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Nash Equilibrium, Pareto Optimality
and Public Goods with Two Agents

1 Nash Equilibrium
Consider the case where the case with N = 2 agents, indexed by i = 1, 2. Most of what we consider here
is generalizable for larger N but working with 2 agents makes things much easier. Let agent 1’s utility
depends on his own action a1 ("action" is defined very broadly here) as well as agent 2’s action, so we can
write U1 (a1, a2) , and similarly for agent 2 U2 (a1, a2).

1.1 Definition

A set of actions
¡
aN1 , a

N
2

¢
constitutes a Nash equilibrium iff

U1
¡
aN1 , a

N
2

¢ ≥ U1
¡
a1, a

N
2

¢
for all a1, and

U2
¡
aN1 , a

N
2

¢ ≥ U1
¡
aN1 , a2

¢
for all a2

In other words a set of actions is a Nash equilibrium if each agent cannot do better for herself playing her
Nash equilibrium action given other people play their Nash equilibrium action.

1.2 Solving for Nash Equilibria

Solving the Nash equilibrium requires solving two maximization problems, namely

max
a1

U1 (a1, a2) and max
a2

U2 (a1, a2)

where each person takes each other action as given. Oftentimes finding a Nash involves checking all the
possible combinations (a1, a2) and asking yourself "is this a Nash equilibrium?" Sometimes it is possible to
eliminate dominated actions iteratively (see a book on game theory) to narrow the cases that need to be
checked. However, assuming everything is nicely differentiable and aN1 and aN2 are both positive, we can
take first order conditions. The first order condition for each first agent is just

∂U1
¡
aN1 , a

N
2

¢
∂a1

= 0 and
∂U2

¡
aN1 , a

N
2

¢
∂a2

= 0 (Nash FOC)

which is a system of 2 equations in 2 unknowns aN1 , a
N
2 , and so usually a little algebra will yield the solution.

1.3 Reaction Curves

By the implicit function theorem the FOC for agent 1 defines what she will play given a2 (not just at the
Nash), i.e. agent 1’s reaction curve a1 = r1 (a2) so that

∂U1(r1(a2),a2)
∂a1

= 0. A similar reaction curve r2 (a1)
can be defined for agent 2. A Nash equilibrium can be seen as where

aN1 = r1
¡
aN2
¢

and aN2 = r2
¡
aN1
¢

This is where the reaction curves cross in a graph with a1 on one axis and a2 on the other.
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1.4 Strategic Complements and Substitutes

It is useful to know how one agent will react if the other agent changes her action. Differentiating totally
the expression ∂U1(r1(a2),a2)

∂a1
= 0 with respect to a2 we get

d

da2

·
∂U1 (r1 (a2) , a2)

∂a1

¸
=

∂2U1
∂a21

dr1
da2

+
∂2U1
∂a2∂a1

= 0

and so solving for the slope of the reaction curve

dr1
da2

= −
µ
∂2U1
∂a21

¶−1
∂2U1
∂a2∂a1

The sign of this expression depends on the sign of the second derivatives of the utility function. Cases where
dr1
da2

> 0, where a greater action by 2 elicits more of a response by 1, identifies a situation where a1 and a2

are called strategic complements. The alternate case where dr1
da2

< 0, is where a1 and a2 are called strategic
substitutes.

2 Pareto Optimality

2.1 Definition

The set of feasible actions
¡
aP1 , a

P
2

¢
is Pareto optimal if there does not exist another of feasible actions

(ã1, ã2) such that

U1 (ã1, ã2) ≥ U1
¡
aP1 , a

P
2

¢
and

U2 (ã1, ã2) ≥ U2
¡
aP1 , a

P
2

¢
with at least one above inequality strict. In other words there does not exist an allocation that makes both
as well off and making one strictly better off. A logically equivalent condition is that for any feasible set of
actions (ã1, ã2)

U1 (ã1, ã2) > U1
¡
aP1 , a

P
2

¢⇒ U2 (ã1, ã2) < U2
¡
aP1 , a

P
2

¢
A set of actions that makes agent 1 strictly better off must make agent 2 strictly worse off. Important Note:
Except for the trivial case of one person, Pareto optima and Nash equilibria do not necessarily coincide:
plenty of Nash equilibria that are not Pareto optima and vice-versa (remember the Prisoner’s Dilemma!)

2.2 Solving for Pareto Optima

Consider a social planner who attaches a relative weight λ to agent 1 relative to agent 2 where λ ≷ 1
depending whether the planner values agent 1 more or less than agent 2. A theorem from mathematics says
that "pretty much" any Pareto optimal allocation can be found by maximizing the weighted utilities

max
a1,a2

λU1 (a1, a2) + U2 (a1, a2)

for some λ. Different λ will give different Pareto optimal allocations. A popular favorite is to choose λ = 1,
which corresponds to the Utilitarian scoial welfare function. Assuming everything is smooth and the Pareto
optimal actions are positive the following FOC must hold at

¡
aP1 , a

P
2

¢
λ
∂U1
∂a1

+
∂U2
∂a1

= 0 and λ
∂U1
∂a2

+
∂U2
∂a2

= 0 (Pareto FOC)

Compare this condition to the Nash FOC and you can see that the Pareto optimal actions take into account
∂U2/∂a1 and ∂U1/∂a2, i.e., that actions of agent 1 have an effect on agent 2 and vice-versa. These
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externalities are ignored in the Nash equilibrium and so the Nash equilibrium is only optimal if ∂U2/∂a1 =
∂U1/∂a2 = 0. Solving each FOC equation for −λ and rearranging we see

−λ =
∂U2
∂a1
∂U1
∂a1

=
∂U2
∂a2
∂U1
∂a2

⇒
∂U1
∂a2
∂U1
∂a1

=
∂U2
∂a2
∂U2
∂a1

so the marginal rates of substitution between each action for each agent are equal, i.e. MRS1a1a2 =MRS2a1a2 .
At the Nash equilibrium the marginal rates of substitution are typically perpendicular as MRS1a1a2 = ∞
and MRS1a1a2 = 0.

2.3 Utility Possibility Set

One can imagine the set of all pairs of utility (U1, U2) given by all of the different actions a1 and a2. The
utility possibility set is that collection

U = {(U1, U2) : U1 = U1 (a1, a2) , U2 = U2 (a1, a2) for any feasible a1, a2}

which can usually be represented by a graph with U1 on the x-axis and U2 on the y-axis.
By its very nature a Pareto optimum should be on the very edge of that set - that is its "frontier ".

More formally the utility possibility frontier is the set

UF = {(U1, U2) ∈ U : there is no
³
Ũ1, Ũ2

´
∈ U such that Ũ1 ≥ U1 and Ũ2 ≥ U2 }

The difference between the utility possibility frontier and the set of Pareto optima, is that the set of Pareto
optima refers to an outcome or allocation while the frontier refers only to utilities. Also, Pareto optima
require that at least one inequality is strict. All Pareto optima will yield utilities on the frontier, however
not quite all points on the frontier will relate to a Pareto optimum since it may contain points where one
agent (not both) may do better without it costing the other agent.
Say we are at a Pareto optimum. This means that the objective function is given by λUP

1 + UP
2 where

UP
i = Ui

¡
aP1 , a

P
2

¢
. Just around the optimum

¡
UP
1 , U

P
2

¢
we can assume that the sum λUP

1 + UP
2 = Ū is

constant. Using the implicit function theorem again we can treat UP
2 as a function of UP

1 and differentiate

λ+
dUP

2

dUP
1
= 0 which gives us the slope of the utility possibility set dUP

2

dUP
1
= −λ. Thus we can imagine a social

planner with straight, parallel indifference curves, each with slope −λ, in a graph. A Pareto optimum will

be found where an indifference curve is tangent to the utility possibility frontier, with slope dUP
2

dUP
1
, outlining

U.

2.4 Minimum Utility Formulation

If you don’t like the idea of pulling λ out of a hat, consider an alternate formulation where agent 1 is
guaranteed a minimum amount of utility ū1, and agent 2 has her utility maximized. In other words

max
a1,a2

U2 (a1, a2) s.t. U1 (a1, a2) ≥ ū1

If we let λ be the Lagrange multiplier on the constraint to get

U2 (a1, a2) + λ [U1 (a1, a2)− ū1]

then we get the same FOC as the Pareto FOC (it’s the same problem!) except that now λ has to be solved
for, rather than imposed. The constraint U1 (a1, a2) = ū1 adds a third equation so that we can solve for all
three

¡
aP1 , a

P
2 , λ

¢
.1

1 If you don’t like Lagrange multipliers consider the case where a2 is irrelevant and so the constraint is U2 (a1) = ū, which

inverted is a1 = U−12 (ū). Utility for agent 1 is then U1
h
U−12 (ū)

i
and so differentiating implies dU1

dū
= dU(a1)

da1
/dU2(a1)

da2
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3 Public Goods
Each agent has utility Ui (G,xi) where xi is private consumption and public good G =

PN
i=1 gi where gi

is agent i’s provision of the public good. The public good, by definition is nonrival, consumption by one
agent does not reduce it’s benefit to another agent, and nonexcludable, i.e., it is prohibitively expensive to
keep agents from consuming it. Assume that total consumption X =

PN
i=1 xi is produced via a production

function F from the public good, where the total amount of public good available is Ḡ, so X = F
¡
Ḡ−G

¢
with F (0) = 0, F 0 (·) > 0 F 00 (·) < 0, and so the marginal rate of transformation of public good into private
good MRSGX = − dX

DG = F 0
¡
Ḡ−G

¢
.

3.1 Pareto Optimal Provision

Back to the case where N = 2, then we have x1 + x2 = F
¡
Ḡ−G

¢
or x2 = F

¡
Ḡ−G

¢− x1. Then we can
write for utility for the individuals as U1 (x1, G) and U2

¡
F
¡
Ḡ−G

¢− x1, G
¢
. As we saw above we solve for

the Pareto optimum by solving

max
x1,G

λU1 (G,x1) + U2
¡
G,F

¡
Ḡ−G

¢− x1
¢

Assuming xP1 , G
P > 0 then the following two first order conditions must be satisfied at the optimum¡

xP1 , x
P
2 , G

P
¢

x1 : λ
∂U1
∂x
− ∂U2

∂x
= 0

G : λ
∂U1
∂G
−
·
∂U2
∂G

+
∂U2
∂x

F 0
¸
= 0

Solving each equation for λ and then solving for F 0tells us that

λ =
∂U2
∂x
∂U1
∂x

=
∂U2
∂G + ∂U2

∂x F 0
∂U1
∂G

⇒ F 0 =
∂U1
∂G
∂U1
∂x

+
∂U2
∂x
∂U2
∂x

Which is the condition thatMRTGX =MRS1GX+MRS2GX , this is the "Samuelson Rule" that the marginal
rate of transformation should equal the sum of the marginal rates of substitution. In the case of constant
returns to scale where F 0 = pG where pG can effectively be considered the price of G in terms of x, then
MRS1GX +MRS2GX = pG.

3.2 Reaction Curve and Nash Equilibrium

To ease the notational burden and a few other issues we’ll consider the case where F 0 is constant at pG = 1.
Each individual has a budget constraint xi+ gi =Mi,2 This constraint implies that there is really only one
independent solution. Here we let that be gi and let xi =Mi − gi. We can even redefine utility to depend
on each person’s action Ũ1 (g1, g2) = U1 (g1 + g2,M1 − g1) and Ũ2 (g1, g2) = U2 (g1 + g2,M2 − g2) to fit it
into the previous framework.
The reaction curve r1 (g2,M1) of the first agent, which depnends on g2 as well as personal income M1, is

determined by the FOC evaluated at (r1 (g2,M1) + g2,M1 − r1 (g2,M1)) is

∂U1
∂G
− ∂U1

∂x
≤ 0

where of course equality holds if r1 (g2,M1) > 0. Assuming that both x and G are normal goods, then a
little effort3 shows 0 ≤ ∂r1/∂M1 ≤ 1, and −1 ≤ ∂r1/∂g2 ≤ 0, which means that g1 and g2 are strategic
subsitutes: i.e. for each unit of G agent 2 gives, agent 1 will reduce her contribution of G, albeit less than

2The previous case is just where Ḡ = M1 +M2, except now with the Nash equilibrium the initial distribution of resources
matters (a general point).

3Differentiating the budget constraint r1 + x1 =Mi with respect to Mi you get ∂r1/∂M + ∂x1/∂M = 1 and so ∂r1/∂M =
1− ∂x1/∂M ≤ 1, and by assumption ∂r1/∂M ≥ 0. Also ∂r1/∂g2 = ∂r1/∂M − 1 and so −1 ≤ ∂r1/∂g2 ≤ 0.4



one-for-one. The possibility r1 (g2,M1) = 0 is more than a triviality for higher values of g2 and lower values
of M1.If the solution from the FOC equation is negative, then this means r1 (g2,M1) = 0.
Assuming the FOC holds with equality this implies MRS1GX =

∂U1
∂G /∂U1∂x = 1. A similar condition holds

for agent 2 so that if both contribute MRS1GX +MRS2GX = 2 > 1 = MRTGX and hence that the Nash
equilibrium is not optimal. The Nash provision is too small. GN = gN1 + gN2 < GP .

3.3 Decentralized Solution

Say the government finds provides a subsidy of 1/2 on each unit of G purchased, and levy lump-sum taxes
worth a total G/2 if it needs to balance its budget. This amounts to taking away money from the individuals
and then using that money to provide an incentive to buy a total of GP on their own. Now xi =Mi − gi/2
so that the FOC for each agent i, assuming gi > 0 then becomes

∂Ui
∂G
− 1
2

∂Ui
∂x

= 0

and so MRS1GX +MRS2GX =
1
2 +

1
2 = 1 =MRTGX and Pareto optimality is restored. All income effects

will be eliminated by the lump sum tax placed on each individual of gPi /2, which is charged independently of
what gi agents actually choose. This presumes the government knows in advance what agents will choose.

3.4 Crowding Out

If the government provides the public good directly, and taxes for it (so that there are no income effects) it
may "crowd-out" one-for-one the private provision of public goods. For instance say M1 = M2 = M and
preferences are identical so that intially each agent provided gN . The government provides g0 < GN = 2gN

and levies taxies of g0/2 on each person. Then each agent 1 maximizes

U (g1 + (g0 + g2) ,M − g0/2− g1)

If each agent now provides g1 = g2 = gN − g0/2 ≥ 0, then utility will be the same as under the Nash
equilibrium.

U
¡
2gN ,M − gN

¢
As the marginal incentives, i.e. pG, have not changed the same outcome will occur. If the government
provides g0 > 2gN then in equilibrium g1 = g2 = 0 but the just the government supply will be higher than
the Nash, and thus socially better so long as g0 is not inefficiently high.
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