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Steady State of the Ramsey-Cass-Koopmans Model

In the last few lectures we have seen how to set up the Ramsey-Cass-
Koopmans Model in discrete time, and with an in�nite horizon. We have
reviewed the solution method for (bivariate) di¤erence equation systems and
derived an exact solution to the model in a special case. I have not yet
developed the main qualitative implications of the model however. These
can perhaps be drawn out most conveniently by de�ning the model�s steady
state (or balanced growth allocation) and linearizing the model around that
long-run destination. As we saw, when f 00(k) = 0 as in the last lecture,
the model has no steady state in c and k, but in the customary case with
f 00(k) < 0 a well-de�ned steady state exists. It is instructive to examine its
properties.
Let �c and �k denote the steady-state values. Then they must satisfy the

intertemporal Euler equation

u0(�c) = �
�
1 + f 0

�
�k
�
� �
�
u0(�c);

which is equivalent to

f 0
�
�k
�
=
1� �
�

+ �: (1)

Intuitively, this states that the net marginal product of steady-state capital,
f 0
�
�k
�
� �, equals the rate of pure time preference.1

Steady state values must also ensure that

�k =
f
�
�k
�
+ (1� �)�k � �c
1 + n

;

or, solving for �c, that
�c = f

�
�k
�
� (n+ �)�k: (2)

1If � = 1=(1 + �); then we call � the rate of pure time preference. With this notation
eq. (1) becomes

f 0
�
�k
�
= � + �:
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Di¤erentiation of eq. (2) shows that per capita consumption is maximized
when the constant capital stock equals k�; where

f 0 (k�) = n+ �: (3)

This is the �golden rule�point where the marginal product of capital just
equals replacement needs. Because the model assumed (1+n)� < 1, however,
it follows that

n <
1� �
�

:

Because f 00(k) < 0, a comparison of (3) with (1) shows that

�k < k�:

Given the consumer optimization assumed in this model, there is no possi-
bility of a dynamically ine¢ cient steady state with capital over-accumulation.
This is one di¤erence compared to the Solow model.
An excellent exercise is to linearize this model in the neighborhood of�

�c; �k
�
and investigate its dynamic properties, in particular showing that the

two chacteristics roots are, respectively, greater than and less than 1. The
�rst question on Problem Set 2 involves an example like that one, so I will
not pursue the linearization here. Instead, I will look in greater detail at
the continuous-time version of this model, using that as a springboard to a
discussion of optimal control theory.

The Ramsey-Cass-Koopmans Model in Continuous Time

The �rst tool we need is compound interest. Please bear with me if this
is familiar ground.
Suppose you invest $1 for a year at 3% interest, compounded annually.

After a year you will have �
1 +

:03

1

�1
= $1:03:

What if, instead, interest is compounded every six months? In other words,
the interest plus principal accrued after six months is reinvested for another
six months at a 3% annualized rate. In that case, after a year you will have
(approximately) �

1 +
:03

2

�2
� $1:030225:
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Clearly you get more money if interest is compounded periodically. and the
more frequently it is compounded, the more you earn. For example, with
quarterly compounding you end the year holding�

1 +
:03

4

�4
� $1:03033:

Weekly compounding gets you yet more, about $1.03044.
The numbers are approaching a limit as the time intervals become pro-

gressively �ner. That limit is the (hypothetical) case of continuous com-
pounding, which yields

lim
h!0

(1 + :03h)1=h � e:03 � $1:03045:

With this background, let�s imagine time is measured in intervals of length
h, so that t = 0; h; 2h; 3h; 4h; etc. The intertemporal objective to be maxi-
mized is now

1X
t=0

(1 + nh)t=h(1 + �h)�t=hhu(ct);

where we multiply u(ct) by h on the theory that the �ow of utility from
consumption at rate ct over a period of length h is proportional to the length
of the period. In the limit as h ! 0, this objective takes the form of an
integral,

1Z
0

e�(��n)tu [c(t)] dt

Maximization is carried out subject to the constraint

kt+h =
hf(kt) + kt � �hkt � hct

1 + nh
:

Above, f(kt) is interpreted as the rate of output �ow and � as the rate of
depreciation (per unit time).
The Lagrangian for the optimization problem is

L =
1X
t=0

�
1 + nh

1 + �h

�t=h
fhu(ct) + �t [hf(kt) + kt � �hkt � hct � (1 + nh)kt+h]g :
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First-order conditions are

@L
@ct

=

�
1 + nh

1 + �h

�t=h
h [u0(ct)� �t] = 0;

@L
@kt+h

= �
�
1 + nh

1 + �h

�t=h
(1+nh)�t+

�
1 + nh

1 + �h

�(t+h)=h
�t+h [hf

0(kt+h) + 1� �h] = 0:

These can be simpli�ed to read

u0(ct) = �t (4)

(a familiar condition) and

�t+h � �t
h

=
�t [� + � � f 0(kt+h)]
1 + hf 0(kt+h)� �h

:

Going to the limit of continuous time (and assuming that �(t) has a
right-hand derivative) gives us

lim
h!0

�t+h � �t
h

= _�(t) = �(t) f� + � � f 0 [k(t)]g : (5)

Because the accumulation equation can be rewritten as

kt+h � kt
h

=
f(kt)� (n+ �) kt � ct

1 + nh
;

its continuous-time limit is

_k(t) = f [k(t)]� c(t)� (n+ �)k(t): (6)

Also necessary is the transversality condition

lim
t!1

e�(��n)tu0 [c(t)] k(t) = 0:

To reduce this all to a di¤erential equation system in c and k, note that
because u0(ct) = �t,

_�(t) = u00[c(t)] _c(t):

By condition (5), u00[c(t)] _c(t) = u0[c(t)] f� + � � f 0 [k(t)]g ; or
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_c(t)

c(t)
= � u0[c(t)]

c(t)u00[c(t)]
ff 0 [k(t)]� (� + �)g :

This equation and eq. (6) constitute the desired system in c and k. To

simplify the notation, I assume that u(c) has the isoelastic form u(c) =
c1�

1
�

1� 1
�

;

in which case the last equation becomes

_c(t)

c(t)
= � ff 0 [k(t)]� (� + �)g : (7)

In this equation (which is the continuous-time analog of the dynamic Euler
equation), �; as noted earlier in this course, is the intertemporal elasticity of
substitution. Together with eq. (6), eq. (7) de�nes the system�s potential
dynamic paths.
The parameter � helps determine the response of consumption to changes

in the interest rate (or marginal product of capital). When � is high, marginal
utility declines more gently when consumption rises. Thus, for example, if
f 0 [k(t)]� � rises above �, c(t) will fall sharply, making _c(t)

c(t)
strongly positive.

We will look more closely at the relationship among �, saving, and interest
rates later in the course.
The system consisting of (7) and (6) has a useful phase diagram rep-

resentation; I borrow the diagrams from David Romer�s book. The steady
state point in this diagram is a saddle point; given k(0); there is a unique
value of c(0) that places the economy on the unique convergent saddle path.
In the in�nite-horizon case, the saddle path de�nes the unique equilibrium
consumption level.
Why? Given a k(0). imagine that we start o¤ at c(0) above the saddle.

Then the dynamics of the system will cause the economy to crash into the
y-axis, as k goes to zero. At that point c must drop abruptly to zero, which
cannot be optimal. What if, given k(0), c(0) starts o¤ below the saddle.
Notice that the solution for eq. (7) is:

c(t) = c(0)e
R t
0 �ff

0[k(s)]�(�+�)gds:

(Why? Be sure you know how to di¤erentiate this expression.) Then

lim
t!1

e�(��n)tu0 [c(t)] k(t) = lim
t!1

e�(��n)tc(0)�
1
� e�

R t
0 ff

0[k(s)]�(�+�)gdsk(t)

= c(0)�
1
� lim
t!1

k(t)e�
R t
0 ff

0[k(s)]�(n+�)gds:
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This limit is zero along the saddle path (because f 0(k)! �+ � > n+ �), but
along the rising capital, declining consumption paths, f 0(k) eventually falls
below n + � and the previous limit therefore is strictly positive. Thus, the
transversality condition is violated.
Perhaps surprisingly, the diagram can also be used to study the �nite-

horizon (T < 1) case, but in that situation the equilibrium path looks
di¤erent. Equations (7) and (6) still apply, but the terminal condition is
k(T ) = 0. Thus, the economy appears to be on an unstable path of the
diagram, with c(0) determined by the requirement that k hit 0 exactly at
time T . Obviously, c(0) will always be above the saddle path in a �nite-
horizon problem. But the bigger is T , the closer is c(0) to its saddle value
and the closer does the economy draw to

�
�c; �k
�
before veering o¤ toward

k(T ) = 0 relatively shortly before the terminal time T .

Exogenous Growth

We can easily add to the model an exogenous rate of labor-augmenting
technological advance, g = _A=A. For an individual the intertemporal Euler
equation is the same. However, if we de�ne consumption per e¢ ciency labor
unit as cE � c=A, then we have

_cE

cE
= �

�
f 0
�
kE
�
� (� + �)

	
� g

= �
n
f 0
�
kE
�
�
�
� + � +

g

�

�o
:

In addition, from _k(t) = f [k(t)]� c(t)� (n+ �)k(t) and kE � k=A we derive

_kE

kE
=

_k

k
� g = F (K=N;A)

K=N
� C=N

K=N
� (n+ �)� g

=
f
�
kE
�

kE
� cE

kE
� (n+ � + g);

so that
_kE = f

�
kE
�
� cE � (n+ � + g)kE:

Comparing the last two dynamic equations with (7) and (6), we see that
there is a balanced growth path (steady state)

�
�cE; �kE

�
where c and k both

grow at rate g. As g is determined outside the model, we have exogenous
growth, just as in the Solow model.
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Optimal Control and the Maximum Principle

The previous model illustrates a more general approach to solving continuous-
time dynamic optimization problems. That approach is called the maximum
principle. You will see that it givs precisely the same answers we derived
above by passing to the continuous-time limit.
A generic problem would be to maximize with respect to the path of the

control variable c(t) the objective functionZ 1

0

e��tv [c(t); k(t)] dt

subject to the transition equation for the state variable, k, _k(t) = G [c(t); k(t)] ;
with k(0) given. (In general c and k can be vectors of controls and states.)
To implement it, set up the (present-value) Hamiltonian

H [c(t); k(t); �(t)] = e��t (v [c(t); k(t)] + �(t) fG [c(t); k(t)]g) :

The multiplier � is called the costate variable (it is a vector if k is a vector).
It has an interpretation as the �shadow price�of the stock k, making H the
present shadow value of the �ow of consumption plus stock accumulation.
Necessary conditions for an optimum are as follows.

� Optimality of the control:

@H

@c
= e��t (vc + �Gc) = 0:

� Equation of motion for the costate variable:

d

dt
e��t� = �@H

@k
:

� Equation of motion for the state variable:

_k = G [c(t); k(t)] :

� Initial condition k(0):

� Transversality condition:

lim
t!1

e��t�(t)k(t) = 0:
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The �rst of these conditions implies, of course, that

vc + �Gc = 0;

while the second can be expressed as

_� = ��� (vk + �Gk) ;

or, more intuitively, as the arbitrage formula

_�+ vk + �Gk
�

= �:

An interpretation of the latter di¤erential equation comes from its integral
solution,

�(t) =

Z 1

t

e��(s�t) fvk [c(s); k(s)] + �(s)Gk [c(s); k(s)]g ds;

which gives � as a present discounted value of future marginal returns to k.
Let us ask how to �t the (discounted) Ramsey problem into this frame-

work. The Hamiltonian is

H [c(t); k(t); �(t)] = e�(��n)t (u [c(t)] + �(t) ff [k(t)]� c(t)� (n+ �)k(t)]g) :

The �rst-order condition with respect to the control c is

@H

@c
= 0() u0(c)� � = 0:

The dynamic equation for the costate variable � is

_� = (� � n)�� �Gk
= (� � n)�� � [f 0(k)� (n+ �)]
= � [� + � � f 0(k)] :

These correspond exactly to eqs. (4) and (5) above.
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