Econ 230B

Spring 2004

Emmanuel Saez

Problem Set 1 Solution

1. (4.5 pts)
a) $(0.5 \mathrm{pts}) e$ is the elasticity of income with respect to the net-of-tax rate $1-\tau$. There are no income effects, so this elasticity is both compensated and uncompensated.

Total tax $T=\tau \sum_{i} z_{i}=\tau(1-\tau)^{e} \sum_{i} z_{i}^{0}$.
FOC in τ gives $\tau^{*}=1 /(1+e)$.
b) $(1 \mathrm{pt})$

$$
\hat{e}=\frac{(1 / n) \sum_{i} \log \left(z_{i 2}\right)-(1 / n) \sum_{i} \log \left(z_{i 1}\right)}{\log \left(1-\tau_{2}\right)-\log \left(1-\tau_{1}\right)}
$$

obtained by OLS regression $\log \left(z_{i t}\right)=\alpha+e \log \left(1-\tau_{t}\right)+\epsilon_{i t}$
c) (0.5 pt) Assuming that incomes are multiplied by $e^{g}>1$ because of growth from year 1 and year 2 , previous \hat{e} is biased upward. To get consistent estimate of e, need to subtract the growth rate from the numerator:

$$
\hat{e}=\frac{(1 / n) \sum_{i} \log \left(z_{i 2}\right)-(1 / n) \sum_{i} \log \left(z_{i 1}\right)-g}{\log \left(1-\tau_{2}\right)-\log \left(1-\tau_{1}\right)}
$$

d) $(1 \mathrm{pt})$

$$
\hat{g}=(1 / n) \sum_{i} \log \left(z_{i 1}\right)-(1 / n) \sum_{i} \log \left(z_{i 0}\right)
$$

obtained by OLS regression $\log \left(z_{i t}\right)=\alpha+g t+\epsilon_{i t}$
Using all three years, DD estimate:

$$
\hat{e}_{R}=\frac{\left[(1 / n) \sum_{i} \log \left(z_{i 2}\right)-(1 / n) \sum_{i} \log \left(z_{i 1}\right)\right]-\left[(1 / n) \sum_{i} \log \left(z_{i 1}\right)-(1 / n) \sum_{i} \log \left(z_{i 0}\right)\right]}{\log \left(1-\tau_{2}\right)-\log \left(1-\tau_{1}\right)}
$$

Obtained with OLS regression: $\log \left(z_{i t}\right)=\alpha+\beta t+e \log \left(1-\tau_{t}\right)+\epsilon_{i t}$
e) (0.75 pt) Total tax $T=\tau \sum_{i} z_{i}=\tau \sum_{i}(1-\tau)^{e_{i}} z_{i}^{0}$.

FOC: $\sum_{i} z_{i}-\tau \sum_{i} e_{i}(1-\tau)^{e_{i}-1} z_{i}^{0}$
implies $\sum_{i} z_{i}=[\tau /(1-\tau)] \sum_{i} e_{i}(1-\tau)^{e_{i}} z_{i}^{0}$
that is, $\sum_{i} z_{i}=[\tau /(1-\tau)] \sum_{i} e_{i} z_{i}$
Let us note $\bar{e}=\sum_{i} e_{i} z_{i} / \sum_{i} z_{i}$ the average elasticity weighted by incomes (high incomes have a disproportionate effect on total elasticity), we have:
$\tau /(1-\tau)=1 / \bar{e}$, that is, $\tau=1 /(1+\bar{e})$.
f) (0.75 pt) Total tax $T=\tau \sum_{i} z_{i}=\tau \sum_{i}(1-\tau)^{e_{i}} z_{i}^{0}(R)$.

FOC: $\sum_{i} z_{i}-[\tau /(1-\tau)] e \sum_{i} z_{i}+\tau \sum_{i}(1-\tau)^{e_{i}}\left(z_{i}^{0}\right)^{\prime}(R) \partial R / \partial \tau=0$
but last term is zero because at the optimum, R is maximized and thus $\partial R / \partial \tau=0$. Therefore, the FOC is the same as in a) and $\tau=1 /(1+e)$ as in a).
2. (3 pts) Many different possible reforms.
3. (2.5 pts)
a) (1 pt) Let us denote $L=1-l$ leisure. We have $u=u(c, L)$.

Individual maximization:
$\operatorname{Max} u(w l-T(w), 1-l)$.
First order condition $u_{c} w-u_{L}=0$ implies that labor supply $l(w, T(w))$ depends on w and $T(w)$

Planner's program:
$\operatorname{Max} \int u(w l(w)-T(w), 1-l(w)) f(w) d w$ st $\int T(w) f(w) d w \geq 0$
Lagrangian $L=u(w l(w)-T(w), 1-l(w)) f(w)+\lambda T(w) f(w)$
FOC with respect to $T(w): \partial L / \partial T(w)=0$
implies $u_{c}(-1+w \partial l / \partial T(w))-u_{L} \partial l / \partial T(w)+\lambda=0$
implies $u_{c}=\lambda$ (using individual FOC $u_{c} w-u_{L}=0$)
Interpretation: The marginal utility of consumption is equalized over all individuals.
b) (1 pt) $d u / d w=u_{c}\left[l-T^{\prime}(w)+w d l / d w\right]-u_{L} d l / d w=u_{c}\left[l-T^{\prime}(w)\right]$ (using individual FOC $\left.u_{c} w-u_{L}=0\right)$

To get $T^{\prime}(w)$, let us differentiate wrt w the government FOC $u_{c}=\lambda$ which takes the form $a^{\prime}(w l-T(w))=\lambda$ with separable utility.

We obtain $a^{\prime \prime}(w l-T(w)) \cdot\left[l-T^{\prime}(w)+w d l / d w\right]=0$
which implies $\left.l-T^{\prime}(w)=-w d l / d w\right]$
So $d u / d w=-w u_{c} d l / d w$
So we have indeed $d u / d w<0$ iff $d l / d w>0$
c) (0.5 pts$) a^{\prime}(w l-T(w))=\lambda$ so consumption is constant across individuals but high skilled workers work more, and thus utility is decreasing in skills.

This is a FB model of income taxation. It generates complete redistribution and requires the high skilled individuals to work harder (because they produce a lot).

