
Economics 202A
Lecture #2 Outline (version 1.4)

Maurice Obstfeld

I have commented on the ad hoc nature of the saving behavior postulated
by Solow. The next model assumes instead that people plan ahead in making
saving decisions. One advantage of this assumption is that we can do welfare
analysis of economic changes. The model delivers �normative� answers to
questions such as, �How much should a country save?�In its various forms,
the following model has many applications in macroeconomics and public
�nance beyond the analysis of growth.

The Ramsey-Cass-Koopmans Model in Discrete Time

I will initially develop this model in discrete time. Then I will go to the
continuous-time limit to derive a mathematical framework comparable to
the Solow model�s. This will also serve to illustrate the principles of optimal
control theory, a very useful tool. There are many other approaches to the
derivation, such as the one based on dynamic programming in my notes at
http://www.econ.berkeley.edu/~obstfeld/ftp/perplexed/cts4a.pdf. Another
possible source is Martin Weitzman�s book Income, Wealth, and the Maxi-
mum Principle (Harvard University Press, 2003).
Assumptions:

� There is a single composite good produced with the constant-returns
production function for total output, Y = F (K;N): Here, N is popu-
lation, which I assume equal to the (fully employed) labor force. (Feel
free to add labor-augmenting technical change as an exercise.)

� Population growth is Nt = (1 + n)Nt�1.

� A �generation�lives for a period t and maximizes

Ut = u(ct) + �(1 + n)Ut+1,

where �(1 + n) < 1 and ct is the consumption of a representative
family member on date t. The idea is that you care about your own
consumption and the welfare of your 1 + n children.
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� Capital depreciates at the rate � 2 [0; 1].

Because Ut = u(ct)+�(1+n)u(ct+1)+�
2(1+n)2u(ct+2)+�

3(1+n)3Ut+3,
etc., we may assert that the generation born on date t = 0 maximizes

U0 =
1X
t=0

�t(1 + n)tu(ct)

subject to

Kt+1 �Kt = F (Kt; Nt)�Ntct � �Kt; Kt � 0; K0 given.

Alternatively, we can express the constraints in the intensive form

kt+1 =
1

1 + n
[f(kt) + (1� �)kt � ct] ; kt � 0; k0 given,

where k � K=N; f(k) = F (k; 1):
Ramsey looked at the case n = 0 and � = 1. The latter assumption may

seem paradoxical from a mathematical point of view (isn�t the in�nite sum
de�ning U0 likely to be divergent then?), but a problem set will show how
Ramsey handled it.
One simpli�cation is to assume the Inada condition on consumption that

limc!0 u
0(c) =1. In that case, we can forget about the interim nonnegativity

constraints on the capital stock. We will never optimally get close to zero
capital, because the marginal utility of consumption would be very high.
It will be useful �rst to solve the �nite-horizon problem

max
fctg

TX
t=0

�t(1 + n)tu(ct)

subject to

kt+1 =
1

1 + n
[f(kt) + (1� �)kt � ct] ; (1 + n)kT+1 � 0; k0 given.

Here, kT+1 is the capital left over after consumption in the last period, period
T; and it is de�ned as kT+1 = KT+1=(1 + n)NT (since T is the last period
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of economic activity). We can write the Langrangian for this (Kuhn-Tucker)
problem as

TX
t=0

�t(1 + n)t fu(ct) + �t [f(kt) + (1� �)kt � ct � (1 + n)kt+1]g

+�T (1 + n)T�(1 + n)kT+1:

The necessary conditions for an optimum are

u0(ct) = �t; (1)

��t(1 + n)t+1�t + �t+1(1 + n)t+1�t+1 [f 0(kt+1) + 1� �] = 0;
or

�t = � [1 + f
0(kt+1)� �]�t+1; (2)

and, �nally, di¤erentiating with respect to the terminal stock kT+1,

��T�T (1 + n)T+1 + �T (1 + n)T+1� = 0;

or
� = �T :

Finally, the Kuhn-Tucker complementary slackness condition can be written
as

�T (1 + n)T�kT+1 = �
T (1 + n)T�TkT+1 = 0: (3)

This implies kT+1 = 0 because normally, �T = u0(cT ) > 0:
If we combine (2) with (1), we obtain a necessary optimality condition

referred to as the Euler equation (for capital); we will see it in di¤erent forms
many times in this course:

u0(ct) = � [1 + f
0(kt+1)� �]u0(ct+1): (4)

What is the intuition? The basic idea is that, if the consumption path is
optimal, the initial planner must be indi¤erent between the two alternatives:

1. Consume a unit of output today, reaping the utility gain u0(ct):
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2. Invest the output in capital instead, but consume the proceeds (includ-
ing what is left of the initial amount invested) tomorrow. The proceeds
are 1 + f 0(kt+1) � �, and their marginal utility value from the stand-
point of date t is the product of (a) the discount factor �(1 + n) and
(b) the marginal utility reaped by each member of generation t + 1,
u0(ct+1)=(1 + n): Thus, the marginal gain from this second alternative
is � [1 + f 0(kt+1)� �]u0(ct+1); the right-hand side of (4) above.

For the �nite horizon problem, this equation completely determines the
optimal consumption/accumulation path, together with the initial condition
that k0 is given and the terminal condition that kT+1 = 0 (for optimality, all
capital is eaten when the economy ends).
Formally, if we stare at the two equations

u0(ct) = � [1 + f
0(kt+1)� �]u0(ct+1); (5)

kt+1 =
1

1 + n
[f(kt) + (1� �)kt � ct] ;

and rewrite them (after some substitution) in the equivalent form

ct+1 = u
0�1

"
u0(ct)

�
�
1 + f 0

�
1
1+n

[f(kt) + (1� �)kt � ct]
	
� �
�# ;

kt+1 =
1

1 + n
[f(kt) + (1� �)kt � ct] ;

where u0�1 is the inverse of the function u0(c), then we have a system of two
(generally nonlinear) di¤erence equations of the form

ct+1 = �(ct; kt); (6)

kt+1 = 	(ct; kt):

For example, if we have the isoelastic utility function

u(c) =
c1�

1
�

1� 1
�

; � > 0,

where � is the elasticity of intertemporal substitution, then u0(c) = c�1=� and
u0�1(x) = x��.
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In the preceding system (6), k is predetermined by the past history of ac-
cumulation, whereas c is a freely-chosen control variable. This type of system
is absolutely omnipresent in macroeconomics. In general, there are in�nitely
many solutions to the two preceding equations �the family of solutions con-
tains two free parameters �but the two boundary conditions that k0 is given
and that kT+1 = 0 su¢ ce to yield the unique economically-relevant solution.
That is, k0 is a given explicitly and c0 is given implicitly by the condition
that, starting at (c0; k0), the equations in (6) land the economy at kT+1 = 0
in the �nal period. In contrast, the Solow model could be reduced to a single
di¤erence (or di¤erential) equation in k with k0 providing the one boundary
condition needed to pin down the relevant solution path.

In�nite-Horizon Case

The economy�s dynamic behavior in the in�nite horizon case is still gov-
erned by the equations in (5). Also, the predetermined variable k0 still pro-
vides one boundary condition for the system. But with an in�nite horizon
there clearly is no �terminal�condition on capital in the same simple sense
as in a �nite-horizon economy.
The relevant terminal condition for the in�nite-horizon case, just as in

the �nite-horizon case, can be derived, however, from eq. (3). Passing to the
limit, the latter condition becomes the transversality condition,

lim
T!1

�T (1 + n)Tu0(cT )kT+1 = 0: (7)

More detailed discussion of the necessity of this condition can be found else-
where, for example, in the back of Barro and Sala-i-Martin or in the book
by Weitzman (op. cit.). Important point: While the �nite-horizon version of
(7) normally implies that k = 0 when the economy �ends,�(7) itself assumes
that there is no end of time and therefore there is no implication that k ! 0
asymptotically in the in�nite-horizon case. More typically, c and k will both
converge to some steady values �c and �k in equilibrium, but (7) will hold true
nonetheless because �(1 + n) < 1. (As we shall see, however, (7) can hold
also when no steady state exists.)
The intuition is also given by David Romer in his text. Imagine a path

along which consumption is falling and k is therefore growing very large.
Along such a path the product u0(c)k would grow rapidly, probably causing
the limit in the last equation to be positive. Such a path could not be optimal,
however, because the economy is accumulating excessive hoards of capital,
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the output of which never gets consumed because it is reinvested instead.
It would pay for the economic planner to slightly and permanently increase
consumption, an option that is perfectly feasible given the rapid growth in
k. Generally, (7) can be applied to rule out initial values c0 that result in
consumption falling over time relative to k. Values of c0 that are initially too
high, and that result in c=k rising asymptotically, generally force k to zero
in �nite time and are shut o¤ by the nonegativity constraint on capital.
The next section looks at a linear variant of the model and shows how

the transversality condition (7) can be applied in practice.

Solving Linear Di¤erence Equation Systems

I simultaneously make the preceding mathematical ideas concrete, while
illustrating a critically important solution technique for linear macroeco-
nomic models. Any model into which asset prices and forward-looking ex-
pectations enter will have a similar structure (although the dimensionalities
of the sets of �state�and �jumping�variables may be bigger; see Blanchard-
Kahn on the reading list for a general approach). Here, consumption is the
forward-looking jump variable and capital the predetermined state variable.
See also Obstfeld and Rogo¤, Foundations of International Macroeconomics,
Supplement C to Chapter 2.
Here we study the in�nite-horizon case (T ! 1) in order to illustrate

the use of transversality arguments to determine appropriate boundary con-
ditions.
I make two critical simpli�cations: u(c) = ln c (corresponding to an in-

tertemporal substitution elasticity � = 1; why?), and f(k) = Ak (so that
capital is the only productive factor). De�ne

� � 1 + A� �.

Then the equations in (6) take the simple linear form

ct+1 = ��ct;

kt+1 = � 1

1 + n
ct +

�

1 + n
kt:

In matrix notation, this is�
ct+1
kt+1

�
=

�
�� 0
� 1
1+n

�
1+n

� �
ct
kt

�
: (8)
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How does one solve such a system?
[Important note: Because there are constant marginal returns to capital,

not diminishing returns as we have assumed heretofore, this model has no
balanced growth path in the sense of Solow. Instead, per capita consumption
grows steadily over time. This is an early (and rudimentary) example of an
endogenous growth model. Growth is endogenous here because it is not driven
by any exogenous process of technical change, as in Solow�s model; it comes
instead from the intrinsic economic mechanisms in the model. That special
nature of this model gives its solution a somewhat di¤erent form from that
of more standard rational expectations models, as I shall note below.]
We know that for a simple univariate linear di¤erence equation of the form

yt+1 = �yt, the general solution has the form yt = a�
t, where a is an arbitrary

constant. (In a speci�c application, some particular boundary condition
on y would allow us to pin a down uniquely.) We therefore proceed by
diagonalizing the matrix in the last expression, applying the simple univariate
solution, and then reversing the diagonalization process to solve for c and k.
To be precise, express the matrix system (8) in vector notation as

yt+1 =Myt;

where M is the 2 � 2 matrix displayed above. Suppose we can �nd an
invertible 2 � 2 matrix X such that X�1MX = � is diagonal. Then we
would have

X�1yt+1 = X
�1MX

�
X�1yt

�
;

or, de�ning ~y � X�1y,

~yt+1 = X
�1MX~yt = �~yt:

This (vector) di¤erence equation is easy to solve as

~yt+1 = �
t+1~y0;

where ~y0 is an initial condition for the vector ~y. We can then retrieve the
solution for y itself via the linear transformation

yt+1 = X�
t+1~y0 = X�

t+1X�1y0:

Finding a matrix X such that MX = X� is standard linear algebra.
There are many such matrices, and all we need is one �so let�s restrict our
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search to X with x21 = x22 = 1: Let

� =

�

1 0
0 
2

�
and write the preceding condition de�ning X as

M

�
x11 x12
1 1

�
= X� =

�

1x11 
2x12

1 
2

�
:

Thus, the vectors
�
x1i
1

�
have the property that M

�
x1i
1

�
= 
i

�
x1i
1

�
:

(They are eigenvectors and the two 
i are eigenvalues.)
Because the mappingM�
iI (where I is the 2�2 identity matrix) maps

both the nonzero vector
�
x1i
1

�
and the zero vector to the zero vector, the

matrix M � 
iI is noninvertible (i.e., singular) and has a zero determinant:

det (M � 
iI) = 0:

This equation tells us that we can �nd the eigenvalues by solving the equation

det

�
��� 
i 0
� 1
1+n

�
1+n

� 
i

�
= 0;

which is equivalent to


2i � �
�
� +

1

1 + n

�

i +

��2

1 + n
= 0:

It is easy to check that the two roots of this quadratic are

f
1; 
2g =
�
��;

�

1 + n

�
:

The eigenvectors are found by using�
�� 0
� 1
1+n

�
1+n

� �
x1i
1

�
= 
i

�
x1i
1

�
or solving either of the two equations

��x1i = 
ix1i
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and
� 1

1 + n
x1i +

�

1 + n
= 
i:

For 
1 = ��; the �rst of the last two equations above is uninformative (it
holds for any x11), but the second requires that

x11 = �� (1 + n)��:
For 
2 = �=(1+n), however, the �rst of the two preceding equations de�ning
eigenvectors holds only for x12 = 0, whereas the second equation reduces to
the true relationship 
2 = �=(1+n) in that case. As a result, a viable matrix
X is given by

X =

�
� [1� (1 + n)�] 0

1 1

�
:

We are almost there. Recall that we now want to transform the original
system by X�1; where

X�1 =
1

� [1� (1 + n)�]

�
1 0
�1 � [1� (1 + n)�]

�
=

"
1

�[1�(1+n)�] 0

� 1
�[1�(1+n)�] 1

#
:

Thus,

X�1
�
ct+1
kt+1

�
=

�
~ct+1
~kt+1

�
= �

�
~ct
~kt

�
;

giving us

~ct+1 = (��)t+1~c0;

~kt+1 =

�
�

1 + n

�t+1
~k0:

Reversing the X�1 transformation of (c; k), we �nally get the solution�
ct+1
kt+1

�
=

�
� [1� (1 + n)�] 0

1 1

� �
(��)t+1~c0�
�
1+n

�t+1 ~k0
�

(9)

=

"
� [1� (1 + n)�] (��)t+1 1

�[1�(1+n)�]c0

(��)t+1 1
�[1�(1+n)�]c0 +

�
�
1+n

�t+1 n
k0 � 1

�[1�(1+n)�]c0

o #

=

24 (��)t+1c0

(��)t+1
c0

� [1� (1 + n)�] +
�

�

1 + n

�t+1�
k0 �

c0
� [1� (1 + n)�]

�
:

35
9



The solution is predicated on two initial conditions, c0 and k0. Because
the capital stock is predetermined, k0 is given by the past history of saving.
What about c0? A useful way to think about the appropriate initial condition
is to calculate the ratio of capital to consumption, which is

kt
ct
=

1

� [1� (1 + n)�] +
�

1

�(1 + n)

�t�
k0
c0
� 1

� [1� (1 + n)�]

�
:

Recall our prior assumption that (1 + n)� < 1; this implies that the termh
1

�(1+n)

i
in the last expression exceeds 1, so that

h
1

�(1+n)

it
explodes as t!1:

Notice that if
k0
c0
>

1

� [1� (1 + n)�] ;

then the ratio of capital to consumption will rise without limit. This can-
not possibly be optimal: you could raise utility by a tiny increase in c0,
which could feasibly be maintained forever. Alternatively, think about the
transversality condition (7) (and recall that here, u0(c) = 1=c due to log
utility). Because

lim
t!1

(1 + n)T�T
kT
cT
=

�
k0
c0
� 1

� [1� (1 + n)�]

�
> 0;

condition (7) is violated. Of course, if
�
k0
c0
� 1

� [1� (1 + n)�]

�
< 0 it is

violated as well. In that case, the dynamic equations of the model predict
that k=c must eventually become negative, which is infeasible. Therefore,
the only initial condition of the model consistent with optimality is

c0 = � [1� (1 + n)�] k0:

Observe that, under this initial condition, the consumption-capital ratio re-
mains constant forever, with consumption and capital alike growing at the
(gross) rate ��. (This is the �endogenous growth�prediction of the model.)
We know this by plugging the appropriate initial conditions into (9) to get:

ct = � [1� (1 + n)�] (��)tk0; kt = (��)tk0 (10)

There is a useful interpretation of the consumption function. In any
period, total available resources are �k �the capital stock plus the output
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it generates, net of depreciation. With log utility the optimal policy is to
consume a fraction 1� (1 + n)� of �k, where (1 + n)� is the discount factor
for future utility.
Meta-digression on the solution: As noted, this endogenous growth model

has characteristics di¤erent from most of the models you will encounter in
macroeconomics. In particular, there is no possibility for a steady state
solution for c and k �only the ratio c=k is constant.
A dynamic system has one characteristic root associated with each en-

dogenous variable. In more standard discrete-time models, each jumping
variable is associated with a root (of modulus) greater than 1, while each
predetermined variable is associated with a root (of modulus) less than 1.1

By imposing the transversality condition (or something akin to it) to derive
a unique solution, we generally rule out certain types of explosive behav-
ior by zeroing out the in�uence of the large roots on the system�s intrinsic
dynamics.

Here, both roots
�
��;

�

1 + n

�
could well be above 1. Because �(1+n) <

1, �=(1+n) is the larger of these two roots. If you look at the speci�c solution
(10), however, you will see that the transversality condition has been used to
eliminate the in�uence of the larger root on the system�s intrinsic dynamics,
which instead are driven entirely by the smaller root ��. It is in this sense
that the present system�s solution is analogous to the solutions for more
standard models discussed in the paper by Blanchard and Kahn.

1Some of the roots could be complex. These give rise to oscillatory behavior.
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