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Time and Discounting, Expected Utility,
Savings and Insurance in a Two State Model

1 Time and Discounting

1.1 Theory of Interest

1.1.1 Stocks

Assume that we can index time periods with t = 0, 1, 2, ..., T . Assume that we let an interesting bearing
assets At accrue interest at rate rt and that it obeys the following difference equation At+1 = (1 + rt)At.
Compounding interest over all of these periods we get that future value of assets A0 at time T is then

FVT (A0) = AT = (1 + rT−1)× (1 + rT−2) ...× (1 + r0)A0 = A0

T−1Y
t=0

(1 + rt) (FV Stock)

We can also invert the relationship looking at the value of AT from the perspective of time 0 known as the
present value

PV0 (AT ) = A0 = At

T−1Y
t=0

µ
1

1 + rt

¶
(PV Stock)

Assuming that the interest rate rt = r, t = 0, ..., T − 1, then FVT (A0) = A0 (1 + r)T and PV0 (AT ) =

AT (1 + r)−T .

1.1.2 Adding Flows

Assume that at each period there is an addition of st, t = 0, 1, ..., T − 1 to the stock of assets so At+1 =
st + (1 + rt)At,

AT = sT−1 + (1 + rT−1) sT−2 + ...+ s0

T−1Y
t=1

(1 + rt) =
T−1X
k=0

"
st

T−1Y
t=k+1

(1 + rt)

#
(FV Flow)

Or discounting back using A0 in (PV Stock)

A0 =
T−1X
k=0

"
st

T−1Y
t=k+1

(1 + rt)

#
×

T−1Y
t=0

µ
1

1 + rt

¶
=

T−1X
k=0

"
st

kY
t=0

µ
1

1 + rt

¶#
(PV Flow)

These expressions are really just accounting tools: while they look difficult, they are pretty straightforward
if taken bit by bit.1

1.2 Geometric Sums

When interest rates are constant then the future value of the flow is gotten with the help of the formula for
geometric sums

TX
t=0

δt =
1− δT+1

1− δ
(Geom Sum)

1Another thing to take into account is that the formula depends on a few conventions such as whether rt is the interest
gained between periods t − 1 and t or between t and t + 1, I optef for the latter. Also savings at time t, st, do not start to
earn interest until time period t+ 1.
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To show this is true multiply both sides of the equation and get

(1− δ)
TX
t=0

δt = 1− δT+1

The left hand side of the equation is then

(1− δ)
TX
t=0

δt =
TX
t=0

¡
δt − δt+1

¢
= (1− δ) +

¡
δ − δ2

¢
+ ...+

¡
δT−1 − δT

¢
+
¡
δT − δT+1

¢
= 1− δT+1

If |δ| < 1 then limT→∞ δT = 0 and so the limit of the infinite sum

∞X
t=0

δt = lim
T→∞

Ã
TX
t=0

δt

!
= lim

T→∞

µ
1− δT+1

1− δ

¶
=

1

1− δ

Example 1 Present value of an annuity. We wish to discount back a constant flow s, at a constant rate r
for T =∞. Let δ = 1

1+r to get

PVT (s) =
∞X
k=0

"
s

kY
t=0

µ
1

1 + r

¶#
= s

∞X
t=0

µ
1

1 + r

¶t+1
=

s

1 + r

∞X
t=0

µ
1

1 + r

¶t
=

s

1 + r
× 1

1−
³

1
1+r

´ = s

r

(PV of Annuity)
so it is just the value of the flow divided by the rate of interest - a very useful rule of thumb. Inversely, a
stock A0 can be turned into a flow of revenue by just taking the interest on it each period s = rA and leaving
the principle.

1.3 Intertemporal Budget Constraints

With almost any decision in economics comes a budget constraint. Imagine an individual who earns nonlabor
incomeMt as well as earnings wages wtLt and earning interest income rtAt in each period and spends ptxt in
consumption. The savings st in each period is then just the income minus consumption st =Mt+wtxt−ptxt.
Plugging this in to the above difference equation we get that each period this individual will face a flow
constraint of the form

At+1 =Mt + wtxt − ptxt + (1 + rt)At (Flow BC)

which states that the amount of At+1 saved in period t is just total income minus total expenditure. Assume
an individual dies at time T +1, then there are a total of T +1 of these constraints. Assuming the individual
starts with nothing and has nothing left over when she dies, A0 = AT+1 = 0, we can combine all of the flow
constraints can be combined to yields a stock constraint

TX
t=0

µ
1

1 + r

¶t
ptxt =

TX
t=0

µ
1

1 + r

¶t
(wtLt +Mt) (Stock BC)

This constraint says that the present value of lifetime consumption will equal the present value of lifetime
income.

1.4 Discounting Profits and Utility over Time

In making actions firms are generally presumed to take actions which maximize the present-value of profits
over time (the present-value of the firm) according to the prevailing interest rate, that is

Π =
∞X
t=0

µ
1

1 + r

¶
πt
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where πt is per-period profits in period t. For utility economists have developed an analogue theory known
as theDiscounting Utility (DU) model. While its psychological foundations are tenuous, the theory does
have some fairly interesting normative properties of how one should discount the future which Koopmans
(1960) lays out. The theory implies that utility within each time periods is additively separable so we
can write utility in period t, from the point of view of period t, as u (lt, xt) where (lt, xt) are the variables
of which affect utility in period t, and u is called the felicity function, which is typically concave u0 (x) > 0
and u00 (x) < 0. Future utility is discounted at a constant rate ρ, known as rate of time preference which
is sometimes written as part of a discount factor β = 1

1+ρ . Total utility over all time periods for a flow

of {lt, xt}Tt=0 is then given by

U (l0, x0, ...xT , lT ) =
TX
t=0

µ
1

1 + ρ

¶t
u (lt, xt) (DU)

Because of its simplicity and its flexibility the DU model is the most widely chosen by far amongst economist
for dealing with decision making over time.

2 Savings

2.1 A Simple Savings Model

We consider a two period model 2 periods t = 0, 1 and no leisure-labor choice. An individual needs to simply
decide how to allocate his consumption between both periods assuming he starts out with initial assets A.
The real interest rate is r so we can ignore prices and set them to p0 = p1 = 1 in each period. Be warned
that if we are trying to model a person’s life in 2 periods, r will be much greater than a few percentage
points.2 Savings in period 0 will then be just s = A− x0 and will earn interest rate r, so that consumption
in period 1 is x1 = (1 + r) (A− x0) which are our stock budget constraint. Utility in both periods is given
by u (x0) + 1

1+ρu (x1) and so substituting in the budget constraint (as surely x0 and x1 are positive in both
periods) we solve

max
x0

u (x0) +
1

1 + ρ
u [(1 + r) (A− x0)]

using the chain rule appropriately this yields the FOC

u0 (x∗0)−
1 + r

1 + ρ
u0 [(1 + r) (A− x∗0)] = 0

rearranging and substituting in x∗1 = (1 + r) (A− x∗0) we get

u0 (x∗0)
u0 (x∗1)

=
1 + r

1 + ρ

Now if the interest rate r is greater than the rate of time preference ρ this implies u0(x∗0)
u0(x∗1)

= 1+r
1+ρ > 1

which in turn implies u0 (x∗0) > u0 (x∗1). Becaue u00 (x) < 0 (u is concave) then u0 (x) is decreasing and so
u0 (x∗0) > u0 (x∗1) implies that x∗1 > x∗0, i.e. consumption is higher in the later period. Another way to see
this is if that MRSx0,x1 = (1 + ρ) u

0(x0)
u0(x1)

and the MRTx0,x1 = 1+ r. Along the 45 degree line where x0 = x1
has slope 1 + ρ, and so if r > ρ then an indifference curve at x0 = x1 will cut into the budget constraint at
a lower slope, indicating the preference for more x1. Of course if ρ > r then the argument can be reversed
to show x∗0 > x∗1.

2 Say we want a period of 30 years at an interest rate of 5%, then the effective r will be r = (1.05)30 − 1 = 3. 321 9.
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2.2 Do increases in r increase saving?

Another question is how changes in the interest rate will affect savings. Taking the FOC and treating x∗0
as a function of r,. x∗0 (r) we can differentiate implicitly to get(

u00 (x∗0) +
(1 + r)

2

1 + ρ
u00 (x∗1)

)
dx∗0
dr
− 1

1 + ρ
u0 (x∗1)−

1

1 + ρ
u00 (x∗1)x

∗
1 = 0

after we substitute back x∗1 (to make the expression shorter). Solving for
dx∗0
dr we get

dx∗0
dr

=
u0 (x∗1) + x∗1u00 (x∗1)

(1 + ρ)u00 (x∗0) + (1 + r)
2
u00 (x∗1)

This expression has an uncertain sign. The denominator is negative since u00 (x) < 0 always, so dx∗0
dr is

negative if and only if the the numerator is positive. Since s∗ = A− x∗0,
ds∗
dr = −dx∗0

dr then savings increases

with r if dx∗0
dr is negative. This condition can be rearranged to yield

ds∗

dr
> 0⇔ dx∗0

dr
< 0⇔ u0 (x∗1) + u00 (x∗1)x

∗
1 > 0⇔

u00 (x∗1)x∗1
u0 (x∗1)

> −1⇔ γ (x∗1) ≡ −
u00 (x∗1)x∗1
u0 (x∗1)

< 1

Where γ (x) is a measure of the concavity of u (x) which is actually the elasticity of marginal utility
with respect to x.3 It is also known as the or the coefficient of relative risk aversion which relates to
expected utility theory (see below). Many reasonable utility functions typically yield coefficients of relative
risk aversion above and below 1 and so this issue is unresolved. The issues can also be framed in terms of
income and substitution effects in terms of x0. As r increases x0 becomes relatively more expensive and so
it becomes sensible to save more (this is captured by the u0 (x∗1) > 0). However the value of existing savings
increases making the individual richer, inducing her to consume more in both periods, which means saving
less in period 0 (captured by the u00 (x∗1)x∗1 < 0 term).

2.2.1 Social Security

The simplest model of social security is where the government just saves some amount sG for the individual.
This leaves the individual with a private savings of s = A − x0 − sG. And so the individual consumes
(sG + s) (1 + r) = (sG +A− x0 − sG) (1 + r) = (A− x0) (1 + r) which is really the same amount. There is
no difference. If sG is set very high this may impose the constraint x1 ≥ (1 + r) sG if the individual cannot
borrow against his social security earnings. It might also be that social security savings does not yield the
same effective interest as r. For example in a simple overlapping generations model with a pay-as-you-go
system the effective interest on sG is n + g the rate of population growth plus the rate of growth of the
economy.

2.3 The Full Intertemporal Model (Optional)

Economists typically model an individual as maximizing (DU) subject to the budget constraint (Stock BC)
- we ignore any time constraint. We can write the Lagrangean as

L (l0, x0, ...xT , lT , α) =
TX
t=0

µ
1

1 + ρ

¶t
u (xt, lt) + α

"
TX
t=0

µ
1

1 + r

¶t
(wtLt +Mt − ptxt)

#
(Intertemporal Lagrangean)

The first order condition for utility for any given xt is actually not so bad given the separability

∂L

∂xt
=

µ
1

1 + ρ

¶t
∂u

∂x

¡
xDt , l

D
t

¢− α

µ
1

1 + r

¶t
pt = 0 (Cons FOC)

3Recall an elasticity of y with respect to x is the percent change in y due to a 1% change in x, defined mathematically as¯̄̄
dy
dx

x
y

¯̄̄
=
¯̄̄
d ln y
d ln x

¯̄̄
=
¯̄̄
%∆y
%∆x

¯̄̄
where "%∆" means "percent change."
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which implies that
∂u

∂x

¡
xDt , l

D
t

¢
= α

µ
1 + ρ

1 + r

¶t
pt

Taking the same condition for t+ 1 we get

∂u

∂x

¡
xDt+1, l

D
t+1

¢
= α

µ
1 + ρ

1 + r

¶t+1
pt+1

and dividing the first by the second we get that the marginal rate of substitution between periods 1 and 2 is

MRSxt,xt+1 =
∂u
∂x

¡
xDt , l

D
t

¢
∂u
∂x

¡
xDt+1, l

D
t+1

¢ = 1 + r

1 + ρ

pt
pt+1

(ISC)

This relationship in economics is known as an Euler equation. For small r and ρ and small amounts of
inflation this effectively says that at the optimum the MRSxt,xt+1 = (r − π)− ρ, the real interest rate (the
nominal interest rate r minus inflation π) minus the rate of time preference. If the real interest rate and
the rate of time preference are equal than the MRSxt,xt+1 = 1. Essentially this says that consumers will
prefer to consume more later if (i) real rate of return (r − π) is high, and (ii) they are patient so ρ is low.
In general individuals will consume more in periods where pt is low. The phenomenon by which individuals
substitute consumption over time is known as the intertemporal substitution of consumption.
The FOC for lt using the fact that ∂Lt

∂lt
= −1 is

∂L

∂lt
=

µ
1

1 + ρ

¶t
∂u

∂l

¡
xDt , l

D
t

¢− α

µ
1

1 + r

¶t
wt = 0

which yields a similar Euler equation for the intertemporal substitution of leisure

MRSlt,lt+1
1 + ρ

=
∂u
∂l

¡
xDt , l

D
t

¢
∂u
∂l

¡
xDt+1, l

D
t+1

¢ = 1 + r

1 + ρ

wt

wt+1
(ISL)

which says that people will take take leisure (and work less) when the cost of doing so is low, i.e. wages are
low. If they are impatient they are more likely to put off work until later in their lives.
Combining the FOC for consumption and leisure we also get the conventional static condition between

leisure and consumption in period t

MRSxt,xt+1 =
∂u
∂l

¡
xDt , l

D
t

¢
∂u
∂x

¡
xDt , l

D
t

¢ = wt

pt
(SC)

which should be very familiar if we remove the subscripts t. One word of caution is that while the FOC are
relatively easy to interpret, solving these models in all but the simplest situations can be quite burdensome.

3 Expected Utility

3.1 The Basics

Expected Utility (EU) theory is a technique developed by Von Neumann and Morgenstern (1944) to deal
with situations of quantifiable risk. It requires preferences to exhibit two additional axioms of continuity
and independence, which are somewhat controversial. Assume that states of nature can be indexed by
an s = 1, ..., S, each with a probability of occurring of p1, ..., pS , which as probabilities obey ps ≥ 0 andPS

s=1 ps = 1.4 Let xs be the realization of some random variable, sometimes known as a prospect
or lottery, x in state s, which yields utility u (xs). The Expected Utility Theorem states that if

4This approach breaks down if the uncertainty is unquantifiable, i.e. you cannot attach numerical probabilities to each state.
Risk is generally defined as quantifable uncertainty.
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consumers have rational preferences that exhibit continuity and independence5 then agents will behave as if
they maximize the expected value of their utility or just expected utility

E [u (x)] =
SX
s=1

psu (xs) (EU Utility)

Similarly, firms can be assumed to maximize expected profits E [π (x)] over various states of the world. The
nature of the budget constraint will vary considerably upon the situation considered.

3.2 Two State Set Up

The easiest situation to set up is a 2 state set up with p1 = p and p2 = 1− p. Individuals maximize

E [u (x)] = pu (x1) + (1− p)u (x2)

The marginal rate of substitution of x between states is given by

MRSx1x2 =
p

1− p

u0 (x1)
u0 (x2)

Along the 45 degree line of a graph of x1 and x2, where x1 = x2, then u0 (x1) = u0 (x2) and so MRSx1x2 =
p/ (1− p) the odds-ratio (the proportion of state 1’s to state 2’s) no matter what the utility function looks
like. This is one of the strong restrictions of expected utility theory.

3.3 Risk Aversion

Imagine a person faced with the prospect of a fair 50-50 bet. If the person with money M takes the bet
b > 0 then x1 = M + b if he wins and x2 = M − b if he loses. With no bet x1 = x2 = M . The bet is fair
since E [b] = 1

2b+
1
2 (−b) = 0 and so the expected value of the prospect is M . The utility from not taking

the bet is just u (M), while the utility taking it is 1
2u (M + b) + 1

2u (M − b). The person is will decline or
accept the bet depending on whether

u (M) ≷ 1
2
u (M + b) +

1

2
u (M − b)

A person who rejects the bet (>) is called risk averse, takes the bet (<) is called risk loving , and
indifferent about it (=) is risk neutral.

Generalizing to any prospect x we compare what the utility of its expected value of its expected utility
u [E (x)] ≷ E [u (x)]; .> implies risk aversion, < risk loving, and = risk neutrality. A mathematical fact
known as Jensen’s Inequality tells us that risk aversion is reflected in a u (x) that is concave, i.e. u00 (x) < 0
when x is a single variable. Similarly, risk loving implies a convex u, u00 (x) > 0, and risk neutrality a linear
u, u00 (x) = 0. Of course there are different degrees of risk aversion (or loving), such as that measured by
coefficient of relative risk aversion γ (x) defined above.

4 Insurance

4.1 Efficient Insurance

Assuming individuals are risk averse and actuarially fair insurance exists (i.e. insurance with expected
cost to the consumer of zero) then it can be shown that individuals will always choose to insure fully (i.e.
eliminate all risk). Suppose an agent a utility function which depends only on income, which she has M
to start out with. Let p > 0 be the the chance of an accident which causes a loss d of income. An agent
can buy insurance contract (a, b) which has a premium b but pays out a net amount a in case the accident

5 Intuitively, continuity implies that very slight changes in probability will not affect a strict preference of a prospect x over
a prospect y. Independence implies that if x is preferred to y and we mix x and y each with the same lottery z, so that x0
= x with a 50% chance and z with a 50% chance (and y0 defined similarly) then x0 will be preferred to y0.
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occurs. So the expected utility of an agent that buys such a contract is pu (M − d+ a)+ (1− p)u (M − b) .
You can think of state 1 as the accident state and state 2 as the non-accident state with x1 = M − d + a ,
and x2 =M − b.
The expected profit of a firm which offers this contract is π = p (−a) + (1− p) b (we leave out the

expectations operator E) The presence of actuarially fair insurance can be justified by assuming insurance
markets are competitive and firms are risk neutral : competition among firms will drive expected profits to
zero π = 0 ⇒ ap = b (1− p) ⇒ b = ap/ (1− p) . The effective "budget constraint" has a MRTx1x2 =
−dx2

dx1
= db

da =
p
1−p . The choice of optimal insurance is found by finding the optimal a

max
a

pu (M − d+ a) + (1− p)u

µ
M − a

p

1− p

¶
Taking the FOC with respect to a

pu0 (M − d+ a∗) + (1− p)u0
µ
M − a∗

p

1− p

¶µ
− p

1− p

¶
= 0

which rearranging and cancelling out (1− p) and p implies

u0 (M − d+ a∗) = u0
µ
M − a∗

p

1− p

¶
If agents are risk averse then concavity implies u0 is decreasing and so u0 (x1) = u0 (x2) implies x1 = x2 and
so agents will have the same effective income in either state, they are fully insured. We can solve for the
premium as

M − d+ a∗ =M − a∗
p

1− p
⇒ a∗ = (1− p) d

and so b∗ = a∗p/ (1− p) = pd and the optimal contract will be (a∗, b∗) = ((1− p) d, pd) . In each state
income is x∗1 = x∗2 = M − pd. This is shown in a diagram since the zero profit condition implies that the
marginal rate of transformation MRTx1x2 =

p
1−p equals the marginal rate of substitution MRSx1x2 along

the 45 degree line (see above) where the two allocations are equal.

4.2 Adverse Selection and Insurance

The problem of adverse selection in insurance markets was laid about by Rothschild and Stiglitz (1976).
Take the same setup as above except assume there are two types of individuals - low risk types L and high
risk types H with accident probabilities pL and pH respectively, where pL < pH , but where M,u , and d are
the same for both types. Competition among firms will have some interesting implications as it implies
firms will always offer contracts which can make at least zero profits. Say proportion λ are low risk types
and so (1− λ) are high risk types. If insurance companies can tell the two apart then they can just offer
each type the efficient contract (a∗L, b

∗
L) = ((1− pL) d, pLd) and (a∗H , b

∗
H) = ((1− pH) d, pHd).

4.2.1 Failure of Efficient Insurance

If the types are not observable by the insurance firms then the efficient contracts no longer work as firms
cannot prevent one type from taking the other type’s efficient contract. The high types H all want to
pretend to be low types L as the accident benefit is higher as a∗L = (1− pL) d > (1− pH) d = a∗H and
premium costs are lower b∗L = pLd < pHd = b∗Ld. Since firms compete to get the low-risk types πL =
−pLa∗L + (1− pL) b

∗
L = 0 and so overall profits when high types take the efficient low risk contract will turn

negative:

λπL + (1− λ)πH = 0 + (1− λ) [(1− pH) b
∗
L − pHa

∗
L]

= (1− λ) [(1− pH) pLd− pH (1− pL) d]

= d (1− λ) [pL − pH ] < 0
7



where the inequality comes from the fact that pL < pH . Therefore the efficient contracts cannot be an
equilibrium, and some other suboptimal equilibrium must be found. There are two main possibilities to
consider: (i) where firms offer a one-size-fits-all or "pooling" contract (aP , bP ) which both types will take
and (ii) where firms offer "separating" contracts, one for low risk types

¡
aSL, b

S
L

¢
and one for high risk types¡

aSH , b
S
H

¢
which are designed so that each type voluntarily self-selects into buying the contract made for it.

4.2.2 Pooling Contracts

Say a firm tries to institute a pooling contract (aP , bP ) so that everyone buys it. The question is can this
contract can work as an equilibrium. (The answer is no) If a firm can offer a profitable contract which
at least one type will take, then the equilibrium will fall apart. In fact, for any pooling equilibrium there
is always a contract (a0, b0) that is better for the low risk types and is profitable. Therfore any pooling
equilibrium will fall apart.
The overall probability of accident p = λpL+(1− λ) pH and so pL < p < pH . The zero profit condition

is that πP = −paP + (1− p) bP = 0 and thus bP = aPp/ (1− p). Therefore the MRTx1x2 =
p
1−p . Now

at any point the indifference curves of high types and low types will cross, as high types will have a higher
MRSHx1x2 .

MRSHx1x2 > MRSLx1x2 ⇔
pH

1− pH
u0
¡
xP1
¢

u0
¡
xP2
¢ > pL

1− pL
u0
¡
xP1
¢

u0
¡
xP2
¢ ⇔ pH

1− pH
>

pL

1− pL
⇔ pH > pL

which makes sense since high types will value consumption in the accident state 1 more than in the non-
accident state 2. However the pooling contract that satisfies MRSHx1x2 > p

1−p > MRSLx1x2 , will not be
attractive to low risk types when offered another contract.
Let K =

¡
MRSLx1x2 +MRSLx1x2

¢
/2 be the average of the MRSx1x2 for both types. Now for some small

ε > 0, consider the following contract that offers just slightly less coverage ε, but requires a lower premium
Kε, (a0, b0) = (aP − ε, bP −Kε), implying x01 = xP1 − ε, and x02 +Kε The low types will take this contract
since it will yield a higher utility then

¡
aP , bP

¢
, which can be shown using a differential argument from

calculus6

UL
¡
xP1 , x

P
2

¢− UL (a
0, b0) = pL

£
u
¡
xP1 − ε

¢− u
¡
xP1
¢¤
+ (1− pL)

£
u
¡
xP2 +Kε

¢− u
¡
xP2
¢¤

' pLu
0 ¡xP1 ¢ (−ε) + (1− pL)u

0 ¡xP2 ¢ (Kε)

This quantity is positive since

(1− pL)u
0 ¡xP2 ¢ (Kε)− pLu

0 ¡xP1 ¢ (ε) > 0⇔ K >
pL

1− pL
u0
¡
xP1
¢

u0
¡
xP2
¢ =MRSLx1x2

For the same reason high risk types will not like this contract since K < MRSHx1x2 because the reduction in
coverage is not made up enough for them by the reduction in the premium. Firms will want to offer such a
contract as they can make a positive profit from it

π0 = −pL
¡
aP − ε

¢
+ (1− pL)

¡
bP −Kε

¢
=
£−pLaP + (1− pL) b

P
¤
+ ε [pL − (1− pL)K]

=

·
−pLaP + (1− pL)

p

1− p
aP
¸
+ ε [pL − (1− pL)K]

= aP
·
p− pL
1− p

¸
+ ε [pL − (1− pL)K]

6Remember the definition of a derivative is

u0 (x) = lim
ε→0

u (x+ ε)− u (x)

ε

and so for a small ε > 0, u0 (x) = u(x+ε)−u(x)
ε

which rearranging implies u (x+ ε)− u (x) = εu0 (x).
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The first term is always positive while the second term is negative. The firm will just pick an ε > 0 small
enough the it can make the second term negligibly small and assure itself positive profits. Intutively, the
pooling contract makes positive profits from the low risk types which are offset by losses from the high risk
types. This provides an incentive for another firm to offer a contract which is slightly more attractive to
low risk types and slightly less attractive to high risk types. Low risk types will switch to the new contract,
and so the new firm makes all of the positive profits while the old firm is saddled with the high risk types
and loses money - its contract doesn’t work.

4.2.3 Separating Contracts

We know that no pooling contract will ever work as it will lose out to a separating contract. However that
separating contract is not an equilibrium since the former pooling contract which serves the high types no
longer works. An equilibrium pair of separating contracts

¡
aSL, b

S
L

¢
and

¡
aSH , b

S
H

¢
must be stable for both

types. As we saw earlier it is impossible for both types to get their respective efficient contracts as high risk
types prefer the low risk efficient contract to their own optimal contract. However, it is possible for high
risk types to get their efficient contract will low types get an inefficient contract, since low types do not want
the high risk efficient contract. In, fact competition amongst firms for the high types business will assure
that the high risk types will get their efficient contract

¡
aSH , b

S
H

¢
= (a∗H , b

∗
H) in a separating equilibrium.

The low types can only get the most efficient contract
¡
aSL, b

S
L

¢
that high risk types will not want to take.

We model this by making high types indifferent about both contracts, assuming they take the one for the high
types. Let (x∗1H , x

∗
2H) be the amounts in each state from the efficient high type separating contract and¡

xS1L, x
S
2L

¢
be that for the low types. Since utility for the high types is U∗H = pHu (x

∗
1H) + (1− pH)u (x

∗
2H)

then

U∗H = pHu
¡
xS1L

¢
+ (1− pH)u

¡
xS2L

¢
= pHu

¡
M − d+ aSL

¢
+ (1− pH)u

¡
M − bSL

¢
(Cond 1)

is the implicit restriction on
¡
xS1L, x

S
2L

¢
: be careful to note that it is the high risk probabilities for the low risk

contract. The contract
¡
aSL, b

S
L

¢
that will result in a separating equilibrium will satisfy the above condition

and satisfy the zero profit condition for the low risk types

bSL = aSLpL/ (1− pL) (Cond 2)

Substituting in (Cond 2) into (Cond 1) we have

U∗H = pHu
¡
M − d+ aSL

¢
+ (1− pH)u

¡
M − aSLpL/ (1− pL)

¢
This one equation implicitly defines the one variable aSL. Differentiating with respect to a

S
L we get

0 = pHu
0 ¡M − d+ aSL

¢
+ (1− pH)u

0 ¡M − aSLpL/ (1− pL)
¢µ− pL

1− pL

¶
⇒ u0

¡
M − d+ aSL

¢
=
1− pH
pH

pL
1− pL

u0
£
M − aSLpL/ (1− pL)

¤
and so the marginal rate of substitution is

MRSLx1x2 =
u0
¡
xS1L

¢
u0
¡
xS2L

¢ = 1− pH
pH

pL
1− pL

6= pL
1− pL

and so this results in low risk types being underinsured relative to what would be efficient.
So far we have found a set of equilibrium contracts that Because the contract for low types is inefficient

there are lots of possible contracts that could preferred by low risk types that would increase profits. However
a more efficient contract for the low risk types will also attract the high risk types. The question is whether
there are pooling contracts which could also sustain high risk types and still make a profit. If λ is big
and there are relatively few high profit types then such a pooling contract exists. Then the separating
equilibrium we just solved is not a true equilibrium as some firm can offer the pooling contract which will

9



cause both types to abandon the separating contracts. In this case there will be no market equilibrium
whatsoever. Any potential pooling equilibrium will be abandoned for separating contracts and any potential
separating equilibrium will be abandoned for a pooling one!
This contract (ã, b̃) has to make at least zero profits so

pb̃ = (1− p) ã

and it has to be better for low risk types (which automatically makes it better for high risk types) which
substituting in the above means

pLu (M − d+ ã) + (1− pL)u (M − ãp/ (1− p)) > pLu
¡
M − d+ aSL

¢
+ (1− pL)u

¡
M − aSLpL/ (1− pL)

¢
So rearranging, if there there exists an ã that satisfies this above condition then there will be no separating
equilibrium either. As the proportion of low risk types goes to one, λ→ 1, then p→ pL and this condition
becomes whether or not there exists an ã such that

pLu (M − d+ ã) + (1− pL)u (M − ãpL/ (1− pL)) > pLu
¡
M − d+ aSL

¢
+ (1− pL)u

¡
M − aSLpL/ (1− pL)

¢
which holds by the inefficiency of aSL showed earlier. Graphically this can be checked by seeing if the zero
profit constraint for a pooled contract lies beneath the indifference curve for low types at the separating
equilibrium. If it is beneath then the above condition is not satisfied and the separating contracts are an
equilibrium. If it crosses this indifference curve then there is no equilibrium. An interesting conclusion of
this paper is that it takes only a few high risk types (λ close to one) for the entire insurance market to fall
apart.
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