state after state with truth-in-sentencing laws mandating that inmates serve a set 

share of their sentence.6  The federal government also took steps to eliminate parole and to 

encourage the states to do the same; after 1984, those sentenced in federal court were no longer 

eligible for parole, and in 1994 Congress authorized additional funding for states that required 

violent felons to serve at least 85 percent of their original sentences.7  Figure 1 shows the steady 

decline since 1980 in the share of inmates released via a parole-board decision. 8       

                                                 
4 American correctional institutions were born during the Third Great Awakening and religious leaders played a key 
role in formulating policy.  Reverend Frederick Wines, who in New York during the 1860s directed the first state-
authorized parole system, wrote: “Criminals can be reformed ... reformation is the right of the convict and the duty 
of the State...that time must be given for the reformatory process to take effect, before allowing him to be sent 
away...” (Abadinsky 2003, p. 215).  Policy makers took on a more scientific tone in the 20th century: “This new 
approach to criminal behavior stressed deviance as pathology ... [The criminal] should be helped to understand his 
unconscious motivation and to go through a process of psychoanalytical change” (Robitscher 1980, p. 44).  
5 Martinson (1974) offered an influential meta-analysis of studies on rehabilitation that led to the so-called “nothing 
works” philosophy of corrections (Cullen 2004).  However, Cullen also argues that political and ideological factors 
were equally important in criminologists’ giving up on rehabilitation: “Criminologists, it seems, were politicized by 
the events of that day—by a Civil Rights movement that did not achieve all its goals and left racial inequality intact, 
by the waging of the Vietnam War, by the shootings at Kent State and Attica, by the Watergate scandal...Because 
the rehabilitation justified giving ‘the state’—judges and correctional officers—near unfettered discretion to 
individualize interventions, criminologists took special aim at rehabilitation” (Cullen 2004, p. 254). 
6 The exact date of release may be left up to the diminished discretion of parole boards or calculated via a behavior-
based formula known as “good time.” 
7 The funding was known as the Violent Offender Incarceration and Truth-in-Sentencing Incentive Program and was 
part of the Crime Act of 1994.  Sabol et al. (2002) provide an excellent overview of the law, concluding that the 
grants themselves were largely symbolic and at most merely encouraged an already robust trend at the state level 
away from parole-board discretion.  
8 It should be noted that the abolition of parole did not mean the abolition of post-prison supervision (sometimes 
referred to as “the other parole”).  While many states eliminated the role of parole boards, the role of parole officers 
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 The abolition of parole was initially popular with voters, but public opinion is currently 

mixed and some states are considering a return to traditional discretion.  Virginia and Mississippi 

have repealed their truth-in-sentencing laws for certain low-risk populations and Wisconsin is 

considering similar measures (King and Mauer 2002).  The nascent movement to reconsider 

discretion is part of a larger movement to get “smart” as opposed to just “tough” on crime 

(Swope 2002).  The cost of incarcerating a growing prison population—the number of 

incarcerated Americans has increased from 500,000 in 1980 to more than two million in 2006—

put a strain on state budgets even in the 1990s, when they generally enjoyed substantial revenue 

growth; the economic downturn since 2000 has exacerbated the situation.9  For the first time in 

decades, states appear to have put parole-board discretion back on the table.   

 

2.  A framework for comparing parole and fixed-sentence regimes 

 Consider an individual who has been convicted of a crime.  The social cost of his trial 

and (assuming he is guilty) of the crime itself are already sunk, but he may still impose future 

costs on society: first, the food, shelter and supervision the state must provide while he is 

incarcerated, and second, the social cost of any crimes he commits after his release.  This section 

compares the sum of these two costs under two policy options: a discretionary parole board and a 

fixed-sentences regime that sets the date of release at the time of sentencing. 

 

 

                                                                                                                                                             
remained largely unchanged.  Inmates were still required to report to parole officers upon release and submit to their 
requests (such as regular meetings, drug tests and proof of employment).  See Petersilia (1999). 
9 The increase in the U.S. incarceration rate has been widely studied by economists and other researchers, and has 
been linked to parole and sentencing reform (Sabol et al. 2002, Schumertmann et al. 1998) and the increased use of 
prison—instead of other forms of punishment such as probation—to punish offenders (Western 2006), especially 
drug offenders (Kuziemko and Levitt 2004). 
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The basic framework 

 Figure 2a illustrates a simple framework for determining the optimal time of release.  

Each day, a cost-minimizing social planner compares the social cost of incarcerating an inmate 

to the social cost of releasing him.  The planner lets him go on day t*, when the two social costs 

are equal.  The figure shows that after this day incarceration would be more socially costly than 

release.10 

 The analysis in Figure 2a makes several assumptions.  The first assumption is that the 

marginal social cost of incarceration does not change with time in prison.  This approximation 

appears to be reasonable because many of the costs associated with incarceration—food, 

clothing, shelter, security—are fairly constant.  There are caveats, however.  First, guards note 

that inmates are most difficult to manage when they first arrive.11  Second, due to health care 

costs, the annual cost of incarcerating an elderly prisoner is three times that of the average 

inmate (Petersilia 2006).  However, these exceptions represent a small share of the general prison 

population.  

The second assumption, that the marginal social benefit of incarcerating an inmate (or, 

equivalently, the marginal social cost of releasing him) declines with time served, is more 

complicated.12  That prison time displays diminishing returns depends on the time-path of the 

key social benefits associated with incarceration: incapacitation, rehabilitation, and deterrence 

(Western 2006).  The incapacitation benefit of an additional year in prison arises from the fact 

that incarceration effectively eliminates the possibility that an inmate can endanger those outside 
                                                 
10 See Appendix A for a formal model justifying the graphs and intuition used in this section and Appendix B for 
social-welfare calculations.   The model at first takes effort as given but later relaxes that assumption and treats 
parole as a contracting problem. 
11 Personal correspondence with officials in the Georgia Department of Corrections and Oregon Department of 
Corrections. 
12Although this assumption need not always hold, it is the only interesting case; if the social cost of release were 
constant or increasing, a knife-edge solution would hold in which a criminal would either not be incarcerated at all 
or would be held until death.    
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of prison.  It can be approximated by the annual probability that the inmate will recidivate 

multiplied by the cost society incurs if he recidivates.  If an inmate’s probability of recidivism 

falls with time in prison, then the incapacitation component of the marginal social benefit curve 

will also fall with prison time.   

Whereas the incapacitation benefit depends on the level of an inmate’s recidivism risk, 

the rehabilitation benefit depends on the derivative of the recidivism function with respect to 

time.  The rehabilitative value of a marginal year of incarceration depends on the decrease in 

recidivism, had the inmate been incarcerated for that year.  Thus, if the effect of prison time on 

annual recidivism risk were negative but diminishing, the rehabilitation benefit of a marginal 

year of incarceration would decline with time served.  In Section 4, I will investigate empirically 

whether these assumptions about the shape of the recidivism curve holds.  

The final benefit of keeping inmates incarcerated is that it may deter prospective 

criminals from committing crimes.  The existing literature contains a range of estimates on the 

deterrent effect of increasing punishment.13  Whatever the magnitude of the deterrence effect, it 

is likely to be decreasing with time served: increasing the length of time served from one to two 

years should have a greater deterrence effect than increasing the length from ten to eleven years.  

 

Comparing rules and discretion  

 In a world with perfect information and no heterogeneity across inmates, the choice of 

regime does not matter.  This scenario has already been depicted in Figure 2a.  An optimal 

                                                 
13 For a general review of empirical estimates of the deterrent effect of expected punishment, see Levitt (2004).  
Kessler and Levitt (1999) use aggregate crime rates to show that criminals are indeed sensitive to expected 
punishment as they substitute away from crimes whose sentences have been raised.  But Lee and McCrary (2005) 
use individual panel data to demonstrate that the criminal activity of teenagers does not respond to expected 
punishment (their crime rates do not fall once they turn 18 and are subject to longer sentences).    
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sentencing rule and a fully informed discretionary authority both would give t* as the release 

date.   

 Now suppose instead that there are equal numbers of two types of inmates, as in Figure 

2b.  A social-cost-minimizing parole board with perfect information would release the low-risk 

types at tL and the high-risk types at tH.  A rule-maker who cannot observe inmate type would set 

a single release time where the average of the two marginal benefit curves meets the cost curve, 

at point tR, resulting in deadweight loss equal to areas A + B.     

 Figure 2b implicitly assumes that the relationship between time served and recidivism 

risk is identical across the two regimes, but this assumption may not hold.  Figure 2c shows how, 

relative to a rules regime, parole may provide incentives for inmates to invest in their own 

rehabilitation.  When inmates take steps to lower their recidivism risk in a rules-based regime, 

they still serve tR.  However, as the figure shows, time served in a discretionary regime falls 

when the expected risk declines (shifts to the left), as it presumably would when an inmate 

increases investment in rehabilitation.  As the inmate now represents less of a threat, the 

marginal social benefit of incarceration falls and his optimal release date is earlier.14  Of course, 

inmates have a reason to invest even if they are not eligible for parole, since investment today 

may increase future wages and reduce the probability of future imprisonment (as in a classic 

Becker-Rosen-style model of human capital).  But, as Figure 2c shows, the parole board can 

amplify these incentives by conditioning early release on inmates’ investment behavior. 

                                                 
14 Of course, the choice of regime might also shift the cost curve, though the direction is unclear.  On the one hand, 
inmates’ demand for rehabilitative programs might increase, making incarceration more costly; but to the extent that 
programs currently exist and are just underutilized, this effect should be small.  On the other hand, inmates who are 
seeking to impress a parole board will have a greater incentive to avoid disciplinary infractions, making 
incarceration less costly.  In any case, compared to the daily costs of food, shelter, and supervision, these changes 
should be small. 



 

 11

 The differences just described between a parole-board system and an ex-ante rules-based 

regime hinge on the parole board’s ability to condition an inmate’s release date on his future 

recidivism risk.  The welfare gains depend on both the board’s ability to predict future recidivism 

and their steadfastness in using recidivism (and not some other criterion) to determine release 

dates.  Parole boards must be able to distinguish between inmates making real progress towards 

rehabilitation from those who are merely going through the motions.  They must also share the 

objective function of society or they will create welfare loss by, say, systematically releasing 

inmates too early—the chief concern of most truth-in-sentencing proponents.   

In the remainder of the paper, these and other key assumptions of the framework will be 

investigated empirically. 

  

3.  Data 

 I rely chiefly on administrative records from the Georgia Department of Corrections 

(GDC) because the state’s prison data are rich and because several policy shocks and 

institutional features of the state’s criminal justice system provide useful quasi-experimental 

sources of variation to identify the key parameters of the framework.  The GDC manages an 

“inmate data file” that covers every inmate who served time in a state prison since 1975.  This 

data set provides standard criminal-justice variables including demographic information, 

criminal history, current sentence, and measures of future recidivism. 

Inmates in the Georgia data appear to be representative of the national prison population 

in many key ways.  In 1997, for instance, offenders convicted of violent crimes composed 47.3% 

(48.5%), and offenders convicted of drug crimes composed 20.6% (18.6%), of the national 

(Georgia) prison population.  Both populations in that year had the same average age at 
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admission (31 years), although Georgia inmates released in 1997 served an average of 24 

months—three months less than the national average.15  Furthermore, inmates released in 

Georgia faced a similar labor-market environment as those in the rest of the country.16  

 Table 1 displays summary statistics for inmates admitted between 1980 and 2004.  I limit 

the sample to those who are (1) new court commitments, (2) at least 18 years old at the time of 

admission, (3) sentenced to between 6 and 120 months, and (4) already released.  The first two 

conditions are commonly used in the economic literature on crime.17  I impose the third 

condition because the sources of exogenous variation that I am able to exploit exist only in this 

sentence range and I want to avoid creating comparison groups with much longer sentences.  The 

fourth condition is necessary to observe recidivism.   

 Table 1 gives a general sense of the prison population in the resulting sample.  About 30 

percent of inmates return to prison within 36 months of their release (a standard definition of 

recidivism that I will use throughout the paper).18  The average inmate served about 29 months in 

prison, had an original sentence of about six years and was convicted of about 1.5 felonies before 

the current conviction for which he is serving time.  

 

 

                                                 
15 National prison statistics are published annually by the U.S. Bureau of Justice Statistics.  I choose 1997 as it is the 
mean year for much of the analysis in the paper.  The numbers are based on summary statistics from the GDC data 
and U.S. Bureau of Justice Statistics (1998). 
16 Throughout the 1990s, Georgia’s unemployment rate trended with the national rate and the absolute difference 
between the two rates was never more than one percentage point (Statistical Abstract of the United States, various 
years).  
17 New court commitments are those inmates who are serving a prison sentence as a result of a conviction in court, 
as opposed to those who violated probation or parole.   
18 Other definitions of recidivism include re-arrest or reconviction within a certain period of time.  I do not have re-
arrest data, but results using reconviction as the dependent variable are available upon request.  The chief difference 
between the return-to-prison variable I use and the reconviction variable is that the latter does not define those 
returning to prison on a technical violation of parole as having recidivated.  However, parole officers and 
prosecutors often arrange for those who had committed new crimes to merely be “violated” in order to ensure that 
they are back in prison and to avoid new trials.  In fact, Austin and Lawson (1998) estimate that 82% of parole 
violations have an underlying criminal charge associated with them. 
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4.  The effect of prison time on recidivism risk 

 What is the effect of the length of time served on an inmate’s future criminal propensity?  

Proponents of longer sentences suggest several mechanisms by which more time in prison might 

reduce recidivism.  First, a longer prison spell might “scare someone straight.”  Surveys show 

that a large majority of inmates agree that prison “taught them a lesson” and that they “have 

given up criminal activity forever” (Van Voorhis et al. 1997).  According to this “specific 

deterrence” hypothesis, punishment deters the offender from committing future offenses, and this 

effect is believed to increase with the length of the prison spell.19  Longer prison spells might 

also expose inmates to more rehabilitative and educational programming: according to this 

hypothesis, inmates avoid prison after release not because they fear returning but because they 

have more marketable skills in the legal labor market, making criminal activity relatively less 

attractive.  Finally, an inmate’s ties to criminal associates “on the outside” might diminish with 

time “inside,” preventing him from falling in with his old crowd upon release. 

 But longer prison spells might also have deleterious effects on inmates.  First, constant 

contact with other offenders could increase an inmate’s criminal capital.  Second, longer 

exposure to potentially dehumanizing prison conditions could lead to a rougher transition back to 

the outside world.  Third, inmates serving longer terms may lose contact with family members, 

former employers, and other potentially stabilizing influences.20 

                                                 
19 Specific deterrence is distinct from general deterrence and refers to the effect of the punishment on the future 
criminal activity of the specific person being punished (e.g., being “scared straight” after spending time in prison). 
Becker (1968) explains the notion of general deterrence: punishment can also affect the crime rate of the non-
incarcerated population because it lowers the expected benefit of criminal activity.  Only those who have already 
been punished can be specifically deterred, whereas anyone can be generally deterred. 
20 Evidence on the effect of prison on recidivism is mixed.  Bayer, Pintoff and Pozen (2004) find that an offender 
who serves time with inmates who have committed the same crime he did will further specialize in that crime.  Katz, 
Levitt and Shushtorovich (2003) use variation across states and years in prison conditions (proxied by prison deaths 
per state per year) and find that prison conditions are negatively associated with crime rates, consistent with poor 
prison conditions deterring criminals (either through specific deterrence via lower recidivism rates or through 
general deterrence if the unpleasant conditions are well known throughout the population of potential criminals).  
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 Existing studies have produced no clear consensus on the impact of time served on future 

criminality.  In its multi-state study on recidivism in 1994, the Department of Justice found 

mixed evidence on the relationship between time served and recidivism rates.  In a meta-analysis 

of 325 estimates of the effect of time served on recidivism, Gendreau, Goggin, and Cullen (1999) 

also failed to emerge with any consensus.  In related work on whether longer sentences hurt 

future labor-market outcomes, Kling (2006) finds essentially no effect of time served.  To the 

extent that any conclusion can be drawn from the existing literature, it is that current estimates 

are noisily estimated but appear to be close to zero. 

 Yet evidence suggesting that the effect of time served on recidivism is negligible should 

be interpreted with caution.  As most of the studies rely on OLS estimation, the estimated 

coefficient is a combination of selection and treatment effects.21  Conditional on a given 

sentence, those who serve more time receive harsher treatment from parole boards.  If parole 

boards assign those with higher recidivism risk to longer prison terms, then the selection effect of 

longer terms on recidivism will be positive and OLS estimates of the treatment effect of time 

served will be positively biased.   

 To remedy this situation, I exploit several sources of plausibly exogenous variation in the 

length of time served in order to identify the treatment effect.  

 

 

 

                                                                                                                                                             
Chen and Shapiro (2006) use a regression-discontinuity design generated by the cut-off ruls used to assign federal 
inmates to different security levels.  They find that assignment to minimum-security prisons lowers future 
recidivism risk.   
21 An exception is Kling (2006), who uses the sentencing propensity of randomly-assigned judges as an instrument 
for time served as well as matching on observables; both methods suggest that there is little effect of time served on 
labor-market outcomes." 
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The “mass-release” identification strategy 

 On March 18, 1981, the governor of Georgia ordered the state’s Department of 

Corrections to free up more than 900 beds in order to reduce overcrowding in local jails.  The 

GDC ranked its current non-violent inmates by day of prospective release (already set by the 

parole board) and released the first 901 on the list.  Those at the top of the list had served almost 

all of the time the parole board recommended, but those at the bottom of the list had served 

considerably less time than was originally recommended.  The typical inmate on the list was 

sentenced to about 24 months, served about 10 months, and enjoyed about 4 months off of his 

tentative parole date.22 

 It is tempting but not strictly correct to assume that time served for those inmates on the 

list is exogenous.  Consider two inmates released on March 18th: one who served two years and 

the other six months. The inmate who served two years had a sentence at least that long, whereas 

the one who served six months could have been sentenced to only six months and served all of 

his time (i.e., he was at the top of the list), or he could have been sentenced to two years and 

received a considerable reduction (i.e., he was at the bottom of the list).  In the former case, he is 

a poor comparison for the first inmate as ideally one wants to compare inmates who have the 

same original sentence.  

 Conditional on having the same sentence length, the only reason why two inmates 

released on the mass-release day would have difference lengths of time served is that one 

committed his crime (or began serving his sentence) on a different date than the other.  Thus, the 

identifying assumption on which I rely is that the exact date on which an inmate begins his 

sentence is exogenous. 

                                                 
22 Technically, the GDC subtracted one year from the sentences of all non-violent inmates, which resulted in 
immediate release for the first 901 inmates listed in order of prospective release date. 
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 I cannot test this assumption directly as the variables “date crime was committed” and 

“date sentence was started” are usually missing from the data during this period.23  Instead, I 

regress several variables thought to be related to recidivism on time served and original sentence.  

In regressions of prior incarcerations, age at release, age at first contact with the criminal justice 

system, and an indicator variable for being black, the coefficient on time served is never 

significant.24  Thus, conditional on original sentence length, time served appears plausibly 

exogenous. 

 Col. (1) of Table 2 shows the results from a naive OLS regression using the “mass 

release” sample in which unconditional time served is assumed to be exogenous.  The dependent 

variable (for this and all other recidivism regressions unless otherwise noted) is an indicator for 

whether the inmate returned to prison within three years of his release; the explanatory variables 

include length of time served and standard demographic and criminal-history controls.  The 

coefficient on time served is weakly positive, consistent with a positive bias caused by the fact 

that inmates with greater criminal tendencies receive longer sentences.   

 Col. (2) adds fixed effects for sentence length.25  By controlling for the variation in time 

served due to sentence length, this estimation uses only the variation arising from the date the 

sentence started.  Eliminating the possibly endogenous variation due to sentence length has 

remarkable effects: the sign on the coefficient of interest is now negative and statistically 

significant.  The point estimate suggests that for each extra month served, recidivism falls by 

about one percentage point (3 percent).   
                                                 
23 One cannot “back-out” the date the crime was committed or the date the sentence commenced from the date of 
release and the amount of time served, since an inmate does not start serving his sentence until his arrest (if he 
cannot post bail and thus has his pre-trial jail time credited towards his sentence) or sentencing (if he is able to post 
bail).  Information in the GDC data on the dates of crime and sentencing improves only in the 1990s. 
24 Regression results available upon request. 
25 Sentence fixed effects are constructed by rounding each inmates sentence to the nearest multiple of twelve and 
then including dummy variables for each of the values of the rounded sentence measure.  More than 75% of all 
observations have a sentence length that is a multiple of twelve months. 
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 Col. (3) adds a control for how much time the inmate would have served had the parole 

board’s recommendation been followed.  While most of the variation in time served is driven by 

sentence length and the date the sentence began, the decision of the parole board will also 

determine who made the cut-off for the mass-release list.  This estimation strategy, therefore, 

compares two inmates with the same sentence, the same parole-board recommendation, but 

different lengths of time served due to the start-dates of their sentence.  Adding this control only 

strengthens the result: the coefficient suggests that for each extra month served, the probability 

of recidivism within three years of release falls by about 2.5 percentage points.   

 Col. (4), my preferred specification, excludes observations for which time served is more 

than three standard deviations from the mean.  This adjustment also increases the effect of time 

served on recidivism.  The remaining columns contain robustness checks for the result in Col. 

(4).  I add fixed effects for offense groups in Col. (5) and the results do not change appreciably.26  

Finally, Col. (6) reports regressions from a Cox proportional hazard model, with failure defined 

as returning to prison.  The odds ratios are all consistent with the changes in probability 

measured in the previous columns. 

 Given a baseline probability of recidivism of 0.37 for this sample, the results in Col. (4) 

suggest that every extra month in prison reduces the probability of recidivism by about seven 

percent.  There are several reasons why this large effect may not generalize to the typical prison 

population.  First, the mass release surprised prisoners and prison personnel—released inmates 

were literally told the good news the morning of their release.  Those receiving the largest breaks 

may have been the least emotionally or practically prepared for their release and—to the extent 

that personnel devise educational, counseling and training curricula based on how long they 

expect to work with the inmate—their rehabilitative programming would have been cut the 
                                                 
26  Although there are a total of 38 such groups, only 18 of them are represented in the mass-release sample. 
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shortest, negatively biasing the estimate of the coefficient on time served.27  Second, the nature 

of the release might lead to unusual specific deterrence effects.  Those inmates fortunate enough 

to receive a large reduction from their expected time served might form the impression that the 

criminal justice system is generally lenient and thus be less deterred in the future. Finally, only 

non-violent offenders were released because of the mass-release order. 

 For these reasons, I now turn to a different identification strategy in an attempt to verify 

the above results.   

 

The “grid” identification strategy 

 When an inmate arrives in a Georgia state prison, he receives a point designation from 1 

to 20 based on pre-determined characteristics such as age and past record.  As Appendix Table 

C1 shows, the point designation, along with the inmate’s conviction charge, can be used to 

generate a recommended prison term.  While parole boards remain free to adjust this “grid” 

recommendation up or down, it serves as a useful baseline and is often (28 percent of the time) 

followed without modification and is usually (64 percent of the time) within four months of the 

board’s final decision.  The grid does not use the exact score but instead assigns inmates to low-

risk (14 to 20 points), medium-risk (9 to 13 points), and high-risk (1 to 8) groups.  Such cut-offs 

suggest a regression discontinuity design; criminal propensity should vary in a roughly 

continuous manner across scores, but the recommendation varies in a highly discontinuous 

manner.  Moreover, as the grid assigns higher-risk inmates to longer sentences, any bias would 

go against confirming the mass-release results. 

                                                 
27 Georgia did not record enrollment in prison educational and rehabilitative programming until the 1990s, so this 
hypothesis cannot be directly tested. 
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 Figure 3a shows how time served varies across different point levels.  Boards appear to 

roughly follow the recommendations of the grid, especially around the first threshold.  Figure 3b 

shows that the number of prior convictions (a covariate traditionally thought to be important in 

determining recidivism and that indeed has a large coefficient in all of the estimations shown in 

Table 2) displays no such break at the score thresholds.  Similarly, age and share black show no 

discontinuities at the cut-offs points, though I do no present these graphs in the interest of space.   

 Figure 4 focuses on those inmates near the first cut-off.  The figure displays the share of 

inmates returning to prison as a function of months since release, plotted separately by score.  As 

would be expected, those with ten points have lower recidivism than those with nine, and those 

with eight points have lower recidivism than those with seven.  However, comparing those with 

eight and nine points reveals a break in the pattern.  While those with eight points are predicted 

ex ante to have higher recidivism risk, those with nine points have higher ex post recidivism 

rates.  Recall that these two groups receive very different treatment: those with nine points serve 

about 2 months (10 percent) less.  As the groups with eight and nine points depart from the 

predicted monotonic decrease in recidivism, and those groups are also on different sides of the 

threshold, the figure suggests that there might indeed be a negative treatment effect of time 

served on recidivism. 

 Table 3 examines the above results in a regression framework.  Col. (1) shows the naive 

OLS regression, in which the coefficient on time served is negative but small in magnitude.  Col. 

(2) shows the IV results.  The first-stage estimate is based on a standard set of controls (see notes 

to Table 3), fixed effects for the year of release, as well as an indicator for whether an inmate has 

a score above eight points, an indicator for whether the inmate has a score above 13 points, and a 

quartic function of points.  I exclude the indicator variables in the second stage on the 
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assumption that the 8- and 13-point cut-offs have no independent effect on recidivism outside of 

their effect on time served (note that the quartic function remains in the second stage to control 

for any continuous variation in the propensity to recidivate captured by points).  The coefficient 

suggests that for every additional month in prison, recidivism falls by 1.4 percentage points (3 

percent).   

Col. (3) adds offense fixed effects without any noticeable change in the results.  Col. (4) 

zeros in on the first threshold, as it appears from Figure 3a to be the more viable experiment.  

The point estimate remains negative and substantially increases in magnitude.  Finally, Col. (5), 

my preferred specification, uses a more stringent identification strategy.  Instead of merely 

controlling for points with a continuous function in the second stage, the specification includes 

fixed effects for points and uses in the first stage the actual recommendation from the grid.  

Thus, the identification is coming merely from the interaction between points and crime severity 

level, and all the main effects remain in the second stage.  The coefficient is smaller in 

magnitude, but still negative and significant. 

  

Differential and non-linear treatment effects 

 Table 4 shows how the treatment effect (as estimated in the fully-interactive model in the 

last column of Table 3) varies across different sub-samples of the data.  Col. (1) shows a similar 

effect for older and younger inmates.  Criminal propensity falls with age for younger offenders 

but flattens out after age twenty-five (Hirschi and Gottfredson 1983), suggesting that, at least for 

older offenders, the results cannot be explained by a mere “aging out” effect. Cols. (2) and (3) 

suggest that the recidivism of first-time offenders and drug offenders are less sensitive to time 

served.  As prison time does not appear very effective in rehabilitating these groups, the results 
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are at least consistent with efforts to develop alternative sentences for such offenders (Taylor-

Thompson 2000). 

 All of the regressions in Tables 2 and 3 assume a linear relationship between time served 

and recidivism.  Such a functional form appears unlikely, if only because it would predict 

negative recidivism values for those serving very long prison terms.  The last column of Table 4 

shows how the effect of time served varies locally.  For those serving 20 months or less, an extra 

month decreases recidivism by more than two percentage points, but an extra month has close to 

no effect on those serving more time, suggesting a diminishing ability of prison time to decrease 

recidivism.   

 However, the estimates in Col. (4) cannot prove concavity of the treatment effect, as the 

short-run effect and the long-run effect are being estimated off of disjoint populations.  

Increasing time served, regardless of the baseline value, could have a larger effect on the type of 

inmate who generally serves short terms than on the type of inmate who generally serves long 

terms, so that selection, not a non-linear treatment effect, is driving the result.  Estimating the 

second-order properties of the relationship between time served and recidivism requires a 

population that is at risk of random assignment at two distinct neighborhoods of the time-served 

distribution.28     

 A possible non-linear treatment effect does reconcile the differences in the magnitudes 

found in the mass-release (Table 2) and the grid (Table 3) experiments.  As those inmates who 

left prison on the mass-release day served ten months on average, they are best compared to 

                                                 
28 For example, an inmate would first be randomly assigned to one of two groups: those who serve an average of 24 
months and those who serve an average of 12 months.  After the first randomization is realized, inmates are then 
randomly assigned to either a decrease or increase of three months from their assigned average sentence.  Such a 
design would allow a credible estimate of the local treatment effect in two different neighborhoods of the time-
served distribution.  However, such a design involves an initial random assignment to two very different 
treatments—a situation one would hope not to encounter in a system of uniform justice.  
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those serving less than 20 months in the grid-experiment data.  The first point estimate in Col. 

(4) of Table 4 and those found in Table 2 are remarkably similar. 

 In summary, all point-estimates arising from quasi-experimental variation in Tables 2 and 

3 are negative and statistically significant, and are similar in magnitude even across different 

samples and different identification strategies.  Furthermore, sub-sample results suggest that the 

effect of prison time on recidivism is diminishing.  The assumption made in Section 2 that the 

effect of prison time on recidivism is negative but diminishing appears consistent with all the 

empirical results in this section. 

 

5.  Do parole boards condition release on inmates’ recidivism risk? 

 For a parole regime to increase inmates’ incentives to invest in their own rehabilitation, 

parole boards must be able to sort inmates by recidivism risk and must reward low-risk inmates 

with shorter prison terms.  If parole boards condition early release on inmates’ having lower 

recidivism risk, then those with longer recommended terms should, all else equal, have higher 

expected values of recidivism at the time the decision was made.  But, as only actual recidivism 

can be observed in the data, a case of classic simultaneity arises: the length of time the board 

recommends should increases with recidivism risk, but then the length of time affects observed 

recidivism (the results in the previous suggest recidivism falls with time served). 29   

To see this, let recidivism Ri = ri − βti , where ri denotes initial recidivism risk 

(unobservable to the econometrician but possibly observable to the parole board), t time served, 

and β the treatment effect of time served.  Suppose parole boards use recidivism risk as an 

                                                 
29 It is tempting idea to view the OLS estimate of the effect of time served on recidivism as the sum of a treatment 
and a selection effect, and therefore to subtract from it the treatment estimates from Section 4 to get the selection 
effect.  But the heterogeneity of the treatment effect found in the previous section implies this approach is not 
credible (see Angrist 2004). 
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estimate for the marginal social benefit of incarceration and suppose further that, as in Section 2, 

the marginal social cost is constant.30  Equating the marginal cost and benefit implies that parole 

boards will set ti
*so that all inmates leave with the same expected recidivism risk, say, K.  This 

optimization implies that ri = K + βti
*  and substituting back into the recidivism equation yields 

Ri = K + βti
* − βti . 

 The prediction that time served and recommended time served should have coefficients 

of equal magnitude but opposite sign is difficult to test empirically because, in general, t* and t 

are identical (inmates serve however much time the parole board recommends), making 

simultaneous estimation of the coefficients on both variables impossible.  Although deviations 

exist—for example, an inmate’s release can be delayed if he does not have his required 

paperwork completed—they do not appear to be random departures.  

 

Using the mass release experiment 

 Ideally, one would like to record the parole boards’ recommendation but then have 

prisoners released in a manner independent of the recommendation.  A severing of the 

recommended and actual release dates would allow for direct estimation of the relationship 

between the recommendation and recidivism.   The mass release experiment provides just such 

an opportunity.  Parole boards made their recommendations assuming that they would be 

followed in the usual manner, but then the overcrowding crisis intervened to void those 

recommendations.  Because the recommendations were recorded but not implemented, it is now 

                                                 
30 Recall from Section 2 that recidivism risk need not be the only element of the social benefit of incarceration.  
Deterrence and rehabilitation are also possible benefits.  However, it appears that parole boards view recidivism risk 
as the key factor, perhaps because it is easier to observe.  My reading of parole-board mission statements suggest 
that they are almost exclusively concerned with protecting the public by releasing only those inmates whose 
recidivism risk is sufficiently low. 
34 According to discussions with Dr. Tim Carr (GDC), the legislature’s threat to pass a law to this effect likely 
precipitated the board’s decision. 
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possible to test the prediction that the coefficients on actual and recommended time served 

should be equal in magnitude but opposite in sign. 

 These estimates have already been calculated, in fact.  Cols. (3) – (5) of Table 2 show 

how recidivism varies with time served and with recommended time served.  Comparing the 

coefficient on time served and the coefficient on the parole board’s recommendation in Table 2, 

it appears that parole boards indeed assign prison time so as to equate inmates’ expected 

recidivism upon release.  The preferred estimates in Col. (4), for example, suggest that each 

month served decreases the probability of recidivism by about 3.0 percentage points, whereas 

each extra month the parole board assigns is associated with a 2.8 percentage-point increase in 

the probability the inmate will recidivate.  In Col. (5), the magnitudes of the coefficients are 

almost identical.   

 

Do parole boards use all available information? 

 Another test of whether the parole board is making efficient use of information is to 

compare the informational value of observables in predicting recidivism when parole boards 

have discretion and when they do not.  If parole boards use their discretion to assign more time 

to those who continue to have high expected recidivism rates and less time to those who are no 

longer dangerous, then observable variables should have little predictive power, as boards should 

have already used the information so as to limit the variance of expected recidivism upon release.   

 To test this hypothesis, I compare situations in which the parole board appeared 

unconstrained in its decision to situations in which it appeared relatively constrained.  As parole 

boards generally do not interview an inmate until about a quarter to a third of his sentence has 

been completed, there is a lower bound on the amount of prison time they can assign.32  
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Conversely, because they cannot assign terms that exceed the judge’s sentence, their 

recommendation also has a strict upper bound. 

 Figure 5 plots the pseudo-R-squared values from probit regressions of recidivism on a 

standard set of observables (the control variables reported in Tables 2 and 3) against the 

recommendation of the parole board as a share of the original sentence.  As argued above, parole 

boards are likely to be most constrained when they make either very low or very high 

recommendations.  Indeed, Figure 5 shows that the R-squared value rises as the ratio of parole 

board recommendation to original sentence approaches both the upper and lower boundaries.   

In summary, parole boards’ recommendations appear to offset inmates’ initial recidivism 

risk.  When parole boards are unconstrained, they use the information available to them in an 

efficient manner, such that the explanatory power of observables is nearly all accounted for and 

most of the variation in whether an inmate recidivates or not is unpredictable.  When parole 

boards are constrained, on the other hand, some observable predictors of recidivism remain 

unused and information appears to be “left on the table.” 

 This conditioning of release on expected recidivism should increase the efficiency of 

correctional institutions by freeing up beds occupied by the lowest-risk inmates.  Moreover, 

releasing inmates when they reach a certain threshold should provide incentives for prisoners to 

invest in their own rehabilitation so as to reach the threshold sooner.  The next section 

investigates whether inmates react to such incentives. 

 

   

6.  The effect of parole board discretion on inmate behavior and recidivism 
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 In general, inmates have two types of incentives to invest in rehabilitation while in 

prison.  The first is the return on classic Becker-Rosen style human capital; by, say, taking 

vocational classes, inmates may lower their probability of returning to prison and increase their 

wages in the legal labor market.  The second is generated by parole boards’ discretion; when 

inmates engage in rehabilitative activities, parole boards observe their reduced risk and release 

them from prison sooner.  This section tests the hypothesis that when the second type of 

incentive is removed, inmate investment in rehabilitation falls and recidivism rises.   

 

Georgia’s 90% reform 

 In 1997, the parole board announced that all inmates convicted of certain offenses after 

December 31st must serve at least 90% of their sentence.34  It maintained the power to assign 

inmates convicted of a “90% crime” to release dates between 90 and 100% of their original 

sentences and full discretion over inmates convicted of all other crimes.  Although the specified 

offenses included such sensitive crimes as child molestation and statutory rape, the majority of 

those affected by the policy were convicted of robbery and assault.36     

 Figures 6a-d suggest that the 90% reform offers the rare opportunity to study the effect of 

a statutory change in discretion that did not have large effects in terms of average punishment.  

These figures show the trends between 1993 and 2000 in several key variables related to time 

served, graphed separately for inmates in the treatment (“90%”) group and for those in the 

                                                 
36 The crimes specified in the 90% reform were child molestation, statutory rape, aggravated assault or battery, car-
jacking, attempted murder, assault on police officer, incest, attempted rape, manslaughter, or robbery.  Assault and 
battery accounts for 35% of such cases and robbery for 22%. 



 

 27

control group (inmates who did not commit 90% crimes but who met the conditions described in 

Section 3 and had sentences between 20 and 60 months).37   

 Figure 6a tracks time served as a share of the original sentence for the median inmate in 

each group.  The reform had little effect on this ratio, as most inmates in the treatment group had 

been serving close to 90% of their sentence even before 1998.  Figure 6b tracks the 10th 

percentile of “percent of original sentence served”—thus focusing on those who served the 

smallest share of their sentences.   Here, there is a marked effect of the reform: the percent jumps 

from about 70% in 1997 to 90% in 1998.   

 Figure 6c shows that sentences for 90% crimes were gently falling over this time period, 

while sentences for control crimes remained flat.  As time served is the product of sentence and 

percent of sentence served, and sentences fell slightly while percent served increased, there is 

only a limited increase in time served for the 90% group (Figure 6d).  I do not display additional 

figures in the interest of space, but there appears to be no change in demographic selection into 

the control and treatment groups coincident with the policy change. 

 In summary, since the parole board already had been setting release dates to make the 

typical treatment-group inmate serve 90% of his sentence, the reform was not in fact binding in 

most cases.  But even though average time served did not markedly change, the incentives to 

invest may have.  Prior to the reform, an inmate knew that with some effort, there was a chance 

he would be released well before his sentence expired; after the reform, no amount of effort 

would achieve an early exit. 

                                                 
37 Inmates must be released in order for their recidivism to be analyzed, but most of the inmates convicted under the 
90% law and sentenced to long prison terms were still in prison in April 2006 (the most recent date for which 
recidivism data have been updated).  Fortunately, more than 60% of inmates in the 90% group were assigned 
relatively short sentences (less than five years).  To avoid comparing 90% inmates with short sentences to control-
group inmates with long sentences, most of the analysis in this section will include only those inmates with 
sentences between 20 and 60 months.   
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The effect of parole eligibility on disciplinary infractions and course completions 

 It is not clear a priori that inmates actually respond to incentives provided by parole 

boards.  Correctional officers have a myriad of methods for punishing bad behavior—both 

official (e.g., solitary confinement) and unofficial (e.g., refusing to protect an inmate from an 

abusive cellmate)—that could provide more powerful incentives than an adjustment in time 

served, which is probabilistic and delayed.  As prisoners are thought to discount the future 

heavily (Lee and McCrary 2005), it is not clear that the possibility of a sentence reduction 

several years in the future would have a marked effect on current behavior. 

 On the other hand, although correctional officers still have any “sticks” (metaphorically 

speaking, one hopes) to punish prisoners, they may have lost their most important “carrot” with 

the limitation of parole-board discretion.  Professionals in the criminal justice system, even those 

traditionally supportive of get-tough-on-crime policies, argue that parole is a valuable tool in 

managing prison populations.  The United States Attorney in Georgia links the end of parole to 

heightened violence in the federal prison system (“The increase in violence in the prisons is not 

one of America’s great mysteries...[Inmates] are serving longer sentences and they feel they’ve 

got nothing to lose” (New York Times 1999)) and the vice-president of the prison guards union in 

California links it to inmates’ diminishing commitment to rehabilitation (“A guy knows he’ll get 

out, and he doesn’t really have to try and do anything to turn his life around” (San Francisco 

Chronicle 2006)). 

 Figures 7 and 8 lend support to these observations.   The 90% reform appears to have had 

a small but marked effect on disciplinary incidents and course completions.  Disciplinary 

incidents trended downward for the control group beginning in 1998, but they increased for the 



 

 29

90% group during this period.  Similarly, the treatment and control groups start off tracking each 

other nearly perfectly with respect to course completions.  However, the trends diverge at the 

time of the reform: starting in 1998, the treatment group’s participation grows at a slower rate 

than the control group, suggesting that those convicted of 90% crimes had less motivation to 

invest in rehabilitative programming. 

 Table 5 shows the effect of limiting the parole board’s discretion on inmate behavior in a 

regression framework.  All regressions in Table 5 include the standard controls used in the 

previous sections plus year and offense fixed effects.  The interaction between a dummy variable 

for being convicted of a 90% crime and a dummy variable for being convicted after December 

31st, 1997 is the key variable of interest.38  

 Col. (1) of Table 5 suggests that the reform was associated with a 0.0033 increase in the 

rate of disciplinary violations per month.  Given that the average rate was 0.072, the estimated 

effect represents a four percent increase in violations per month.  Col. (2) shows that non-violent 

infractions drive the result, perhaps due to inmates’ exerting less rational control in the case of 

violent infractions (the coefficient on the interaction term when the rate of violent infractions 

serves as the dependent variable is close to zero).  

 The next two columns are essentially parallel to the first two, except that the regressions 

consider the effects on investment in rehabilitative activities.  Col. (3), a strict analogue to Col. 

(1) in terms of specification, suggests that the reform was associated with a -0.0085 (twelve 

percent, given a baseline of 0.064) decrease in the rate of program completion.  The specification 

                                                 
38 There is no natural way to replace the 90% group dummy with offense fixed effects because many inmates are 
convicted of multiple crimes.   Absorbing, say, the most serious offense will not completely replace the 90% dummy 
as some of the 90% inmates will have committed a crime considered more “serious” than whichever 90% crime they 
committed. 
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in Col. (4) is identical to that in Col. (2) except that the rate of enrollment (rather than the rate of 

completion) is used as the dependent variable, with very similar results.39 

 

The effect of the reform on recidivism  

 Given that the reform appeared to increase disciplinary infractions and decrease 

participation in rehabilitative programming, one might expect that it also increased recidivism.  

Indeed, Figure 9 shows a marked increase in recidivism for the 90% group but no perceptible 

effect for the control group.  

 Col. (5) of Table 5 suggests that the reform was associated with an increase in the three-

year recidivism rate of 2.4 percentage points (or about 8 percent, given a baseline recidivism rate 

of about 30 percent).  Col. (6) uses a Cox proportional hazard model instead of a linear 

probability model; the qualitative results and statistical inferences are unchanged. 

The results in Cols. (1), (3), and (5) of Table 5 suggest that the reform was associated with a 4 

percent increase in disciplinary violations, a 12 perfect decrease in the completion rate of 

rehabilitative programs, and an 8 percent increase in the three-year recidivism rate.  As reported 

in the notes to the table, these results appear robust to varying sample restrictions and 

specifications.  Taken together, the results from this section suggest that parole provides a 

powerful incentive for inmates to invest in their own rehabilitation and when such incentives are 

removed investment falls and recidivism rises.41    

                                                 
39 Given that the underlying trends are so marked, I also add to the specification in Col. (2) an interaction between 
the 90% dummy and a linear and a squared term of year, but the addition makes almost no difference in the 
estimations. 
41 One explanation consistent with the results in Section 6 is that the specific rehabilitative investments explored in 
this paper cause recidivism to fall.  However, caution should be exercised before assuming that the specific activities 
investigated in the paper have any direct effect on recidivism.  For example, the hope of parole could lead prisoners 
to change their life in both observable ways (e.g., enrolling in courses and avoiding disciplinary infractions) and less 
observable ways (e.g., discovering religion or reconnecting with their families).  If the observable changes have no 
effect but the unobservable (at least to the researcher) changes in fact reduce recidivism, then the same pattern of 
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7.  Social cost calculation and concluding remarks 

 The results from the previous sections suggest that policymakers should consider several 

trade-offs when deciding between a discretionary parole system and a regime in which judges’ 

sentences are binding.  On the one hand, parole boards may systematically set time served below 

the optimal level; limiting parole-board discretion may correct this bias and thus increase social 

welfare.  Indeed, increasing incapacitation appears to have been the motivation for most laws 

abolishing parole in the 1980s and 1990s.  On the other hand, parole boards have access to 

information revealed after sentencing and therefore may be better than judges at forecasting 

inmates’ expected recidivism risk.  More accurate predictions should facilitate the release of 

inmates who no longer pose great risk and thus create prison capacity at low opportunity cost.  

Furthermore, tying early release to expected risk may allow parole boards to incentivize current 

inmates to invest in their own rehabilitation, decreasing the future social cost they will impose 

upon release.   

 In this paper, I have attempted to quantify these effects.  Section 4 finds a strong 

treatment effect of time served on recidivism: each month spent in prison appears to decrease the 

probability of recidivism by about 1.5 percentage points.   Section 5 provides evidence that 

parole boards are highly accurate in tying release dates to inmates’ recidivism risk.  Section 6 

suggests that inmates under the discretionary authority of a parole board invest more in their 

rehabilitation while in prison (disciplinary infractions are 4 percent lower and educational and 

                                                                                                                                                             
results seen in this section could be produced.  Indeed, the mechanism by which rehabilitative investment in prison 
affects future recidivism remains an open question.  Tyler and Kling (2006) find a limited effect of participation in 
GED programs on inmates’ future wages, but rely only on matching on observables and not any exogenous variation 
in program participation.  I recently began work using discontinuous assignment to rehabilitative services in Oregon 
prisons that I hope will provide estimates of the causal effect of prison activities on future recidivism. 
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rehabilitative program completion is 12 percent higher) and have lower recidivism rates upon 

release. 

  In Appendix B, I show how these estimated parameters can be used to calibrate a 

recidivism function and then use this function to estimate the social benefit of incarceration.  

Even when I compare an optimal rule to a moderately biased parole board (one that assigns only 

90 percent of the optimal prison term to each inmate), I find that the social costs incurred per 

prisoner (the cost of incarceration plus the cost of any future recidivism) increase by about 

$13,700 (13 percent) when parole-board discretion is eliminated.  

 Although the empirical results and social-welfare calculations are obviously specific to 

the parole setting, the general framework used in the paper may prove useful in examining the 

decision between rules and discretion in other contexts.  In the criminal justice arena, the 

discretionary power of judges and prosecutors has been called into question.42  If these agents are 

equally adept as parole boards at assessing how dangerous potential offenders truly are, then 

policymakers may wish to reexamine moves to limit discretion in these areas.  Just as prisoners 

have less incentive to invest in their own rehabilitation in a rules-based regime, defendants may 

have less incentive to cooperate with the prosecution when judges and prosecutors cannot reward 

them with shorter sentences or generous plea arrangements.43   

 The question of whether a discretionary agent or a rule determines how long individuals 

are assigned to treatment programs appears to be receiving attention from policymakers outside 

of criminal justice as well.  Public assistance used to be an entitlement for those meeting certain 

criteria, but with the creation of Temporary Assistance to Needy Families in 1996 how long 

                                                 
42 See Anderson, Kling and Smith (1999) on the limiting of judges’ discretion and Wright (2005) on states’ efforts 
to regulate prosecutors’ decisions. 
43 Kuziemko (2006) shows that the bargaining power of prosecutors appears to affect plea-bargaining outcomes 
(defendants accept worse terms when prosecutors have more sentencing options at their disposal). 
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recipients receive aid is now determined in part by the discretion of individual caseworkers 

(Lurie 1997).  Conversely, teachers once had the final say as to who would be promoted to the 

next grade; now, standardized test scores play a key role, especially after the No Child Left 

Behind Act (Greene and Winters 2006).  Future work might examine how these changes have 

affected the incentives clients face to make socially optimal investments. 
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Appendix A. A simple model of optimal prison release 
 
 This appendix provides a simple model to illustrate more formally several claims made in 
Section 2: that the marginal social value of incarceration falls with time served and that parole 
boards should assign an inmate a shorter prison term when he exerts effort, thus creating a 
greater incentive for inmates to exert effort towards their own rehabilitation under a discretionary 
regime than under a rules-based regime.  The appendix closes by exploring a contract-based 
model of parole. 
  
The basic framework 
 Consider a set of inmates who appear identical at the time each is sentenced to S years in 
prison.  I assume that, through information revealed after an inmate has been sentenced, the 
parole board is able to differentiate between the inmates and observe their expected risk of 
recidivating. As in Section 2, the parole board seeks to allocate prison time to minimize the sum 
of incarceration costs plus future recidivism costs.44 
 An inmate’s annual risk of recidivating, R(r, e, t), depends on his initial recidivism risk, r, 
the effort he has put into his rehabilitation, e, and the time (in years) since his admission to 
prison, t.  I do not directly model arrest and punishment in the post-release period, and instead 
assume that the inmate imposes social cost γ if he recidivates and zero if he does not.45  Upon his 
admission, an inmate has T years left in his criminal career, after which time he poses no danger 
to the community. 
 Under these assumptions, the total social cost associated with incarcerating an inmate for 
t years (the incarceration cost plus the expected recidivism costs) is: 
 
(A1)    ))(,,( tTterRIt −+ γ , 
 
where I is the annual per-inmate cost of incarceration.  For now, I assume that parole boards do 
not act strategically and thus take e as given.  Taking the derivative of (A1) with respect to t 
yields the following first-order condition: 
 
(A2)   I = γ R(r,e, t*) − Rt (r,e, t*)(T − t*)[ ], 

                                                 
44 Since no consensus has yet emerged on the deterrence effect of longer sentences, or, more specifically, of truth-in-
sentencing laws, I do not consider it in the model. Marvell and Moody (1996) find no deterrence effect of truth-in-
sentencing laws using state panel data from the early 1970s to the early 1990s.  Shepherd (2002) uses county panel 
data from 1984-1996 and finds that truth-in-sentencing laws have a large deterrence effect on violent crime.  I find 
the Marvel and Moody study more convincing largely because of their inclusion of state-specific trends (I have 
confirmed their results in preliminary work extending the panel to 2003). As Sabol et al. (2002) argues, truth-in-
sentencing reforms are usually passed during periods of heavy legislative activity on other tough-on-crime reforms, 
making state-specific trends essential in teasing out the specific effect of truth-in-sentencing laws on crime rates. 
45 A more realistic model would take into account the incapacitation costs of punishing the inmate in the post-
release period if he is reconvicted as well as the social costs associated with those who commit new crimes but are 
not caught.  Choosing the optimal length of time served would involve solving a dynamic programming problem 
where the cost of recidivism incorporates future incarceration costs.  Given that the goal of the model is not to find 
the optimal length of time served, but to compare the efficiency and incentives of two regimes that determine time 
served, I simplify the problem by assuming no future incarceration in the post-release period (or, equivalently, 
folding such costs into γ).  I more carefully consider those who commit future crimes but are never caught in doing a 
back-of-the-envelope social-welfare calculation in Appendix B. 
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subject to t ≤ S , the original sentence.  The left-hand side (the marginal cost of incarceration) is 
straight-forward: incarcerating an inmate for an additional year costs I dollars; the right-hand 
side (the marginal benefit) is more complicated. 
 
The marginal benefit curve 
 The marginal benefit of an additional year of incarceration (the right-hand side of A2) has 
two components.  First, incarceration prevents whatever crimes an inmate would have committed 
if free.  This benefit is represented by the first term: the annual probability of recidivism, R(r, e, 
t), times the social cost γ.  I call this term the “incapacitation benefit” of incarceration and it 
depends on the level of R(r, e, t).   
 Second, incarceration might influence an inmate’s future behavior if it permanently 
lowers his recidivism.  In this case, the social benefit of an additional year of prison accrues over 
the rest of the inmate’s criminal career.  This “rehabilitation benefit” is captured by the second 
term: the change in the annual risk of recidivism due to time served, Rt, multiplied by the length 
of the inmate’s remaining criminal career.  Note that the rehabilitation benefit depends on Rt, the 
derivative of R(r, e, t) with respect to time. 
 Recall that one of the key assumptions in Section 2 is that the marginal social benefit 
curve is downward sloping.  Taking the derivative of the marginal social benefit curve with 
respect to time served yields: 
 
(A3)    0)(2 >−− tTRR ttt . 
 
If Rt<0 and Rtt>0, as suggested by the empirical results in Section 4, then (A3) holds. 
  
Optimal time served in two regimes 

For each inmate, parole boards solve (A2) to determine the optimal t*.  (Note that the 
second-order condition to ensure a minimum is equivalent to A3.)  Rearranging (A2) yields: 

(A4)     T
R

IRt
t

+
−

−
=

γ
γ* . 

The optimal term increases with remaining criminal career T, recidivism level R and social cost 
of recidivism γ and decreases with prison costs I.  Note that the denominator is positive as Rt is 
assumed to be negative.  The effect of Rt is ambiguous: as the magnitude of the slope increases, 
the rehabilitative effect of increases in t rises but the incapacitation benefit falls. 
 Next, consider the optimization problem in a rules-based regime.  The regime cannot 
condition on individual values of r but only on its distribution: 

(A5)   t R = argmin
t ∈[0,S ]

{It + γ R(r,e,t)(T − t) f (r)dr
rmin

rmax

∫ }. 

 Appendix B uses the formulae in (A4) and (A5) to simulate the social cost of crime under 
the two regimes. 
 
Effect of inmates’ effort on the optimal time served in a parole regime 
 What happens to the two components of the marginal benefit of incarceration when an 
inmate increases his effort?  The incapacitation benefit falls, as effort decreases the probability of 
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recidivism and the need to keep him in prison.  However, the rehabilitation benefit rises if prison 
time and effort are complements in reducing recidivism.   
 The effect of these two competing forces on the parole board’s decision can be illustrated 
mathematically by applying the implicit function theorem to (A2):  
 

(A6)    
ttt

ete

RtTR
tTRR

e
t

2)(
)(*

−−
−−

=
∂
∂ . 

 
The denominator is positive by (A3). The numerator will be negative unless the interaction term 
is large and negative.  In other words, unless the direct of effect of effort is outweighed by the 
interaction effect of time served and effort, then the optimal time served will fall when inmates 
increase effort.   

In summary, for all recidivism functions R(r, e, t) where Re<0, Rt<0, Rtt>0 and Ret is 
bounded sufficiently from below and for any initial values of e and t* such that the first-order 
condition I = γ R(r,e, t*) − Rt (r,e, t*)(T − t*)[ ] is satisfied, an increase in e will decrease t*, the 
optimal time served.  That is, the optimization that parole boards perform incentivizes effort. 
 
Parole as a contracting problem 
 Suppose parole boards assume effort is endogenous and set linear contracts of the 
following form: 
 
(A7)     t = t0 + t1r − t2e . 
 
I assume that effort as a function of t2 has the following properties: ′ e > 0, ′ ′ e < 0, e(0) = 0, and 
that .1)(lim 2

2

=
∞→

te
t

46  As parole boards will review many future inmates, I assume they can 

credibly commit to any schedule they set. 
 Parole boards choose t0, t1, and t2 so as to minimize the following expression for the total 
social cost, C: 
 

(A8) ∫ +−−−++−+
max

min

)()))(())((),(,())(( 2210221022210

r

r

drrftetrttTtetrttterRtetrttI γ , 

 
subject to to ≥ 0, t1 ≥ 0,t2 ≥ 0, to + t1 ≤ S, to − t2 ≥ 0.  These conditions rule out negative time served 
or time served beyond the original sentence.  Minimizing (A8) yields the following first-order 
conditions: 

                                                 
46 I do not discuss the inmate’s decision problem in great detail, as it is trivial to write down a model in which 
inmates exert more effort when effort shortens time served than when it does not.  The specific properties of effort 
as a function of t2 that I note above can be derived from a model in which inmates choose effort so as to maximize 
the sum of utility while in prison and utility after release, −V (e)t (e(t2)) +U (T − t(e(t2)) , where V is flow disutility 
while in prison, and U , a constant here for simplicity, is flow utility upon release.  If one assumes convex disutility 
of effort and the usual Inada conditions ( ′ V (0) = 0, lim

e →1
′ V = ∞) then it can be shown that ′ e > 0, ′ ′ e < 0, e(0) = 0, and 

lim
t2 →∞

e(t2) = 1. 
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(A9)   0)(])([0
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 The first-order condition with respect to t0 is very similar to the first-order condition 
when effort is taken as given (A2).  In this case, the marginal cost of increasing time for the 
average prisoner (the annual cost of incarceration, I) is set equal to the marginal (incapacitation 
and rehabilitative) benefit.  This similarity arises because t0 does not have a direct effect on 
effort, so the optimization is similar to the case when parole boards take effort as given.  The 
second first-order condition (A10) is similar to the first but now each term is weighted by r, as 
the effect of an increase in t1 depends on the level of the initial recidivism risk, r. 
 The most complicated of these first-order conditions is (A11).  The first two terms of the 
integrand are negative: they are the marginal decreases in cost represented by an increase in t2 
(which, recall, leads to a decrease in time served).  The first term reflects how an increase in t2 
can increase the rehabilitation benefit of time served by incentivizing effort and the second term 
reflects the cost savings from decreasing time served.  The last two terms are positive and 
represent the marginal increases in social cost related to recidivism.  The third term demonstrates 
how an increase in t2 can decrease the rehabilitative effect by decreasing time served.  The final 
term represents the lost incapacitation value due to a decrease in time served. 

Parole boards can solve for the optimal t0, t1 and t2, but a rule-maker does not enjoy the 
same flexibility.  I model the rule-maker’s decision as minimizing (A8) with respect to t0 when t1 
and t2 are set to zero.  Note that, by construction, effort is zero in a rules-based regime as t2 is set 
to zero, so that the rule-setter in both the contracting setting and the exogenous-effort setting face 
the same optimization problem. 
 How does this contracting problem relate to the simpler model where effort is taken as 
given?  First, the marginal benefit of incarceration as a function of time served is no longer a 
well-defined concept in the contract setting, as it will depend on how time served was changed 
(i.e., whether it was changed via a change in t0, t1 or t2).  Thus, Figure 1 no longer has a clear 
interpretation in this setting, though, as discussed above, one may think of it as illustrating an 
increase in the base time, t0.   

However, just as in the simpler model, an increase in effort reduces prison time.  In the 
contracting setting, the board explicitly includes effort in its formula for time served.  In the 
simpler model, this connection emerges because effort makes criminals less dangerous and the 
marginal value of incarceration falls, leading to an earlier release.  In both cases, inmates have an 
added incentive to invest in their own rehabilitation in the parole regime relative to a rules-based 
regime. 
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Appendix B.  Simulating per-prisoner social costs under different regimes 
 This section attempts to compare in terms of estimated dollar values how well parole and 
rules-based regimes minimize the social costs associated with incarceration and future 
recidivism.  Such an exercise requires many assumptions about functional form and parameter 
values.  Whenever possible, I rely on administrative data, the empirical results from Sections 3-6, 
and findings from previous work to guide these assumptions. 
 
The recidivism function 
 The results in Section 4 suggest that the effect of time served on recidivism is negative 
and diminishing and the results in Section 6 suggest that inmates’ effort decreases recidivism.  I 
therefore assume that R(r, e, t) takes the following form: 
 
(B1)     terterR δα )(),,( −= , 
which gives 
(B2)     )ln()( δδα t

t erR −=  
and 
(B3)     2))(ln()( δδα t

tt erR −= . 
 
Note that Rt<0 and Rtt>0 whenever 0 < δ < 1.  I calibrate δ by dividing (B2) by (B1) and taking 
the average one-year recidivism rate from the data used in Table 3 (0.086) and taking the average 
Rt from the coefficient on time served in the last column of Table 3 (-0.00879).  Converting from 
three-year recidivism rates as a function of months served to one-year rates as a function of years 
served yields δ = exp(-0.0879*(12/3)/0.086)=0.66.47 
 Following Appendix A, I assume that effort is a function of the incentive t2 and has the 
following properties: ′ e > 0, ′ ′ e < 0, e(0) = 0, and that .1)(lim 2

2

=
∞→

te
t

  Here, I specifically assume 

that e takes on the following functional form: e =1− ( 1
1+ t2

).  Since effort has no natural units, it 
can be arbitrarily set in the case where effort is taken as given.  When doing calculations in this 
case, I assume that effort takes on a value of 0.85 in a parole regime and zero otherwise.48   
 Section 6 suggested that a move from discretion to rules increases one-year recidivism 
rates by about 2 percentage points.49  Subtracting (B1) when e = 0.85 from (B1) when e = 0 
implies that α = 0.045: 
 
                                                 
47 This calculation assumes that average time served is constant across the two regimes.  See Section 6 for a 
discussion of why time served did not significantly increase in Georgia after the move from parole to rules. 
48 The functional form for recidivism given in (B1) requires knowledge of the level of effort e as well as the value of 
the α parameter.  From the empirical work, I only know the change in recidivism when effort if turned “on” (in the 
parole regime) relative to when it is turned “off” (in the rules regime).  I therefore cannot separately identify e and 
α, giving me a free parameter in the model.  When effort is taken as given, I can pick an arbitrary value when it is 
turned “on” and then solve for α.  To be able to compare between the cases when effort is taken as given and when 
effort is assumed to be endogenous, I pick values of α and e so that the equilibrium effort in the contracting case is 
the same as the level of effort arbitrarily chosen in the effort-taken-as-given case.  Such a situation is achieved when 
α = 0.045 and e = 0.085.  Finally, note that equating the two levels of effort could equivalently have been done by 
adding and then adjusting a parameter to the e(t2) function.  
49 This number is based on a regression equivalent to that in Table 5 Col. (5) but with the one-year recidivism rate 
as the dependant variable.  See notes to Table 5. 
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(B4)  045.0)66.0)(()(014.0 4.2
3
2 ≈⇒==−−= ααδαδαδ ttt eerr . 

  
 To estimate the distribution of r, the initial recidivism risk, I generate predicted 
recidivism by regressing the observations in Table 1 on the basic control variables used 
throughout the paper.  Using my estimate for δ as well as each inmate’s time served, I back-out 
each inmate’s initial risk.  The distribution of this measure appears roughly uniform between 0.1 
and 0.7. 
 To estimate T, the length of the average remaining criminal career, I examine a sub-
sample of the inmate population who (1) meet my standard sampling criteria; and (2) were 
released before 1990 so that I can observe them for at least 15 years.  I then subtract the year of 
an inmate’s current conviction from the year of his final recorded conviction.  While this variable 
is right-censored for inmates with very long criminal careers, there are very few values near the 
threshold so the extent of the censoring appears to be very limited.  As the majority of inmates 
do not recidivate, their remaining criminal careers have zero length.  The mean, conditional on 
recidivism, is 8.8. 
 Finally, regardless of recidivism risk and effort, time served cannot exceed the original 
sentence.  From Table 1, I assume S, the original sentence, is six years. 
 
Cost parameters 
 A key parameter is the social cost incurred when an inmate recidivates.  Let O be the set 
of offenses recidivists commit and Costj the social cost associated with offense j.  Let Sj be j’s 
share of all offenses recidivists commit, which I calculate from my data.   

Assume that with probability R(ri, ei, ti) inmate i recidivates and is caught; he thus 
imposes social cost Costj associated with the offense for which he was caught (which is observed 
in the data), as well as the social costs associated with (unobserved) offenses he committed but 
for which he was not caught.  With probability (1-R(ri, ei, ti)), the inmate commits no future 
crimes, observed or unobserved.  To account for the social cost of unobserved offenses, I weight 
each observed offense of type j by the product of the inverses of the probability police are 
notified about offense j and the probability that police make an arrest given a report of offense j 
(known as the “clearance rate”).   

Under these assumptions: 
 

∑
∈

=
Oj

jClearanceNotifyj CostS
jj

.))(( 11γ  

 
Using values for Costj from Cohen (1988) and Miller, Cohen, and Rossman (1993) and for 
Notifyj and Clearancej from, respectively, the National Crime Victimization Surveys and the 
FBI’s Uniform Crime reports, I find that γ º$61,000. 
 Finally, I look outside my data for an estimate of the annual cost of incarceration.  I use a 
value of $24,000 (dividing the values for total expenditures by total prisoners given in the BJS 
report State Prison Expenditures 2001).  Freeman (1995) and DiIulio and Piehl (1995) report 
similar numbers. 
 In summary, I use the following parameter values for the social cost calculations: α = 
0.08, I = $24,000, γ = $61,000, T = 9, and δ = 0.66.  I assume that r ∼U[.1,.7].  
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Calculating per-prisoner social cost under parole and rules-based regimes 
 I first consider the case in which parole boards take effort as given, and report these 
results in the left-hand side of Table B1.  The first row shows average time served, recidivism 
rates, and per-prisoner social cost when parole boards set prison terms optimally (i.e., solve 
equation (A2)).  Inmates serve an average of 2.54 years and emerge with a one-year recidivism 
rate of 0.109.  These results match the data fairly well.  The social cost imposed by the average 
prisoner is $102,997, of which over half ($60,960) arises from incarceration costs and the 
remainder from future recidivism costs. 
 Because parole boards are often considered too lenient, the second row shows the 
relevant outcomes when parole boards solve for optimal time served but then scale the value by 
0.9.  Similarly, the third row considers the case when they halve the optimal time.  A 10 percent 
downward bias increases social costs by less than 1 percent, while a 50 percent bias increases 
costs by 16 percent. 
 The fourth row displays the simulated outcomes corresponding to the optimal rule.  I 
assume first that behavior does not change, so the change in social cost between this row and the 
first reflects only the loss due to the inability to assign high-risk inmates longer terms, not any 
loss due to moral hazard.  Even without the loss from moral hazard, social cost increases by 7 
percent relative to optimal parole.   
  In the final row, I assume that effort now falls to zero.  The optimal time served 
increases in response to the increased incapacitation benefit of imprisonment, increasing total 
incarceration costs.  However, despite longer sentences, inmates are still more dangerous when 
they leave, as they have exerted no effort towards rehabilitation while in prison, increasing 
recidivism costs.  The total increase in costs relative to optimal parole is 11 percent. 
 I now consider the case in which parole boards view effort as endogenous.  Results are 
reported in the second half of Table C1 (and I include the optimal linear contract that generates 
the results reported in the first row in the footnotes).  The same trends emerge.  Only when 
parole boards are significantly biased are rules and discretion comparable.  Otherwise, parole 
appears to provide significant savings.   
 In the case of Georgia, the most relevant comparison appears to be between rows two and 
five.  There was a small increase in time served after the state’s move from parole to rules, 
suggesting some leniency on the part of parole boards; there was also a significant decrease in 
effort and increase in recidivism after the reform.  In the case when parole boards view effort as 
given (endogenous), the move from discretion to rules increases the average per-prisoner social 
cost by about $10,549 ($7084) or 10 (7) percent.   
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Table B1. Total social cost per prisoner under different regimes 
 Exogenous effort Endogenous effort 
Regime Time 

served 
Recid. rate Social cost Time 

served 
Recid rate Social cost 

Optimal parole 2.54 0.11 103,000 2.60 0.11 105,900 
Parole, 10% bias 2.30 0.12 103,500 2.34 0.13 107,000 
Parole, 50% bias 1.27 0.19 120,000 1.30 0.20 125,800 
Opt. Rule, no behav. response 2.85 0.11 109,900 2.85 0.11 109,900 
Opt. Rule, behav. response 3.04 0.12 114,100 3.04 0.12 114,100 
Actual values from data 2.39 0.12 -- 2.39 0.119 -- 

Notes: Values in the first five rows are from simulations assuming that recidivism is defined as terterR δα )(),,( −= , that 
initial risk r is distributed as U[.1, .7] and that parameter values are as follows: length of the remaining criminal career T = 9, 
social cost of recidivism γ = $61,600, annual cost of incarceration I = $24,000, decay parameter δ = 0.66, and the effort parameter 
α = 0.045.  When effort is taken as given, I assume that inmates set e = 0.85 in the parole regime and zero in the rules-based 
regime.  See Appendix B for a derivation of these parameter values.  The optimal contract in the case where effort is taken as 
endogenous is given by t0 = 1.96, t1 = 4.04 and t2 = 1.60.  The values in the last row are taken from the same sample of prisoners 
used in Table 1.  
 
 
Appendix C.  The Georgia Grid 
 
Table C1. The Georgia grid recommendations (in months) 
 Points 
Crime severity level Excellent (14-20) Average (9-18) Poor(1-8) 

1 10 16 22 
2 12 18 24 
3 14 20 26 
4 16 22 28 
5 34 40 52 
6 52 62 78 
7 72 84 102 
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Figure 1. Inmates released from prison by type of release 
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Notes: Taken directly from the Bureau of Justice Statistics publication “Probation and Parole in the United States, 
2004.”  Because consistent data on the type of release are not readily available before 1980, Figure 2 actually 
understates the stark shift away from parole since a few years earlier, before California and Illinois abolished parole, 
the discretionary share was much larger.  The “other” category includes those who served until the expiration of 
their sentence (whether due to a parole-board decision or a statutory requirement), those released due to over-
crowding orders, those transferred to other states, those whose sentences were commuted or overturned, those who 
died while incarcerated, and those who escaped. 
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Figures 2 a-c. Release dates under discretion and fixed sentences 
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Figure 4a.  Time served across point designations from the Georgia grid 
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Figure 4b. Prior incarcerations across point designations from the Georgia grid 
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Figure 5. Recidivism rates by point designation from the Georgia grid 
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Figure 6. The ability of observable variables to predict recidivism 
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Figure 7a: Effect of 90% reform on percent of sentence served (median inmate)  
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Figure 7b: Effect of 90% reform on percent of sentence served (inmate at 10th percentile)   
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Figure 7c. Effect of 90% reform on original sentence length 
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Figure 7d. Effect of 90% reform on time served 
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Figure 8. Effect of 90% reform on disciplinary infractions 
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Figure 9: Effect of 90% reform on completion of prison courses 
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Notes:  Georgia began collecting information on program enrollment and completion in 1994, but several more 
years passed before administrators in all facilities were reporting such information regularly for each inmate.  Thus, 
the strong upward trend shown in Figure 8 is driven mostly by improvements in reporting rather than increases in 
participation.   
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Figure 10: Effect of 90% reform on recidivism 
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Table 1. Summary statistics on inmates, Georgia Department of Corrections 
Variable 
 

Mean 
 

Standard deviation 
 

Returned to prison within 36 months 0.296876 0.4568843 

Time served, in months 28.66479 19.80527 

Original sentence, in months 72.20594 63.56553 

Black 0.6210248 0.485135 

Male 0.9093542 0.2871067 

Age at release 33.44245 9.484807 

Prior felony convictions 1.423163 1.682511 

Notes: These data are from the administrative files of the Georgia Department of Corrections.  All observations 
correspond to inmates who were admitted after 1980 and released before 2003, have non-missing values for all of 
the above variables, were given sentences between 6 and 120 months, and were admitted to prison directly from 
court.  Limiting the sample according to these conditions yields 78,393 observations. 
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Table 2. The effect of time served on recidivism, using the 1981 mass release 
 Linear 

prob. 
(1) 

Linear 
prob. 
(2) 

Linear 
prob. 
(3) 

Linear 
prob. 
(4) 

Linear 
prob. 
(5) 

Cox 
hazard  

(6) 
Time served 0.00345 

(0.0021) 
 

-0.0101 
(0.0062) 

 

-0.0257 
(0.0126) 

 

-0.0298 
(0.0128) 

 

-0.0302 
(0.0132) 

 

0.9393 
(0.0362) 

 
Original parole 
recommendation 

  

0.0201 
(0.0142) 

 

0.0272 
(0.0151) 

 

0.0300 
(0.0155) 

 

1.0463 
(0.0466) 

 
Black 
 
 

0.0521 
(0.0411) 

 

0.0535 
(0.0413) 

 

0.0529 
(0.0412) 

 

0.0646 
(0.0419) 

 

0.0671 
(0.0431) 

 

1.3794 
(0.1792) 

 
Male 
 
 

0.0355 
(0.0798) 

 

0.0243 
(0.0797) 

 

0.0345 
(0.0800) 

 

0.0416 
(0.0803) 

 

0.0516 
(0.0859) 

 

1.1884 
(0.3171) 

 
Age at release 
 
 

-0.0097 
(0.0025) 

 

-0.0094 
(0.0025) 

 

-0.0090 
(0.0025) 

 

-0.0085 
(0.0025) 

 

-0.0074 
(0.0027) 

 

0.9671 
(0.0093) 

 
Prior felonies  
 
 

0.0928 
(0.0238) 

 

0.0913 
(0.0240) 

 

0.0933 
(0.0240) 

 

0.0934 
(0.0243) 

 

0.0927 
(0.0250) 

 

1.4854 
(0.1002) 

 
Sentence-length fixed 
effects? 
 

No. Yes. Yes. Yes. Yes. Yes. 

Offense fixed effects? No. No. No. No. Yes. Yes. 
 

Outliers excluded? 
 

No. No. No. Yes. Yes. Yes. 

Observations 
 

543 543 543 530 530 542 

R-squared 
 

0.0641 0.0733 0.0750 0.0722 0.0961 -- 

Notes: The dependent variable is a dummy variable equal to one if the inmate returned to prison within 
three years of his release and zero otherwise.  Cols. (1) – (5) use linear probability models; the 
coefficients should therefore be interpreted as changes in probability.  Col. (6) uses a Cox proportional 
hazard model; coefficients are reported as hazard ratios.  I stratify by the offense in the Cox regression, 
which is the analogue of including fixed effects in a linear regression.  Outliers are defined as 
observations for which time served is more than three standard deviations from the mean. 
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Table 3. The effect of time served on recidivism, using the parole grid cut-offs 
 Naïve OLS 

(1) 
IV 
 

(2) 

IV 
 

(3) 

IV 
 

(4) 

IV 
 

(5) 
Time served, in 
months 

-0.00350 
(0.00032) 

 

-0.0134 
(0.00783) 

-0.0161 
(0.00768) 

-0.0387 
(0.00883) 

-0.00876 
(0.00348) 

Black 
 
 

0.027 
(0.0050 

0.023 
(0.0063) 

0.029 
(0.0052) 

0.026 
(0.016) 

0.093 
(0.0079 

Male 
 
 

0.031 
(0.0065) 

0.060 
(0.024) 

0.065 
(0.018) 

0.13 
(0.011) 

0.051 
(0.012) 

Age at release 
 
 

-0.0061 
(0.00077) 

-0.0054 
(0.00085) 

-0.0044 
(0.0008) 

-0.0046 
(0.0011) 

-0.0051 
(0.0011) 

Prior felony 
incarcerations 
 

0.032 
(0.0027) 

0.034 
(0.0033) 

0.036 
(0.0037) 

0.036 
(0.0057) 

0.044 
(0.0033) 

Sentence fixed effects? 
 

No. Yes. Yes. Yes. Yes. 

Offense fixed effects? No. No. Yes. Yes. Yes. 
 

Sub-sample 2-17 pts 2-17 pts 2-17 pts. 7-10 pts. 2-17 pts 
 

Instruments N/A Dummies for 
greater than 8 
and 13 points 

Dummies for 
greater than 8 
and 13 points 

Dummy for 
greater than 8 

points 

Suggested 
sentence from 

grid 
Observations 28,096 28,096 28,096 8,062 17,579 

 
R-squared 0.1089 0.0472 0.0455 0.0718 0.1335 

 
Notes: The dependent variable is a dummy variable equal to one if the inmate returned to prison within 
three years of release and zero otherwise.  All regressions are second-stage estimations using a linear 
probability model.  Sentence fixed-effects are created by rounding an inmate’s sentence to the nearest 
multiple of twelve months.  Dummies for year of release as well as a quartic function of points are 
included in each regression except for that in Col. (4), in which only a linear control is used.  (Recall that 
points are based on background characteristics and are calculated for each inmate upon admission, and 
then are later used in the grid to determine the recommendation for time served.)  In Col. (5), point fixed 
effects are included. 
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Table 4. Differential treatment effects of time served on recidivism 
Category Age 

 
(1) 

Prior felony 
incarcerations 

(2) 

Drug offenses 
 

(3) 

Length of time 
served 

(4) 
 Age ≤25 None Drug offenders Time≤20 

 
Coefficient on 
time served 

-0.00936 
(0.00411) 

-0.00432 
(0.00478) 

-0.00172 
(0.0127) 

-0.0255 
(0.0080) 

 
Avg. recidivism 
for the group 
 

0.28 0.21 0.23 0.29 

Observations 7671 6874 7508 9928 
 

 Age>25 At least one Other offenders Time>20 
 

Coefficient on 
time served 
 

-.00952 
(0.00432) 

-0.00981 
(0.00385) 

-0.00826 
(0.00303) 

-0.00780 
(0.00364) 

Avg. recidivism 
for the group 
 

0.26 0.34 0.28 0.25 

Observations 20,425 21,222 20,588 18,168 
 

Notes: All coefficients are taken from regressions analogous to that in Table 3, Col. (5).  See notes to 
Table 3 for more information on the specification.  
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Table 5. The effect of limiting the parole board’s discretion on inmate outcomes 
 Infraction 

rate 
 

(1) 

Non-
violent 

infr. rate 
(2) 

Program 
completion 

rate 
(3) 

Program 
enrollment 

rate 
(4) 

Recidivism 
rate – OLS 

 
(5) 

Recid. rate 
– hazard 

 
(6) 

90% dummy 0.0141 
(0.0022) 

0.0227 
(0.0110) 

-0.0007 
(0.0009) 

 

-0.0014 
(0.0009) 

 

-0.0333 
(0.0170) 

0.599 
(0.0871) 

 
90% x After 0.00376 

(0.00039) 
0.00652 
(0.0014) 

-0.0085 
(0.00088) 

 

-0.0086 
(0.00088) 

 

0.0250 
(0.00923) 

1.847 
(0.254) 

 
Male -0.00500 

(0.0047) 
-0.0030 
(0.006) 

-0.0214 
(0.00823) 

 

-0.0201 
(0.0017) 

 

0.0908 
(0.0102) 

1.506 
(0.0228) 

 
Black 0.0167 

(0.0017) 
0.0431 

(0.00384) 
-0.0048 

(0.00074) 
 

-0.0044 
(0.000762) 

 

0.0339 
(0.00993) 

1.143 
(0.0636) 

 
Prior 
incarcerations 

0.000509 
(0.0007) 

0.0540 
(0.0055) 

-0.0019 
(0.00071) 

 

-0.014 
(0.00124) 

 

0.0461 
(0.00222) 

1.216 
(0.0141) 

 
Age at release -0.00341 

(0.0003) 
-0.0064 

(0.00042) 
0.0002 

(0.00001) 
 

0.00017 
(0.00063) 

 

-0.00773 
(0.00123) 

0.961 
(0.0025) 

 
Months served 0.00271 

(0.0002) 
0.0047 

(0.00067) 
-0.0006 

(0.00013) 
 

-0.0005 
(0.000108) 

 

-0.00773 
(0.00146) 

0.978 
(0.0066) 

 
Observations 22,124 22,124 18,642 18,642 

 
18,832 21,042 

R-squared 0.1439 0.1226 0.1993 0.2111 
 

0.1196 -- 

Notes: All regressions include year-of-offense, offense, and sentence fixed effects and are estimated using OLS; all 
standard errors are clustered at the level of “90% x After.”  The sentence fixed effects absorb every twelve-month 
multiple of the original sentence variable.  All inmates in these regressions have sentences between six and 60 
months (though the results are robust to changing the upper bound to 120 months, as in Tables 1-4).  The results are 
robust to adding a separate time trend for 90% offenses.  As referenced in Appendix B, the coefficient (standard 
error) on the interaction term when one-year instead of three-year recidivism is used as the dependent variable in 
Col. (5) is 0.0148 (0.00145).  
 
 
 
 
 


