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Abstract

This paper outlines a new method for detecting and assessing the strength of social interactions based on
contrasts in excess variance across social groups of exogenously differing sizes. An attractive feature of the
approach is its robustness to the presence of group-level heterogeneity and sorting. The proposed estimation
strategy is used to test for the presence of peer effects in learning using data from the Tennessee class size
reduction experiment Project STAR. Size-induced contrasts of excess variance provide a powerful mechanism
for detecting peer group effects in this dataset. Switching from classroom where mean peer ability is at the
25th percentile of the ability distribution to one where it is at the 75th percentile is associated with changes
in math and reading achievement scores of 0.9 and 1.1 standard deviations respectively. These estimates
suggest that, at minimum, differences in peer composition are at least as important as those in teacher
quality for explaining variation in academic achievement within Project STAR schools. While tests based
on excess variance contrasts provide strong evidence of peer group effects, conventional regression-based
excess sensitivity tests do not. Calibrating asymptotic power functions for the two tests to the Project
STAR data suggests that across repeated samples the odds of detecting social interactions are roughly 20
to 30 times greater with the proposed excess variance test. Generalized method of moments provides a
unified framework for estimation and inference. The proposed approach is straightforward to implement
using standard software.
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1 Introduction

Variation in many individual outcomes — such as earnings, academic achievement, substance abuse,

criminal behavior, and technology adoption — includes a substantial between-group component.

For example, a long economics of education literature documents that mean academic achievement

varies dramatically across different classrooms, even among those located within the same school

(e.g., Hanushek 1971). Perhaps the most straightforward explanation for this finding is the presence

of classroom-level heterogeneity, such as differences in teacher quality.1

An alternative explanation for excess variance is that it mirrors the relative salience of social

interactions or peer group effects. Social interactions are present if individual behavior is affected

by reference or peer group behavior, characteristics or both. If students within the same classroom

learn from one another, then achievement levels will covary positively within a classroom and hence

display excess variation between classrooms. As with group-level heterogeneity, social interactions

are associated with a lack of independence in outcomes across members of the same social group.

The two rival explanations for excess between-group variance, group-level heterogeneity and

social interactions, are straightforward to understand, but exceptionally difficult to discriminate be-

tween empirically. Hoxby (2002, p. 58) emphasizes the “formidable obstacles” faced by researchers

when attempting to detect peer effects in the learning process. In a recent and wide-ranging review

Durlauf (2002, p. 20) concludes that “there is little reason why a skeptic should be persuaded

to change his mind by the statistical evidence [on social interactions] currently available”. Often

associated with controversy, the empirical literature on social interactions is also characterized by

widely divergent conclusions across different researchers.

The indecisiveness of available empirical evidence on social interactions partly reflects the fact

that it speaks to some of the most contentious contemporary social and political issues in society.

For example, the merits of school choice, ability tracking, busing and other desegregation mea-

sures, and different zoning laws all relate to the ‘simple’ question of whether peer group effects

are important for the learning process.2 A second reason for the diversity of conclusions found in

the literature is that no consensus exists on how to best identify and estimate statistical models of

social interactions in the presence of group-level heterogeneity.

This paper develops new methods for adducing the presence and magnitude of social interac-

tions based on excess variance contrasts. An attractive feature of the proposed methods is that

they are able to identify social interactions in a way that is robust to the presence of group-level

heterogeneity. In the context of the economics of education example introduced above, they provide

mechanisms by which excess between-classroom variation in student achievement can be decom-

posed into its teacher quality and peer effect portions. Such a decomposition is useful for assessing

1Another example is crime, which is endemic to some neighborhoods and negligible in other seemingly similar ones
(c.f., Glaeser, Sacerdote and Scheinkman 1996). Piketty (2000) and Becker and Murphy (2000) survey theoretical
models generating excess between-group variance.

2See Piketty (2000) for a related discussion.
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the likely effects of various educational reforms, such as school choice or teacher accountability

measures, on inequalities in student achievement.

The main ideas driving the formal identification results presented in this paper are easiest to ex-

plain within the context of the empirical application pursued below. The empirical application uses

data from the Tennessee class size reduction experiment, Project STAR, to examine the effects of

peers on early elementary school achievement levels. A key feature of Project STAR’s experimental

protocol is that it generated substantial variation in size across classrooms within the same school.

Classrooms of two sizes are observed in the dataset: ‘small’ and ‘large’. Students and teachers

within participating schools were randomly assigned to one of the two types of classrooms.3

In this setting we would expect to observe more between-group variation in student ability across

the set of small classrooms than across the set of large classrooms. In a large classroom any cluster

of talented students will usually be offset by a corresponding cluster of below average students,

resulting in a mean level of student ability that is similar across the set of large classrooms. In

small classrooms, however, groups composed of mostly above or below average students are more

likely to be observed, generating greater variation in mean ability. The differential variance in

mean ability across the two types of classrooms induces a corresponding differential variance in

attained achievement levels. Therefore a mechanical feature of the Project STAR data is greater

between-group variation in academic achievement across small relative to large classrooms.

Now consider a difference in the between-group variances of achievement levels across small and

large classrooms in the presence of unobserved variation in teacher quality. Since teachers were

randomly assigned to either a small or large classroom, the distribution of teacher quality should

be similar across the two types of classrooms. This implies that the difference in between-group

variances across the two sets will be purged of the influence of any heterogeneity in teacher quality.

Peer effects generate positive outcome covariance, for example, because high ability students

help other students learn more effectively.4 Social interactions therefore amplify the mechanical

difference in the between-group variance of academic achievement across small and large classrooms.

Hence a ratio of the observed difference in between-group variances across small and large classrooms

to an ‘expected’ difference provides a measure of the strength of social interactions, one free of the

confounding influence of unobserved differences in teacher quality. To compute an estimate of the

‘expected’ difference in the between-group variance of academic achievement across small and large

classrooms I use the within-group variation of the data, which is free from both the influence of

social interactions and group-level heterogeneity.

The main idea is to exploit contrasts in excess variance across different types of classrooms to

control for the effects of unobserved heterogeneity in teacher quality, a feature similar to panel data

3Section 2 provides a detailed overview of Project STAR, including a discussion of the consequences of likely
deviations from the intended protocol for the identification strategies introduced below. The discussion here is
heuristic only.

4Throughout I assume that peer effects are ‘positive’, with own outcomes increasing in peer outcomes and/or
‘ability’.
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analysis. The method also has a simple instrumental variables interpretation, which in addition to

suggesting approaches to estimation and inference using standard software, also provides intuition

about how identification works.

Section 2 reviews the relevant features of the Project STAR data which are used to illustrate the

proposed methods. Section 3 provides a formal choice-theoretic motivation for the statistical model

to which the identification results apply: the so-called linear-in-means model. The linear-in-means

model was first analyzed by Manski (1993) and remains the workhorse of applied social interactions

research, and for this reason it is a natural starting point for analyzing identification (c.f., Glaeser

and Scheinkman 2003, Graham and Hahn 2004). The formal derivation of the statistical model

highlights the key challenge of identifying social interactions: the problem of inferring the magni-

tude of individual responsiveness to changes in peer behavior when only equilibrium outcomes are

observed. As in the econometrics of supply and demand, equilibrium plays a central role in under-

standing the nature of the observed data and in achieving identification. Empirical research that

doesn’t reflect a thorough understanding of the nature of choice and equilibrium in the presence of

social interactions is unlikely to be persuasive.

Section 4 develops the main identification result of the paper and applies it to the Project

STAR dataset. Throughout the Project STAR application illustrates how the results developed

in the paper can be applied in a concrete and substantively interesting setting. This section

also discusses what Manski (1993) dubbed the ‘reflection problem’. The reflection problem has

two distinct components.5 The first component refers to the difficulty of distinguishing social

interactions from group-level heterogeneity or correlated effects. This paper’s main contribution is

to show how conditional variance contrasts provide an innovative, intuitive, and attractive solution

to this problem. The second component of the reflection problem is distinguishing endogenous

social effects, where own behavior varies with mean peer group behavior, from exogenous social

effects, where own behavior varies with predetermined peer characteristics. While this paper does

not provide a solution to this problem, it does show how the reduced form estimate of the strength

of social interactions derived below can be used to form relatively tight plausibility bounds on the

magnitude of endogenous social effects.

Section 5 discusses the robustness of the identification strategy to various forms of misspec-

ification as well as specific diagnostic tests. A method of moments interpretation of the main

identification result indicates how standard omnibus specification tests can be used for diagnos-

tic purposes. Unfortunately, omnibus tests typically lack power to detect certain directions of

misspecification (Newey 1985). I therefore show how to assess robustness in two specific direc-

tions of misspecification that may be particularly salient in the Project STAR application: a lack

of separability between teacher quality and class size in the educational production function and

heterogenous class size effects. The analysis, while specific to the empirical application at hand,

5This typology follows directly from Proposition 1 and Corollary of Manski (1993, pp. 534 - 535).
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illustrates how a combination of economic and statistical reasoning generates more powerful spec-

ification tests. Section 5 also discusses the implications of outcome variable measurement error.

The results on measurement error are especially relevant for the student achievement application,

since test scores provide only an imperfect measure of true attainment levels.

Section 6 exploits the experimental nature of Project STAR to compare standard best prac-

tice methods for estimating social interactions, based on excess between-group sensitivity, with

estimation based on variance contrasts. In the excess sensitivity approach, exogenous variation in

observed peer group composition, is used to implement simple regression-based tests for social in-

teractions (e.g., Sacerdote 2001, Duncan et al 2003, Angrist and Lang 2004). A researcher applying

these tests to the Project STAR dataset would be unable to reject the null of no social interactions.

In contrast, this null is rejected using the excess variance methods developed in this paper. This

apparent contradiction has a straightforward explanation related to test power.

Section 7 provides a formal characterization of the asymptotic power functions for the two types

of tests. Calibrating these power functions to the Project STAR data confirms that excess variance

tests are substantially more powerful in the current setting. Section 8 summarizes and outlines an

agenda for further research.

The key contribution of this paper is to show how conditional variance contrasts can be used to

discriminate excess between-group variance due to social interactions from that due to group-level

heterogeneity. Relating social interactions to the presence of excess variance, however, is not a new

idea, indeed it is typically excess variance or its cousin, positive residual covariance, which leads

researchers to speculate that peer group effects may be present (e.g., Topa 1997, Gaviria 2000).

Glaeser, Sacerdote and Scheinkman (1996), in a pioneering paper on crime patterns across U.S.

cities, formally develop some of the connections between social interactions and excess between-

group variance. In a follow-up paper, Glaeser and Scheinkman (2001) suggest ‘scaling rules’, based

on city-size, that provide a partial solution to the problem of the confounding group-level hetero-

geneity and intuitively anticipate some of the results derived here. Solon, Page and Duncan (2000),

building on ideas from the sibling and twins literature, also use analysis of covariance methods in

an attempt to identify social interactions.

The key difference between the work of these authors and the approach advocated here is the

use of conditional instead of unconditional covariances, resulting in full robustness to the presence

of confounding group-level effects. Put differently, the results presented here identify the strength of

social interactions as opposed to just bounding them. Casting the results into generalized method of

moments form also provides a simple, convenient, and asymptotically valid framework for inference.

More generally, using conditional variance restrictions to identify structural econometric models is

uncommon in applied cross section econometrics research.6

6Rigobon (2004) is an interesting exception and also provides a historical review of the small literature in this
area.



Social Interactions and Excess Variance 6

2 Brief Overview of Project STAR

Project STAR provides an ideal setting in which to test the identification strategy proposed in this

paper since its experimental protocol generated exogenous variation in both class size and class

composition. These two features of the data allow the excess variance approach developed below to

be compared with standard best practice tests for social interactions based on excess between-group

sensitivity.

Full details on Project STAR are provided by Finn et al. (2001), from which the following

information is drawn. In the fall of 1985 entering kindergarten students in each of 79 project

schools, located throughout the State of Tennessee, were randomly assigned to one of three class

types within their school: small, with 15 to 17 students, regular, with 22 to 25 students, and

regular with a full time teacher’s aide, also with 22 to 25 students. I will often refer to these latter

two types of classrooms as ‘large’. Teachers were randomly assigned to classes in a second step.

Schools participating in the project were required to be large enough to accommodate at least three

kindergarten classes. Legislation also specified stratification across inner city, urban, suburban and

rural schools.

During the first year 6,325 students, across 325 different classrooms, participated in the project.

At the end of the year Stanford Achievement Tests in Mathematics and Reading were administered.7

I have normalized the total scaled math and reading test scores by their sample mean and standard

deviation. These normalizations make interpretation of the parameter estimates reported below

straightforward.

Unfortunately the public release Project STAR dataset does not include a classroom identifier.

However, using a simple algorithm based on grouping students with common values for school, class

type (small, regular, or regular-with-aide) and teacher characteristics, I was able to uniquely assign

6,172 students to 317 classrooms; this sample is used in the remainder of the paper.8

Krueger (1999) provides a careful analysis of the STAR data, with an emphasis on assessing the

salience of various threats to validity. His analysis indicates that the intended experimental protocol

was carefully followed during the first year of the project. During subsequent years within-school

variation in class type does not appear to be completely random due to a combination of deviations

from protocol — in part due to parental pressure — and non-random attrition from the sample. For

this reason the analysis presented in this paper is restricted exclusively to the kindergarten data.

The dataset includes four individual-level covariates: a dummy variable for student race (Black),

7No pre-intervention test scores are available.
8Boozer and Cacciola (2004) use a similar algorithm. Of the eight kindergarten classrooms excluded from the

analysis two are regular classrooms and four are small classrooms which could not be individually separated; a
further two classrooms were missing some teacher data and were also dropped. Twenty three kindergarten student
records were missing information on free and reduced price school lunch eligibility, in these cases the missing values
were replaced with either eligibility status for the same student in the closest of first, second or third grade (17 cases)
or the median value among kindergarten students in their school (6 cases). In three cases missing student race values
were replaced with school median values.
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a dummy variable for gender (Girl), a dummy variable for free or reduced price school lunch eligi-

bility (FreeLunch), and an age variable (DOB). The age variable is computed as the number of

quarters after 1980 when a student was born. Positive values indicate a ‘young’ student, negative

values ‘older’ students.

Classroom-level variables include: dummies for class type (Small, RegAide), number of stu-

dents in a class (ClassSize), dummies for teacher race and whether a teacher has a masters degree

(BlackTeacher, Masters) and a years of teaching experience variable (Experience). Also

included is a career ladder variable indicating the current rank of a teacher on a six step scale

(CLAD).9 Since randomization only occurred within schools, all results reported below only use

the within-school variation of the data.10 Table 1 reports summary statistics for the individual test

score and student characteristic data.

There is some ambiguity in descriptions of the experiment by original Project STAR researchers

regarding whether students were randomly assigned to classrooms or only to class types (c.f., Finn

et al. 2001). For 31 of the 79 participating schools this distinction is without content, since in

those schools there were only 3 classrooms (one of each type). For the 48 schools with more than

three classrooms students may have been non-randomly allocated across classrooms of the same

type. For example, in larger schools administrators may have sought to balance the gender mix

across such classrooms.

For the excess variance identification results presented below, the distinction between random

assignment to classrooms and random assignment to class types is unimportant. For the traditional

excess sensitivity estimator the distinction is important, with random assignment to classrooms

required for identification. To assess whether the data are consistent with random assignment to

classrooms I compute school-specific minimum χ2 statistics for the null that the mean composition

of a classroom, in terms of the four individual student characteristics discussed above, equals its

corresponding school-wide mean.11 Under the maintained null of random assignment to classrooms,

the p-values associated with these statistics should be uniformly distributed.

If administrators mixed students according to an observed characteristic, we would expect the

associated p-values to be left-skewed (i.e., classrooms look ‘too alike’). Alternatively, if adminis-

trators stratified students, we would expect a right-skewed distribution, with classrooms looking

‘too different’. Figure 1 plots histograms of the p-values for these tests with respect to Black,

Girl, FreeLunch, and DOB respectively. There is little visual evidence of deviations from the

uniform null distribution. More formally, Pearson χ2 tests of the uniform null are easily accepted

9This variable is only available for 289 of the 317 teachers/classrooms in the core sample and hence is not used in
most of the analysis.
10 In practice this means that all the regression-based tests for social interactions include a full set of school dummy

variables, while the excess variance tests work with residuals from a preliminary regression of test scores on the school
dummies.
11See Vigdor and Nechyba (2004) for a discussion of this approach to testing for randomization.
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Figure 1: Plausibility Tests for Random Assignment to Classrooms
Notes: The figure shows histograms of p-values associated with school-specific minimum
χ2 tests of the equality of composition across classrooms with respect to Black, Girl,
FreeLunch, and DOB. The Black and FreeLunch panels report p-values for the 49
and 78 schools with individual-level variation in these variables. The remaining two panels
report p-values for all 79 project schools.

with p-values of 0.83, 0.24. 0.57 and 0.82 respectively.12

Not all kindergarten students report valid test score data. For the math test 5, 724 students

report valid scores and for the reading test 5, 646 scores are valid (out of the 6, 172 students in

the core sample described above). Fortunately omissions of test scores appear to be idiosyncratic,

in the sense that they are not predictable by any observable student, teacher or peer covariates.

The analysis below assumes the pattern of missing test score data is indeed random and hence

ignorable. Observed test scores are regarded as a random sample from different classrooms of known

size. Importantly this case corresponds to the data structure most often available to economists

interested in social interactions (e.g., a random subsample of individuals from different census tracts

within a city as in Topa (2001)). Not observing all outcomes within a group does not complicate

12These tests are described by Cressie and Read (1984) among others. I discretize the p-value distribution by
dividing the data into 10 equally-sized bins of width 0.1.
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estimation. It does require modifying the relevant identifying moment conditions discussed below.

Details of the required changes are provided in Appendix A.

3 The linear-in-means model of social interactions

This section sketches a simple model of choice in the presence of social interactions.13 Individual

utility depends on own attributes, a shared environment, and a group-specific stock of social capital.

While individuals maximize utility treating social capital as fixed, its stock evolves endogenously

with their choices. A social equilibrium is characterized by a mutually consistent vector of individual

choices and stock of social capital. The endogeneity of social capital to the individual choices of

group members makes it difficult to credibly identify social interactions.

We observe c = 1, . . . ,N social, peer, or reference groups with the cth group consisting of

i = 1, . . . ,Mc individuals. Conditional on group membership, individuals choose an action, yci, to

maximize the indirect utility function

V (yci|αc, εci, sc) = −
1− ξ

2
y2ci + (αc + εci) yci −

ξ

2
(yci − sc)

2 , (1)

where αc represents group-level heterogeneity in institutions, prices, and other environmental fac-

tors shared by members of the same group, εci represents individual-level heterogeneity in tastes

arising from variation in income, family background, ability and so on, and sc equals the group’s

stock of social capital. Utility depends on individual characteristics, shared environment, and social

capital. Equation (1) is a version of the quadratic conformist utility function considered by Akerlof

(1997) and, as will be seen below, is convenient for empirical work.14 The first two terms of (1)

capture what Akerlof terms intrinsic utility and the last term the disutility arising from individual

deviations from community social norms, sc, or extrinsic utility. High levels of social capital are

complementary to the individual action, yci, which as emphasized by Becker and Murphy (2000),

captures the idea that social forces may strongly influence individual behavior.

The preference structure given by (1) suggests that social interactions operate directly at the

level of tastes. However, by viewing (yci, εci, αc, sc) as inputs into a household production process,

only the output of which households care about, any observed complementarity between own actions

and social capital can be given a technological interpretation (Becker and Murphy 2000, p. 10).

In this case (1) is a reduced form representation of household preferences. This interpretation is

appropriate for the peer effects and student achievement application developed below.

Individuals treat the stock of social capital as fixed when choosing actions. Maximizing (1)

13Comprehensive reviews of the theory of choice in the presence of social interactions can be found in Becker and
Murphy (2000), Brock and Durlauf (2001), and Glaeser and Scheinkman (2003).
14See also Brock and Durlauf (2001) and Glaeser and Scheinkman (2001, 2003).
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yields an optimal action level of

yBRci (αc, εci, sc) = αc + ξsc + εci, (2)

which is linear in social capital, sc; yBRci (αc, εci, sc) is a function which maps (αc, εci, sc) into indi-

vidual choices. For any variable xci let xc denote the group mean M−1
c

PMc
i=1 xci and xc denote the

vector (x1c, . . . , xMc)
0. Define the stock of social capital to be

s (yc, εc) = β∗yc + ψ∗εc.

Social capital is increasing in mean group actions, yc, and/or composition, εc (c.f., Manski 1993,

Becker and Murphy 2000, Durlauf and Fafchamps 2004).

Substituting into (2) results in a modified best response function of

yBRci (αc, εci, s (yc, εc)) = yBR
∗

ci (αc, εc, yc) = αc + βyc + ψεc + εci, (3)

where β = ξβ∗ and ψ = ξψ∗; (3) determines agent i
0s best response strategy for all hypothetical

values of mean peer group behavior, yc, and composition, εc. The goal is to estimate the parameters

characterizing this reaction function (β, ψ). Unfortunately the function is not observed, rather the

data consist of only a single point on each individual reaction function. Analogous to supply and

demand models, an equilibrium assumption will be a key component of addressing the implicit

missing data problem and achieving identification (c.f., Manski 1995, Angrist, Graddy and Imbens

2000). Equation (3) defines the linear-in-means model of social interactions.15

3.1 Social equilibrium

A social equilibrium consists of a stock of social capital, sec, and a Mc × 1 vector of best responses
strategies

yBR
c
(αc, εc, s

e
c) =

¡
yBRc1 (αc, εci, s

e
c) , . . . , y

BR
cMc

(αc, εci, s
e
c)
¢0

that are consistent with it

sec = s

µXMc

i=1
yBRci (αc, εci, s

e
c) /Mc, εc

¶
. (4)

In equilibrium all agents rationally anticipate the actions of their peers and choose best responses to

those actions. In practice equilibrium is typically reached, not instantaneously, but rather through

an adaptive learning process with individual updates in actions inducing changes in peer behavior

in turn spurring further updates to own behavior. The resulting iterative ‘reflection’ process stops

15See Manski (1993), Brock and Durlauf (2001), Moffitt (2001). Graham and Hahn (2004) provide a
methodologically-oriented review of the linear-in-means model.
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when a (Nash) equilibrium is reached.

Let yeci (αc, εc) denote the equilibrium action of the ith individual:

yeci (αc, εc) = yBR
∗

ci (αc, εc, y
e
c (αc, εc)) .

Averaging over individuals within the same group and solving for yec (αc, εc) using (3) yields (as-

suming β 6= 1)
yec (αc, εc) =

αc
1− β

+
ψ + 1

1− β
εc, (5)

and hence, substituting (5) in (3), the reduced form

yeci (αc, εc) =
αc
1− β

+
ψ + β

1− β
εc + εci. (6)

Henceforth, unless noted otherwise, I will assume that the observed vector of actions is an equilib-

rium vector, with yci denoting yeci (αc, εc) . In the absence of social interactions yci = αc+εci, which

is the standard one-way error component model.

3.2 A typology of social interactions

When β 6= 0 the marginal utility of individual action depends on peer actions; this dependence

reflects the presence of endogenous social interactions. When β is greater (less) than zero there

exist positive (negative) endogenous social interactions.16 Positive interactions imply that the

marginal utility of yci is increasing in peer action levels and hence that reaction functions slope

upwards. When ψ 6= 0 each agent’s chosen action level depends on the mean characteristics of her
peers, reflecting the presence of exogenous social interactions. When αc 6= 0 correlated effects or

group-level heterogeneity influence optimal action levels.17 , 18

To better understand each of these three sources of variation in individual behavior it is helpful

to consider the peer effects and student achievement example. Endogenous social effects capture

the direct impact of peer achievement on own learning. These effects arise when students directly

teach one another. They also can arise through agglomeration-type externalities. For example a

teacher might be able to devote more attention to lagging students when most students have al-

ready mastered course material. In this case mean peer achievement affects individual achievement

through its impact on available teacher time for own learning.

Exogenous or contextual effects arise when peer group background characteristics directly affect

own learning. Survey evidence from the Early Childhood Longitudinal Study indicates that students

from disadvantaged backgrounds begin kindergarten with lower levels of ‘school readiness’ (Lee and

16Cooper and John (1988) call these strategic complementarity and substitutability in agent actions respectively.
17This typology, which is now standard, was first formalized by Manski (1993).
18Brock and Durlauf (2001) and Glaeser and Scheinkman (2001, 2003) provide extended discussions of various

types of interactive mechanisms.
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Burkman 2002). To the extent that disadvantaged students are more disruptive or otherwise behave

in ways not conducive to learning, peer socioeconomic background may directly alter one’s learning

environment and academic achievement.

Correlated or group effects arise because group members share a common environment. In an

elementary school an obvious source of group-level heterogeneity is variation in teacher quality.

Other sources might include various aspects of classroom quality (e.g., availability of natural light,

background noise levels, comfort of chairs/desks etc.). In what follows I will, for expository reasons,

equate group effects, αc, with teacher quality, but it should be understood that this is only an

approximation.

Determining the relative contributions of social interactions, group-level effects, and individual

heterogeneity to variation in academic achievement has important policy implications. If social

interactions are sizable then racial and socioeconomic residential segregation may be important

for understanding inequality, and policies which focus on the distribution of peers across schools

and classrooms may have first order effects on academic achievement. Alternatively, if group-level

heterogeneity is relatively important, then resource distribution in the form of teacher quality

and other school and classroom level inputs may be crucial. Finally, the relative contribution of

individual-level heterogeneity, driven in turn by variations in family background and ability, may

be envisioned as placing a bound on the efficacy of school-level policies to affect the distribution of

academic achievement.

3.3 The social multiplier

The social multiplier provides a measure of the discrepancy between the initial response to a change

in αc or εci, holding the stock of social capital fixed, and the full equilibrium response which occurs

after all agents revise their strategies to new mutual best responses, a process which involves

endogenous changes in the stock of social capital. In the presence of positive social interactions,

full equilibrium responses typically exceed initial partial equilibrium responses, often substantially.

The ratio of the full to partial equilibrium response equals the social multiplier, a useful summary

measure of the strength of social interactions (c.f., Cooper and John 1988, Glaeser and Scheinkman

2003).

Formally we can define a social multiplier for changes in common environment, αc, as well as

for changes in group composition, εc, as follows:

SMα (αc, εc) =
M−1

c

XMc

i=1

∂yeci
∂αc

(αc, εc)

M−1
c

XMc

i=1

∂yBRci (αc,εci,sc)
∂αc

|sc=s(yec(αc,εc),εc)
(7)

SM ε (αc, εc) =
M−1

c

XMc

i=1

∂yeci
∂εc1

(αc, εc)

M−1
c

XMc

i=1

³
∂yBRci (αc,εci,sc)

∂εci
|sc=s(yec(αc,εc),εc)

´
· 1 (i = 1)

. (8)
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The numerators of (7) and (8) measure the full equilibrium response, in terms of average group

action levels, to changes in group environment, αc, or a change in group composition, εc1 (defining

SM ε (αc, εc) with respect to the first individual is done without loss of generality). The denomi-

nators are the mean partial equilibrium responses of agents to such changes.

From (5) and (6) it is straightforward to show that

SMα (αc, εc) =
1

1− β
, SMε (αc, εc) =

ψ + 1

1− β
. (9)

The size of the social multiplier for changes in group environment depends on reaction function

slope: the more responsive individuals are to peer behavior the larger the multiplier. The size of

the social multiplier for changes in group composition depends on reaction function slope as well

as the strength of any exogenous or contextual effects. SMα (αc, εc) is a monotonic transformation

of what Becker and Murphy (2000) call the social multiplier.19 It is also identical to the social

multiplier given by Cooper and John (1988) and Glaeser, Sacerdote and Scheinkman (2003). In the

absence of exogenous effects, as is often assumed in applied work, SMα (αc, εc) and SMε (αc, εc)

are identical.

To understand how the multiplier works we can decompose equilibrium changes in mean action

levels due to changes in group composition into two components:

∂yec (αc, εc)

∂εc1
=

1

Mc

∂yBRc1 (αc, εc1, s
e
c)

∂εc1
(10)

+
1

Mc

XMc

i=1

∂yBR
ci (αc, εci, sec)

∂sec

∙
∂sec
∂yec

∂yec (αc, εc)

∂εc1
+

∂sec
∂εc

∂εc
∂εc1

¸
.

The first component captures the direct effect of changes in εc1 on mean group behavior holding

social capital constant. This is the private effect of changes in own characteristics on own behavior.

Individual shocks also affect group behavior through their impact on the equilibrium stock of social

capital. They alter social capital through the endogenous and exogenous effects. Endogenous social

interactions generate a feedback effect whereby initial changes in agent behavior induce further

changes in peer behavior and vice versa until a new equilibrium is reached. To see this solve (10)

for ∂yec (αc, εc) /∂εc1 to get

∂yec (αc, εc)

∂εc1
=

1

Mc

∂yBRc1 (αc,εc1,s
e
c)

∂εc1
+
XMc

i=1

∂yBRci (αc,εci,s
e
c)

∂sec

∂sec
∂εc

∂εc
∂εc1

1−M−1
c

XMc

i=1

∂yBRci (αc,εci,sec)
∂sec

∂sec
∂yec

.

Endogenous social interactions amplify the effects of shocks to group composition on outcomes

(c.f., Glaeser, Sacerdote and Scheinkman 1996, Becker and Murphy 2000). This observation is

19 In particular, Becker and Murphy (2000) refer to β — the average slope of individual agent reaction functions —
as the social multiplier.
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central to the excess variance intuition which drives the identification results given below.

4 Identification and estimation

The data consist of a sample n individual equilibrium outcomes across N groups (n =
PN

c=1Mc).

All individuals within a group are sampled. Extending what follows to the case where only a random

subset of outcomes are observed within each group is straightforward but, although important for

empirical applications, needlessly complicates the development of the main results.20 Group size,

Mc, is distributed multinomially with support M ≡ {m1, . . . ,mS}. We also observe a vector of
instruments, qc, which vary across groups; their precise role will be made clear below.

A naive approach to detecting social interactions attempts to estimate β by a least squares

regression of yci on yc. This is a tautological regression and, with a little introspection, it is obvious

that bb = 1, which will generally differ from β.

The reduced form variance-covariance matrix of equilibrium outcomes, however, is identified.

Let wc = (Mc, q
0
c)
0 . Assume that the conditional mean and variance of (ε0c, αc)

0 equal

E
£
ε0c, αc|wc

¤
=
¡
0 · ι0Mc

, μ (wc)
¢
, (11)

with ιMc denoting an Mc × 1 vector of ones, and

V ar
¡
ε0c, αc|wc

¢
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

σ2 (wc) σεε (wc) · · · σεε (wc) σαε (wc)

σεε (wc) σ2 (wc)
...

...
...

. . . σεε (wc)
...

σεε (wc) · · · σεε (wc) σ2 (wc) σαε (wc)

σαε (wc) · · · · · · σαε (wc) σ2α (wc)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (12)

respectively.

Condition (11) is unrestrictive. Condition (12) is also weak but merits some discussion. It

implies that, conditional on wc, equilibrium outcomes across members of the same social group

are equicorrelated. This seems well-motivated by standard (finite) exchangeability considerations.

Looking within a given classroom there is no a priori reason to assume, for example, that the 1st

student is ‘brighter’ than the 10th or that the 2nd student is more like the 3rd than the 4th student

(c.f, Rubin 1981). Similarly, conditional on class size and the instrument, there is no a priori reason

to think achievement in the 23rd classroom should be higher or lower than in 53rd (assuming both

classrooms have identical values of wc).

20Appendix A details how to implement the random subsample case.
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Averaging across group size but continuing to condition on qc we define the notation

E
£
σ2 (wc) |qc

¤
= σ2 (qc) , E [σεε (wc) |qc] = σεε (qc) ,

E [σαε (wc) |qc] = σαε (qc) , E
£
σ2α (wc) |qc

¤
= σ2α (qc) , E [μ (wc) |qc] = μ (qc) .

Averaging over both Mc and qc we have

E
£
σ2 (wc)

¤
= σ2, E [σεε (wc)] = σεε, E [σαε (wc)] = σαε, E

£
σ2α (wc)

¤
= σ2α, E [μ (wc)] = μ.

From (11) and (12), we have Ω (wc) ≡ V ar(y
c
|wc) equal to

σ2 (wc) (1− ζεε (wc))IMc + σ2 (wc) ζεε (wc) ιMcι
0
Mc
+ (13)½

σ2α (wc) + 2 (ψ + 1)σαε (wc)

(1− β)2
+
¡
γ2 − 1

¢
σ2 (wc)

∙
ζεε (wc) +

1− ζεε (wc)

Mc

¸¾
ιMcι

0
Mc

where IMc is an Mc ×Mc identity matrix, ζεε (wc) = σεε (wc) /σ
2 (wc) denotes the conditional

correlation of individual-level characteristics, εci, across members of the same group, and γ =

(ψ + 1) / (1− β) is the social multiplier defined in equation (9) above.

Equation (13) illustrates how the conditional variance of equilibrium outcomes consists of four

distinct components:

1. Individual Heterogeneity σ2 (wc): Outcome variance depends on heterogeneity in individual-

level background characteristics, εci.

2. Environmental/Group Heterogeneity σ2α (wc): Outcome variance depends on hetero-

geneity in shared environment across social groups, αc.

3. Matching σαε (wc): Individuals’ background characteristics may be correlated with the

group’s common environment (i.e., cov (αc, εc) 6= 0). This affect arises if individuals select

on αc when choosing a group or if αc varies endogenously in response to changes in group

composition.21 Positive matching — σαε (wc) > 0 — amplifies the between-group component

of outcome variance.

4. Group Composition σ2 (wc)
£
ζεε (wc) + (1− ζεε (wc))M−1

c

¤
: The variance of individual

outcomes depends on heterogeneity in mean group-composition, εc. Variance in εc across

groups depends on the degree of sorting, group-size and the amount of individual-level het-

erogeneity in the population (i.e., ζεε (wc) , Mc, and σ2 (wc) respectively). Increased sorting

implies greater correlation of individual attributes across members of the same group and

21For example, a teacher’s effort might change with the average ability of her students.
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hence, for any given population-wide distribution of individual heterogeneity, more between-

group variation in εc. In the presence of social interactions (γ 6= 0) the variance of individual
outcomes depends on the variance of group-composition.

Since Ω (wc) has a one-way error component structure it is sufficient to work directly with

within- and between- transforms of y
c
as opposed to the entire Mc ×Mc matrix. Consider the

following two within- and between-group transforms of the data:

gbc = (yc − μ (qc))
2 , gwc =M−1

c (Mc − 1)−1
XMc

i=1
(yci − yc)

2 . (14)

Taking expectations conditional on the instrument, qc, we have

E
h
gbc |qc

i
= ς (qc) + γ2E

∙
σ2 (wc) (1− ζεε (wc))

Mc
|qc
¸
, (15)

E [gwc |qc] = E

∙
σ2 (wc) (1− ζεε (wc))

Mc
|qc
¸
, (16)

where

ς (qc) ≡
σ2α (qc) + 2 (ψ + 1)σαε (qc) + (ψ + 1)

2 σεε (qc)

(1− β)2
.

Equation (15) and (16) illustrate how group-level heterogeneity, matching, sorting, and social in-

teractions manifest themselves differently in the within- and between-group variation of the data.

A key insight of this paper is that the within-group variation of the data provides information

on the amount of between-group variance we would expect to observe in the absence of social

interactions. I will refer to E [gwc |qc] as ‘expected’ between-group variance. By ‘expected’ I mean
the portion of between-group variance that is estimable from the within-group variation of the data

alone. Loosely speaking, E [gwc |qc] equals the between-group variance in outcomes we would expect
to observe in the absence of group-level heterogeneity, matching, sorting, and social interactions.

Under the two the identifying assumptions

σ2α (qc) ≡ σ2α, σαε (qc) ≡ σαε, σεε (qc) ≡ σεε (17)

E
£
σ2 (Mc, qc)M

−1
c |qc = q

¤
6= E

£
σ2 (Mc, qc)M

−1
c |qc = q0

¤
, q = q0 (18)

the conditional moment

E [ρ (gc, θ) |qc] = 0 (19)

identifies θ =
¡
ς, γ2

¢0 with ρ (gc, θ) = gbc − ς − γ2gwc and gc =
¡
gwc , g

b
c

¢0
.22

22Under assumption (17) we can, without loss of generality, redefine εci and αc to be orthogonal by setting
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To motivate (17) and (18) it is instructive to return to the Project STAR application. Let

qc equal a class type indicator, taking a value of 1 if the cth classroom is of the small type and

zero otherwise. Condition (17) states that the variance of group-level heterogeneity as well as the

intensity of matching and sorting are equal across small and large classrooms. Both students and

teachers were randomly assigned to either small or large kindergarten classrooms as part of Project

STAR and for this reason (17) seems reasonable to impose.

Random assignment to classrooms ensures the absence of any matching or sorting, implying that

σαε (qc) = σεε (qc) ≡ 0. If random assignment is to class types only, then identification requires that
any within-class-type matching and/or sorting does not operate differentially across small and large

classrooms.23 While random assignment of teachers does not eliminate heterogeneity in teacher

quality, it does imply that the distribution of observed and unobserved teacher characteristics

across classrooms should be independent of class type. Therefore, as long as class type and latent

teacher quality are separable in the educational production function, random assignment implies

that σ2α (qc) is constant in qc. This assumption is discussed further in Section 5 below.

Condition (18) states that the expected between-group variance across the two sets of classrooms

differs. Variation in mean group-size across the two sets will typically be sufficient to ensure that

(18) holds and, in any case, the assumption is straightforward to test.

With qc binary (19) is equivalent to the unconditional moment E
£
(1, qc)

0 ρ (gc, θ)
¤
= 0 which,

directly solving for γ2, yields the Wald-IV estimate

γ2 =
E
£
gbc |qc = 1

¤
− E

£
gbc |qc = 0

¤
E [gwc |qc = 1]− E [gwc |qc = 0]

. (20)

The structure of (20) provides insight into how identification works. The numerator is a contrast

of observed or actual between-group variances across small and large classrooms. Under (17) this

contrast will not be influenced by the variance of group-level heterogeneity, matching, and sorting,

since these three effects are constant across the two sets of groups and hence are differenced away in

the numerator. The numerator will only reflect differences in the variance of mean individual-level

heterogeneity, V ar (εc|qc), across the two sets of groups, as amplified by social interactions.
The denominator also equals the difference in the variance of mean individual-level heterogene-

ity, but unamplified by social interactions. The sample analog of the ratio of the two differences

therefore provides a consistent estimate of γ2, the square of the social multiplier with respect to

changes in group composition. Equation (20) also makes clear that assumptions (17) and (18)

are simply special versions of the standard exclusion and rank restrictions required for a valid

ε∗ci = εci−E∗ [εci|αc] and α∗c = αc+E∗ [εci|αc] respectively, where E∗ [·] denotes a linear predictor as in Chamberlain
(1984). This transformed group-effect, α∗c , reflects a combination of ‘true’ group-level heterogeneity and matching. I
nonetheless continue to work with the orginal parameterization to emphasize the independent contributions of these
forces.
23As an example of differential sorting consider the case where administrators seek to mix according to unobserved

ability across small classrooms while stratifying along the same dimension in large classrooms.
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instrumental variable in the linear simultaneous equations model.

4.1 Excess variance contrasts in Project STAR

Project STAR generated substantial exogenous variation in class size. As discussed in the introduc-

tion, under random assignment of students to class type, εc — say mean ‘ability’ — will vary more

across the set of small classrooms than across the set of large ones. Formally, if small classrooms

are all of size of mS and large ones all of size mL > mS , then the ratio of the variance of mean

ability in small to large classrooms will be mL/mS > 1.24 For relatively small values of mS and

mL this ratio can be substantial. In the Project STAR dataset the mean size of small kindergarten

classrooms is about 15, while the mean size of regular and regular-with-aide classrooms is about

22, suggesting that the variance of mean ability should be approximately 1.5 times greater across

small classrooms than large. This contrast provides a powerful mechanism with which to identify

social interactions.

Table 2 reports evidence of large differences in the variance of mean test scores and class com-

position by class type. For example, the variance in mean classroom math and reading test scores

is 1.8 and 1.9 times greater in small versus large classrooms (column 4). Similarly heterogeneity in

mean socioeconomic status, gender mix, and age structure are significantly greater in small class-

rooms.25 Clearly small classrooms are more heterogeneous in terms of mean composition than large

classrooms, consistent with the requirements of (18).

In contrast to mean ability, under (17) the dispersion of teacher quality, intensity of student-

teacher matching, and amount of sorting should not vary with class type. These assumptions

may at first glance appear somewhat abstract, but they are relatively straightforward to assess.

Verifying their plausibility requires consideration of the mechanism by which students and teachers

are assigned to class types. In the case of Project STAR random assignment of teachers to class

type ensures that variation in teacher quality should be similar across small and large classrooms

within the same school. Random assignment of students to class type suggests that any correlation

of ability across students within the same classroom or between student ability and teacher quality

should also be constant in class type.26

Tables 2, 3, and 4 assesses these claims using the limited number of student and teacher char-

acteristics available in the Project STAR public release data. In contrast to the individual-level

characteristics, the bottom portion of Table 2 shows that variation in observed teacher character-

istics is not significantly different across small and large classrooms for three of the four teacher

24This calculation makes the simplifying assumption that student ability, εci, is homoscedastic with respect to class
type.
25That the variance of racial composition is not significantly different across the two types of classrooms reflects

the lack of within-school variation in race in the Project STAR data (30 of the 79 schools have either all black or all
white kindergartens; the majority of the balance have only a handful of either black or white students).
26This assumes that any within-class-type sorting and/or matching of students with teachers is equally intense in

small and large classrooms.
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variables.

Table 3 examines the pattern of covariance between student and teacher characteristics in small

and large classrooms. The null hypothesis of an equal covariance for each of the 16 pairs of student

and teacher characteristics across class types is accepted in all cases. There is no evidence of a

differential pattern of student-teacher matching in small versus large classrooms, at least based on

the characteristics available in the Project STAR data. Indeed there is no evidence of student-

teaching matching at all.

Table 4 calculates the conditional covariance of observed characteristics across students within

the same classroom. There is modest evidence of mixing or balancing on the part of school ad-

ministrators. For example, race is slightly negatively correlated across students within the same

classroom. This effect is small and, most importantly, there is no evidence of differential mixing

across small and large classrooms.

While the primary motivation for assuming (17) and (18) is the experimental structure of

Project STAR, tables 2, 3, and 4 provide substantial auxiliary evidence of their plausibility.

Table 5 reports estimates of γ2 using the Project STAR kindergarten Stanford Achievement

Test scores in mathematics and reading and the sample analog of (20). The sample used consists

of 6,172 students from 317 classrooms, 123 of which are small with the remaining 194 being large.

Implementation requires forming gbc and gwc using the formulae given in (14). In the case of gbc
this requires replacing μ (qc) with a consistent estimate. Since the support of qc is binary μ (qc) is

straightforward to estimate by a least squares regression. For continuous valued instruments μ (qc)

can be replaced with any of a number of nonparametric estimates.

In addition to removing conditional mean heterogeneity across class types I orthogonalize test

scores with respect to a matrix of school dummy variables; this reduces the amount of group-

level heterogeneity in the data, improving precision. Specifically residuals, buci, from a preliminary

regression of normalized test scores on a matrix of school dummies and the class type instrument,

qc, are used to compute gbc = bu2c and gwc =M−1
c (Mc − 1)−1

XMc

i=1
(buci − buc)2. It is straightforward

to show that the asymptotic distribution of the Wald estimator is unaffected by this preliminary

step. No correction to the conventional heteroscedastic robust standard errors reported by a basic

regression program needs to be made (c.f., MaCurdy 1982).27

The first row of Panel A of Table 5 computes the mean between-group variance in math test

scores for small and large classrooms. As shown in column 3 there are significant differences in

the amount of between-group variance across the two sets of classrooms. The difference in the two

variance terms equals the numerator of the Wald estimator. Row 2 of the table computes ‘expected’

between-group variance measures for small and large classrooms using the within-group variation

of the data. Here too there are significant differences across the two types of classrooms. The

difference in expected between-group variances is statistically significant (row 2, column 3). The

27The higher order properties of bγ2WALD will be affected as discussed by Newey, Ramalho and Smith (2005).
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F-Statistic associated with this difference equals the standard ‘first-stage’ diagnostic advocated by

Staiger and Stock (1997); this statistic is reported in row 4. The first stage F-statistics equal 51.01

and 16.27 for math and reading respectively. By the standards of the classical linear simultaneous

equations model with homoscedastic normal errors, these F-statistics suggest strong identification

(c.f., Stock, Wright and Yogo 2002, Stock and Yogo 2004). Although these results do not apply

directly here, since the structural and first-stage errors are both heteroscedastic and right skewed,

I tentatively conclude that identification is strong enough to obviate weak instrument concerns, an

assessment that is subjected to more rigorous scrutiny in Graham (2004).

The Wald estimate, bγ2WALD, is the ratio of the row 1 and 2 column 3 differences; this ratio

is reported in row 3.28 The Wald estimate for γ2 indicates that the difference in between-group

variance across small and large classrooms is over three times what we would expect in the absence

of social interactions. Panel B repeats the exercise for reading achievement test scores. In this

case excess variance contrasts are almost four times what we would expect in the absence of social

interactions. These point estimates suggest social multipliers of 1.76 and 1.97 for math and reading

achievement respectively.

Table 6 reports three tests of the no social interactions null (i.e., γ = 1). The first test, reported

Panel A, is a conventional Wald test for the null that γ2 = 1. It is based on the standard normal

approximation to the sampling distribution of bγ2WALD and is easy to compute; unfortunately it

has poor power properties in the current setting. Observe that gbc and gwc are functions of squared

outcomes, generating a right-skewed sampling distribution for the identifying moment function,

ρ (gc, θ). In finite samples this right-skewness also manifests itself in the sampling distribution ofbγ2WALD. Since the Wald test is based on a symmetric asymptotic approximation to the sampling

distribution of bγ2WALD, it behaves poorly when the actual (finite) sampling distribution is asym-

metric. In particular Wald confidence intervals, symmetric by design, will extend too far to the

left and too little to the right of bγ2WALD, suggesting low power for a Wald test of the no social

interactions null, in addition to possible size distortion.

One approach to dealing with this problem is to test the null γ = 1 directly, again using a Wald

test, with the appropriate variance calculated via the delta method. Intuitively, we would expect the

square root of bγ2WALD to have a more symmetric sampling distribution and, consequently, greater

accuracy of the large sample normal approximation. An additional advantage of this approach is

that γ is the actual parameter of interest. Panel B of the table reports p-values for the no social

interactions null based on this test as well as corresponding confidence intervals for eγ =qbγ2WALD.

This test results in a more decisive rejection of the null hypothesis of no social interactions.

The difference between Panels A and B stems from the Wald statistic’s lack of invariance to

one-to-one transformations of the null hypothesis. While intuition may privilege one statement of

28This ratio is easily computed using standard software by calculating the instrumental variables regression of gbc
on 1 and gwc where g

w
c is instrumented using qc (the class type dummy variable). The heteroscedastic robust standard

errors reported in the regression output are also asymptotically valid.
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the null over another, this lack of invariance is unattractive. The third test, reported in Panel

C of the table, addresses this shortcoming. It is based on the asymptotic approximation to the

sampling distribution of the profiled Empirical Likelihood (EL) saddle-point criterion function. This

statistic is invariant to parameter transformations and is, essentially, a method of moments analog

to a log-likelihood ratio test (c.f., Owen 2001, Newey and Smith 2004). Confidence intervals based

on this test need not be symmetric and can consequently better capture asymmetric uncertainty

surrounding bγ2WALD when its sampling distribution is skewed. Graham (2005) provides a more

complete discussion of this test as well as supporting Monte Carlo evidence calibrated to mimic

the Project STAR dataset. The p-values for the no social interactions null based on this test are in

between those given by the two Wald tests. Confidence intervals for both bγ2WALD and eγ =qbγ2WALD

based on inverting the test are also reported in panel C. The EL intervals are both longer than

the panel A and B Wald intervals and right skewed, indicating more uncertainty above the point

estimate than below; this is particularly the case for the reading estimates, which are less strongly

identified.

To summarize, the estimates of γ2 reported in Table 5 suggests a social multiplier of between

1.07 and 2.31 for math achievement with a point estimate of 1.76, and one between 1.05 and 3.07

with a point estimate of 1.97 for reading achievement. These ranges are based on the 95 percent

EL confidence intervals reported in Table 6.

These confidence intervals generally encompass other recent estimates based on different sam-

ples, grade levels, and methods. For example, work by Angrist and Lang (2004), using elementary

school test score data from the Metco program in Brookline, MA, implies a point estimate for

the social multiplier of about 1.25 (albeit insignificantly different from 1). Lefgren (2004), using

elementary school data from the Chicago Public schools system, reports a statistically significant

best estimate of β consistent with a very small social multiplier of about 1.05. Hoxby’s (2002)

results, using data from the Texas Schools Project, are consistent with values in the middle to the

high end of the ranges given above. Boozer and Cacciola (2004), also using Project STAR data but

a different identification strategy, report estimates of β consistent with social multipliers in excess

of 10, well outside the 95 percent confidence intervals for the estimates given here.

4.2 The reflection problem: endogenous or exogenous social interactions?

Manski’s (1993) reflection problem consists of two parts. The first part is discriminating social

interactions from group-level heterogeneity. Contrasts in excess variance provide one solution to

this problem. The second part of the reflection problem is distinguishing endogenous social effects

(β 6= 0), where own behavior varies with mean peer group behavior, from exogenous social effects

(ψ 6= 0), where own behavior varies with predetermined peer characteristics. While contrasts in

excess variance are unable to distinguish between the two types of social effects, the estimated value

of γ2 can easily be combined with subjective prior information to construct Bayesian credibility
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sets for β.

The endogenous effect parameter, β, can be written as a function of the social multiplier, γ,

and the exogenous effects parameter, ψ,

β = 1− ψ + 1p
γ2

.

From a joint posterior distribution for
¡
γ2, ψ

¢
we can therefore calculate a posterior distribution for

β. This posterior can be used to assess the evidence for or against endogenous social interactions.

Appealing to the Bernstein-von Mises Theorem yields an approximate posterior distribution for

γ2 of

π
¡
γ2|z

¢ D' N(bγ2, se2bγ2),
where sebγ2 is the estimated large sample standard error of the Wald estimate, bγ2, and z denotes all
available data. I assume that sample information dominates any available prior information about

γ2.

Unfortunately, data do not provide any information with which to update priors regarding the

magnitude of ψ. This reflects the lack of separate identification of β and ψ via excess variance

contrasts. To deal with non-identification I place an informative prior on ψ which, in the absence

of sample information, also equals its posterior (i.e., π (ψ|z) = π (ψ)).29

Assuming independence of the priors (and hence the posteriors) for γ2 and ψ, an application of

the change-of-variables formula yields a joint posterior pdf for (β, ψ) of

π (β, ψ|z) = 2
£
γ2 (β, ψ)

¤(3/2)
ψ + 1

π
¡
γ2 (β,ψ) |z

¢
π (ψ|z) ,

recalling that γ2 (β, ψ) =
³
ψ+1
1−β

´2
.30 Integrating out ψ yields the marginal posterior density of β,

π (β|z) =
Z
ψ∈Ψ

2
£
γ2 (β,ψ)

¤(3/2)
ψ + 1

π
¡
γ2 (β,ψ) |z

¢
π (ψ|z) dψ. (21)

29Most researchers achieve identification by using the exceptionally informative ‘dogmatic prior’ of ψ = 0.
30The determinant of the Jacobian needed for the change-of-variables formula is¯̄̄̄

¯
1
2

ψ+1

[γ2](3/2)
−
p
1/γ2

0 1

¯̄̄̄
¯ = 1

2

(ψ + 1)

[γ2](3/2)
.

Note that
2[γ2(β,ψ)](3/2)

ψ+1
π
¡
γ2 (β,ψ) |z

¢
is identical to the pdf of a normal random variable with mean 1

2
(1+ψ)

[bγ2](3/2) and
variance 1

4
(1+ψ)2

[bγ2]3 · se2bγ2 ; a delta approximation to the sampling distribution of bβ = 1 − ψ+1√bγ2 (with ψ known) yields

an identical distribution.
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Figure 2: Prior Density of ψ

Implementing this approach requires placing an informative prior on ψ. This can be done by

considering a range of plausible values for ψ. In the present setting introspection suggests that

assuming ψ ∈ [0, 1] is reasonable; this implies that able students make for good peers (ψ ≥ 0) but
that the direct effect of own ability on own achievement is at least as large as the direct effect of

mean peer ability on own achievement (ψ ≤ 1). How to distribute the probability density on 0 to
1 interval is less clear. Here I assume that ψ is an exponential random variable, where the scale

parameter, λ, is chosen such
R∞
ψ=1 π (ψ;λ)dψ = 0.001; this ensures that 99.9 percent of the prior

probability is placed on the 0 to 1 interval.31 This prior embodies the subjective notation that

any exogenous effects are likely to be small relative to the importance of own ability; it implies a

median value for ψ of roughly 0.1. Figure 2 plots the prior density of ψ.

Evaluating (21) numerically yields posterior means for β of 0.3487 (s.e. = 0.1375) and 0.4201

(s.e. = 0.1556) for math and reading achievement respectively. Figure 3 plots the posterior density

of β for math and reading achievement and shows the upper and lower limits of minimum length

95 percent Bayesian credibility sets; these sets run from 0.0376 to 0.5824 for math achievement and

from 0.0827 to 0.6976 for reading achievement. Combining the above prior on ψ with the Wald

estimates of γ2 given in Table 5 suggests that endogenous effects are a substantively important

source of variation in academic achievement.

4.3 Discussion of estimates

The estimates of γ2 reported in Table 5 suggest that social interactions substantively contributed

to the learning process of Project STAR kindergarten students. There are two conceptually distinct

31Using the fact that for an exponential random variable
R x
ψ=0

π (ψ|λ) dψ = e−xλ, the appropriate choice for the
scale parameter is λ = ln (0.001) /e ' 6.90776.
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Figure 3: Posterior Densities for β
NOTES: Figure graphs numerically calculated posterior densities for β based on the Wald
estimate of γ2 given in Table 5 and an exponential prior on ψ with scale parameter,
λ ' 6.91. The dashed vertical lines mark the 0.025 and 0.975 lower and upper probability
tails of the densities (i.e., the lower and upper limits of a 95 percent credibility set for β).

ways to gauge the strength of the estimated effects. First, we can assess how changes in peer group

composition affect the achievement of an individual student. Second, we can assess how changes in

the assignment process of students to classrooms alter the overall distribution of achievement.

Table 7 reports the effects of hypothetical interventions of the first kind. As a benchmark

row 1 reports the mean difference in normalized test scores between students at the 25th and 75th

percentiles of the distribution of student ability, εci, assuming normality and holding peer ability

constant.32 ‘Above average’ students score about one standard deviation higher on the math and

reading tests than ‘below average’ students when placed in the same classroom.

Row 2 of the table compares test scores across students of equal ability but with above average

peers versus below average peers (εc equal to 75th and 25th percentiles of the εci distribution

respectively). The effect of this hypothetical intervention is nearly as large as the direct effect of

changes in own ability, consistent with a social multiplier near two.

Random assignment generated relatively homogenous Project STAR classrooms. Variations in

peer ability as large as the above contrast are therefore not observed in the data. Since extrapolation

beyond observed variation may lead to spurious conclusions, row 3 reports the effect of a change

from the 25th to 75th percentiles of the actual distribution of peer composition across Project

STAR classrooms. The effect of this intervention equals about 0.2 standard deviations for both

math and reading, similar in magnitude to that of switching from a regular/regular-with-aide to a

small classroom (row 5).

Row 4 assesses the effect of changes in teacher quality on achievement. Random matching

32A change from the 25th to the 75th percentiles approximately equals 2× 0.67 standard deviations for a normally
distribution random variable.
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of students and teachers suggests that σαε = σεε = 0. The estimate of ς therefore captures

excess variance solely due to heterogeneity in teacher quality, albeit amplified by the presence of

endogenous social effects (i.e., ς = σ2α/ (1− β)2). Unfortunately ς is poorly identified by the Project

STAR data. Its point estimate is slightly below zero with a large standard error for both math

and reading achievement (see Table 5). I therefore take a very generous upper bound value for ς

equal to its point estimate plus 1.96 standard deviations. The square root of this number is used

as an estimate of the standard deviation of teacher quality. This upper bound estimate suggests

that the reduced form effect of having an above average versus below average teacher is, at the very

most, equal to a 0.4 standard deviation change in test scores.33 Overall the effect of variation in

peer group composition is, at the very least, similar in magnitude to those of commonly suggested

strategies for raising student achievement such as improving teacher quality or reducing class size.

How would have deviations from random assignment altered the overall distribution of achieve-

ment amongst Project STAR kindergarten students? One feature of the linear-in-means model is

that changes in the allocation of students across classrooms only affects the variance of achievement

and not its overall mean. The model provides no traction on the equity versus efficiency trade-offs

that emerge in the theoretical literature on sorting and peer group effects. Issues at the forefront

of current debates about, for example, ‘cream skimming’ and the relative merits of different school

choice policies (c.f., Nechyba 2003, Epple, Figlio and Romano 2004). This limitation notwithstand-

ing, an assessment of the estimated values of γ2’s implications for the relationship between student

sorting across classrooms and inequality in achievement remains interesting.

Evidence reported in Vigdor and Nechbya (2004) implies an average within-classroom corre-

lation of ‘ability’ — measured relative to a school-specific mean — of roughly 0.10 for 5th graders

attending North Carolina Public Schools. Clotfelter, Ladd and Vigdor (2004) attribute this cor-

relation to ‘teacher shopping’ whereby parents of relatively advantaged children exert pressure on

school administrators to ensure their children are assigned to superior teachers.34

The North Carolina data provides a natural benchmark for assessing the relationship between

peer group effects, within-school sorting of students, and achievement inequality. How much would

achievement inequality amongst Project STAR kindergarten students have increased if, instead of

random assignment, the assignment mechanism mimicked that found in an average North Carolina

school? To simplify, in what immediately follows I assume homoscedasticity of individual ability,

33This upper bound implies a standard deviation in teacher quality (in terms of test scores) larger than that found
by Aaronson, Barrow, and Sander (2002) and almost three times as large as the effect size found by Rockoff (2003).
34The sample only includes schools with multiple 5th grade classrooms. These rough estimates can be inferred

from Table 1 of Vigdor and Nechyba (2004) by noting that the ratio of the within-classroom standard deviation in
lagged test scores — ‘ability’ — to the within-school standard deviation approximately equals

p
1− ζεε. Measuring

‘ability’ relative to the statewide mean, and hence including the effects of both within-school and cross-school sorting,
increases the correlation coefficient to roughly 0.3.
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σ2 (wc) ≡ σ2. The standard deviation in student achievement equals

σy (ζεε;β) =
q
σ2 + ς + (γ2 − 1)σ2(ζεε + (1− ζεε)μ1/M ) (22)

where μ1/M = E [1/Mc] and β = (ς, γ2, σ2, μ1/M ). With perfect sorting of students across

classrooms, ζεε = 1 and (22) collapses to
p
γ2σ2 + ς. Perfect mixing requires that ζεε + (1 −

ζεεμ1/M ) = 0 and hence that ζεε = μ1/M/(μ1/M − 1) or that ability is negatively correlated across
students within the same classroom. A simple measure of the increased achievement inequality

associated with a shift from random assignment to modest sorting is σy (ζεε;β) /σy (0;β), where

ζεε measures the amount of within-classroom ability correlation in the counterfactual of interest.

Table 8 reports estimates of the above ratio for ζεε equal to 0.1, 0.3, and 1.0 respectively.
35

The first value corresponds to the modest level of within-school sorting suggested by Vigdor and

Nechbya’s (2004) data. The second and third values correspond to medium and perfect within-

school sorting respectively. Shifting from random assignment to modest sorting suggests an increase

in the standard deviation of math and reading achievement of about 9 and 12 percent respectively.

A shift to perfect sorting suggests increases of 67 and 91 percent respectively.

To provide a benchmark with which to gauge the magnitude of these effects consider an in-

tervention which eliminates black-white differences in ‘ability’ (i.e., background characteristics) for

students within the same school. Decomposing individual heterogeneity into a systematic black-

white difference and an idiosyncratic component we have

εci = Blackci · ηb + �ci, E [�ci|Blackci] = 0.

The unconditional variance of individual heterogeneity equals πbη2b +σ2� , where πb is the proportion

black for Project STAR kindergarten students. Eliminating black-white differences in background

35The parameters required to calculate the ratios reported in Table 8 are estimated by GMM using the moment
vector

E
£
Z0
c (yc −Wcβ

∗)
¤
= 0 (23)

where β∗ =
¡
β0, ηb, ηf

¢0
and

yc =

⎛⎜⎜⎜⎜⎜⎜⎝
gbc

Mcg
w
c

M−1
cXMc

c=1
B̂lackcieyciXMc

c=1
^FreeLunchcieyci

⎞⎟⎟⎟⎟⎟⎟⎠ , Wc =

⎛⎜⎜⎜⎜⎜⎜⎝
1 gwc 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

0 0 0 0
XMc

c=1
B̂lack

2

ci 0

0 0 0 0 0
XMc

c=1
^FreeLunch

2

ci

⎞⎟⎟⎟⎟⎟⎟⎠ ,

Zc =

⎛⎜⎜⎜⎜⎜⎜⎝
1 q0c 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

0 0 0 0
XMc

c=1
B̂lack

2

ci 0

0 0 0 0 0
XMc

c=1
^FreeLunch

2

ci

⎞⎟⎟⎟⎟⎟⎟⎠ .

The large sample variance-covariance matrix is calculated in the usual way.
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characteristics requires increasing εci for all black students by −ηb. This lowers the standard devi-
ation of achievement from q

σ2 + ς + (γ2 − 1) σ2μ1/M

to q¡
σ2 − πbη2b

¢
+ ς + (γ2 − 1)

¡
σ2 − πbη2b

¢
μ1/M .

Row 4 of Table 8 indicates that this intervention reduces achievement inequality by about 4 to 5

percent. An identical hypothetical intervention, but with respect to eligibility for free or reduced

price school lunch, reduces the standard deviation in achievement by 7 to 8 percent.

Eliminating within-school black-white differences in background characteristics generates a large

increase in average achievement (see columns 3 and 4 of Table 8). The effect on inequality, however,

is modest since only a small reduction in individual, and hence peer group, heterogeneity occurs

(i.e., πbη2b is small relative to σ
2). The direct effects of sorting are stronger. Sorting amplifies the

effects of the large amount of ‘naturally occurring’ individual heterogeneity.36

5 Specification errors and testing

If the linear-in-means model correctly specifies how student ability, teacher quality and peer group

composition collectively determine academic achievement, consistency follows directly from assump-

tions (17) and (18). Both of these assumptions are well-motivated by the experimental structure

of Project STAR as well as consistent with several pieces of auxiliary evidence (see Tables 2, 3,

and 4). The assumption that the educational production function give by (6) is correctly specified,

however, is admittedly more tenuous.

5.1 Omnibus specification tests

One approach to assessing specification is to directly test the conditional moment restriction (19).

Unfortunately, with qc binary the unconditional moment restriction defining the Wald estimator

contains all the information implied by (19) and no overidentifying restrictions are available for

testing. With qc non-binary the model is overidentified and, conditional on instrument validity,

the extra restrictions can be used to test functional form assumptions (c.f., Angrist, Graddy and

Imbens, 2000).

The class type indicator, qc, exploits the exogenous variation in class size generated by Project

STAR to form expected variance contrasts. The experimentally induced variation in class-size dif-

fers from the actual variation. Figure 4 shows that the distribution of class sizes across small and

regular/regular-with-aide classrooms is partially overlapping. Furthermore the Wald estimator does

36Observe that the semielasticity of the standard deviation of achievement with respect to the intensity of within-

school sorting is ∂ lnσy
∂ζεε

(ζεε;β) =
1
2

(γ2−1)σ2(1−μ1/M)
σy(ζεε;β)

.
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Figure 4: Distribution of Class Size Across Project STAR Kindergarten Classrooms
Notes: The figure shows a histogram of the distribution of class-size across the 317 (out
of 325) kindergarten classrooms included in the main sample (the structure of this sample
is described in Section 2).

not use the substantial variation in size within class types. This is appropriate since the assign-

ment mechanism producing teacher/size combinations within class types is not well documented.

For example, it is possible the within randomly assigned class types, more senior teachers were

systematically placed in smaller or larger classrooms.37

Notwithstanding the above concerns, if we are willing to treat the actual distribution of class

size as exogenous, in the sense required for assumption (17) to hold, then we can base estimation

on the moment E [ρ (gc, θ) |Mc] = 0, which does imply overidentification. To implement this idea I

partition the distribution of class size into three cells: small, with 12 to 16 students, medium, with

17 to 22 students, and large with 23 to 28 students.38 This partition is entirely data-dependent and

should not be confused with the experimental designation of classrooms as either small, regular or

regular-with-aide.

37About one third of Project STAR classrooms are from schools with just three kindergartens. In these schools
there would have been no scope for within-class-type discretion in teacher assignment.
38 In principle, with Mc equalling one of only a finite number of values, one could estimate using a fully saturated

set of moment restrictions. This does not seem sensible here due to the small sample size.
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The three-bin partition generates a single overidentifying restriction as it allows estimates of γ2

based on excess variance contrasts across both small and medium and medium and large classrooms.

If the linear-in-means specification given by (6) is an adequate approximation to the true data

generating process then the estimated γ2 should be similar for both contrasts.

Table 9 reports three estimates of γ2 for math and reading achievement. In column 1 γ2s/m is

estimated using contrasts across small- and medium-sized classrooms only (N = 221). For math

achievement this contrast appears reasonably powerful with a first-stage F-statistic of 28.20, for

reading achievement, however, identification is weak (F-statistic of 9.14). Column 2 uses contrasts

across medium and large classrooms (N = 214). This contrast is too weak to generate meaningful

estimates of γ2m/l, unsurprising since differences in 1/Mc are smaller across these two cells and it

is variation in 1/Mc which drives differences in expected variance contrasts. Column 3 reports

two-step GMM estimates of γ2 using dummies for medium and large as instruments (with small

being the excluded group). The point estimates of γ2 are almost identical to those reported in

Table 5, which only use experimentally-induced variation in class size. Row 3 of panels A and B

report p-values of 0.2488 and 0.2828 for the Sargan-Hansen test of the restriction that γ2s/m = γ2m/l.

While the test does not provide evidence against the null hypothesis of correct specification, its

power to detect misspecification is presumably quite low in most directions.

5.2 Tests in specific directions: separability of teacher ‘effectiveness’ and class size

One (to this point) unstated implication of (17) is that class size and what I will now refer to as

teacher ‘effectiveness’ (αc) are separable. This is a rather strong assumption on the educational

production function. While random assignment ensures that the underlying distribution of observed

and unobserved teacher characteristics will be the same in small and large classrooms (given a

sufficiently large sample), it seems plausible that the salience of specific teacher characteristics for

student achievement may vary systematically with class size.39 For example the importance of a

teacher’s ability to maintain ‘order and discipline’ may grow with class size. Similarly, a teacher’s

ability to customize his pedagogy to the needs of individual students may be more important in

smaller classrooms.

Assume that teachers have L latent attributes ac = (ac1, . . . , acL)
0 . Random assignment ensures

that

V ar(ac|qc = 1) = V ar(ac|qc) = Ξa.

The relative importance of each attribute for realized teaching effectiveness (αc) however, may vary

with class-size:

αc = a0cλ1 · qc + a0cλ0 · (1− qc) . (24)

An implication of (24) is that the affect on student achievement from reducing class size will

39 I thank Gary Chamberlain for clearly articulating this concern to me.
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be teacher-specific. Under random assignment of teachers to class sizes, the conditional variance

of teacher effectiveness will therefore differ across the two types of classrooms (even though the

distribution of underlying latent teacher attributes will not). Formally

σ2α(1)− σ2α(0) = λ1
0Ξaλ1 − λ0

0Ξaλ0 6= 0, (for λ1 6= λ0),

which violates (17). Without loss of generality we can normalize the latent teacher attributes such

that Ξa = IL. The relative effectiveness of teachers in small versus large classrooms under random

assignment to class type then equals

ξ
def
=

s
σ2α(1)

σ2α(0)
=
kλ1k
kλ0k

,

where k·k denotes the l2−norm. To interpret ξ it is useful to consider a simple thought experiment.
Consider randomly drawing pairs of teachers from a common population, will reducing class size

reduce (ξ < 1) or amplify (ξ > 1) the average difference in ‘effectiveness’ between the two teachers?

Put differently, is variation in teacher effectiveness greater in small (ξ > 1) or large (ξ < 1)

classrooms?

Relatively little is known about the educational production process. One view suggests that

class size and some underlying notion of teacher ‘ability’ are complementary (ξ < 1). With com-

plementarity we would expect that moving a common population of teachers to larger classrooms

would, in addition to reducing average teacher effectiveness, increase its variance. In this case all

teachers would perform relatively similarly in small classrooms with differences in teacher effec-

tiveness only emerging in larger classrooms. Alternatively teacher ‘ability’ and class size could be

substitutable (ξ < 1), with individual teacher characteristics being unimportant in large classrooms

because, for example, anyone can effectively execute ‘chalk and talk’. Finally it may be that while

the salience of individual teacher attributes varies with class size, it is the case that on average —

under random assignment to class type — the various effects wash out such that ξ is close to one.

The Wald-IV estimator will be inconsistent for γ2 if ξ 6= 1, with a large sample bias of

bγ2 − γ2
p→

¡
ξ2 − 1

¢
σ2α (0)

E [gwc |qc = 1]−E [gwc |qc = 0]
,

where for simplicity I have assumed that Cov (εci, εcj) = 0 for i 6= j and Cov (al, εci) = 0 for

l = 1, . . . , L (as seems reasonable for the Project STAR application). The bias will be downwards,

or toward the no social interactions null, under complementarity and upwards under substitutability.

Solving for ξ and replacing (E [gwc |qc = 1]−E [gwc |qc = 0]) with its first stage estimate, denoted bφw2 ,
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we have approximately

ξ1(σ
2
α (0) |bγ2, bφw2 , γ2) = 1 '

s
γ2 +

bφw2 (bγ2 − 1)
σ2α (0)

. (25)

Assume that there are no social interactions (γ2 = 1), (25) can be combined with assumptions on

σ2α (0) to back out the degree of substitutability between teacher ability and class size that would

be required to produce (large sample) estimates of the size found.

Table 10 reports the results of exercises of this type. To calibrate the experiments note that

σα (0) equals the change in test scores associated with a one standard deviation change in teacher

effectiveness in regular and regular-with-aide classrooms. The relevant distribution is the within-

school distribution of teacher effectiveness, since the between-school variation in test scores has

already been purged from the data. Rockoff (2004), using panel data methods, simple deconvolution

procedures to deal with measurement error, and a sample of ‘normal’ sized classrooms from New

Jersey, estimates σα (0) to be about 0.1. Aaronson, Barrow, and Sander’s (2002) research, using

Chicago Public Schools data, suggests a somewhat higher value for σα (0) . A reasonable upper

bound for σα (0) based on existing evidence is about 0.3, which is slightly above the value implied

by the upper tail of the 95 percent confidence interval for bς (see Table 5).
For σα (0) = 0.1 the typical difference in effectiveness across a pair of teachers would have to

be roughly 2.5 times larger in small versus large classrooms to produce γ2 estimates of the size

reported in Table 5, if in fact there were no peer effects. This is an implausibly large number.

For σα = 0.3 the difference would have to 1.25 times larger, still quite a large effect. Overall

identification appears to be strong enough to ensure a reasonable amount of robustness to bias

caused by substitutability of teacher quality and class size.

A simple and direct test for substitutability/complementarity bias its to compare estimates of

γ2 based samples upon with large amounts of heterogeneity in teacher quality versus ones with

little heterogeneity. If size and teacher quality are complementary then the estimate based on the

first sample should be smaller than those based on the second. If teacher quality and class size are

substitutes the opposite pattern will occur.

In the Project STAR dataset the only observed teacher covariate that is significantly related to

test scores is years of teaching experience. I divide Project STAR schools (and hence classrooms)

into two sets: in the first set the standard deviation of years teaching experience is greater than or

equal to five, in the second set it is less than five. This partition is used to form subsamples with

high and low degrees of heterogeneity in teacher quality. Table 11 reports separate estimates of γ2

using these two subsamples.

The discussion emphasizes the math achievement results since those for reading achievement are

not well identified, with first stage F-statistics all below 10. Column 1 reports the Wald estimate

of γ2 based on a comparison across small and large classrooms in schools with lots of heterogeneity
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in years of teaching experience. Column 2 reports the estimate based on classrooms in schools with

little experience heterogeneity. The two estimates are similar in magnitude, consistent with the

null of separability.

Column 3 reports two-step GMM estimates of γ2 using the entire sample with the small class

type dummy and its interaction with a dummy for belonging to the high heterogeneity subsample

(Std (Expc) ≥ 5 years) serving as excluded instruments. Row 3 reports the p-value for a Sargan-
Hansen test of the null that the high heterogeneity and low heterogeneity estimates of γ2 are equal.

There is little evidence of quantitatively important bias due to non-separability of teacher quality

and class size in the educational production function.

The coefficient on the dummy variable for belonging to the high variance subsample is positive

and statistically significant: schools with greater heterogeneity in experience also display greater

between classroom variation in test scores. This result indirectly suggests that the comparison

made in Table 11 should have real power to detect significant substitutability or complementarity

bias.

5.3 Implications of heterogenous class-size effects

Project STAR provides strong evidence that lowering class size raises average achievement. A

priori, however, there is no reason to assume that the effects of class size can be summarized by

an additive homogenous ‘treatment effect’. Plausible theories of educational production suggest

that, among other possibilities, within-classroom variation in student achievement may be more or

less dispersed, or more right- or left-skewed, in smaller than in larger classrooms. Such patterns

might arise if the effects of class size are heterogeneous, as would occur, for example, if low ability

students disproportionately benefit from a reduction in class size.40

The model used thus far has implicitly assumed a homogenous effect. A more flexible speci-

fication allows for heterogenous effects (c.f., Heckman and Vytlacil, 1998). Let ‘realized’ student

ability, εci, depend on ‘latent’ ability, ωci, and class type according to

εci = ρ0 (1− qc)ωci + ρ1qcωci.

If ρ1 > ρ0 a high ability student gains more from being placed in a small classroom than

an average student, if ρ1 < ρ0 low ability students gain more. Henceforth ρ0 is normalized to

one without loss of generality. In the presence of heterogenous class size effects the difference

in ‘expected’ between-group variance across small and large classrooms reflects two, potentially

countervailing, forces. While class size variation induces a mechanical difference in the between-

group variance of latent ability, ωci, variation in realized ability, εci, is amplified or attenuated by

heterogenous class size effects. For example, if low ability students benefit more from a reduction in

40Krueger and Whitmore (2001), using Project STAR data, report evidence that black students disproportionately
benefit from class size reductions.
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class size, then the dispersion of student achievement will be compressed in small relative to large

classrooms. This compression of within-classroom student achievement also generates a mechanical

reduction in the between-classroom variability of achievement.

In contrast, peer group effects, at least those of the linear-in-means form, do not alter the

within-classroom variability of achievement. Their effects manifest themselves solely in the between-

classroom variation of the data. An obvious concern is that the between-classroom variance con-

trasts observed in Project STAR reflect heterogenous class size effects, not social interactions.

To explore identification in the augmented model it is necessary to recast assumptions in terms

of ωc and αc. Assume that

E [ωc, αc|qc] =
¡
0 · ι0Mc

, μ (qc)
¢

and

V ar
¡
ω0c, αc|qc

¢
=

Ã
σ2ω (1− ζ) IMc + ζσ2ωιMcι

0
Mc

σαωιMc

σαωι0Mc
σ2α

!
,

with ζ now equaling the within-classroom correlation of latent student ability, induced by any

(within-class-type) sorting. Latent student ability is conditionally homoscedastic, a reasonable

assumption given random assignment to class type. Realized student ability, however, is condition-

ally heteroscedastic since achievement gains associated with moving from a large to small classroom

depend on a student’s latent ability.

Under these assumptions the Wald-IV estimator of γ2 has a large sample relative bias of

bγ2 − γ2

γ2
p→ ζ

1− ζ

ρ21 − 1
ρ21E

£
M−1

c |qc = 1
¤
− E

£
M−1

c |qc = 0
¤ , (26)

which for ζ 6= 0 and/or ρ1 6= 1 is different from zero. In the case of random assignment of students

to classrooms (not just to class type) ζ = 0, and the Wald-IV estimator remains consistent. This is

because the mean difference in gwc across small versus large classrooms captures the net effects of

the two effects of class size on ‘expected’ between-group variance in achievement. In the presence

of sorting, however, this is not the case. Even if the within-classroom covariance of latent student

ability in both small and large classrooms is the same, the covariance of realized student ability will

not be; E [gwc |qc = 1] − E [gwc |qc = 0] will no longer provide a consistent estimate of the difference
in ‘expected’ between-group variance across small and large classrooms.

While the randomization tests reported in Section 2 provide no evidence of sorting on the basis

of observed student characteristics, sorting on unobserved characteristics, and hence inconsistency,

is a concern. Thirty-one of the 79 Project STAR schools had only three kindergarten classrooms.

In these schools random assignment to class type is synonymous with random assignment to class-

rooms. In these schools with we can safely assume that ζ = 0. The remaining 48 schools had up

to 8 kindergarten classrooms and, consequently, scope for non-random (within-class-type) sorting
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of students into classrooms (i.e., ζ 6= 0). This may have occurred if school administrators sought
to balance the composition of multiple classrooms of the same type (ζ < 0) or if classrooms of the

same type were purposively stratified by ability (ζ > 0).

Here I use two facts to assess the degree of robustness to heterogenous class size effects: (a)

the presence of heterogenous class size effects can be adduced from the within-classroom variation

of the data alone, and (b) evidence on the nature of any non-random (within-class-type) sorting

of students in larger schools — including that based on unobserved characteristics — can be found

by comparing the magnitude of within-classroom variation in achievement across the two sets of

schools.

Let Lc = 1 if the cth classroom is located in one of the 48 large schools and zero otherwise.

Making the auxiliary assumption that the variance of latent student ability is the same across both

types of schools we have

E [Mc · gwc |qc, Lc] = σ2ω +
¡
ρ21 − 1

¢
σ2ω · qc − ζLσ

2
ω · Lc −

¡
ρ21 − 1

¢
ζLσ

2
ω · qc · Lc, (27)

where ζL equals the within-classroom correlation in latent ability for students attending large

schools.

Table 12 reports nonlinear least squares estimates of σω, ρ1, and ζL based on (27). For math

achievement ρ1 is significantly greater than 1. The point estimate suggests that a student with

latent ability one-standard deviation above average would experience an achievement gain from

switching to a small classroom 0.0639 standard deviations greater than that of the average student

(the average effect equals 0.1631 standard deviations, see Table 15 below). For reading achievement

there is no strong evidence of heterogenous class size effects.

The point estimates of ζL are negative but insignificantly different from zero for both math and

reading achievement. These results provide little evidence of within-class-type sorting of students

in larger schools. Any within-class-type sorting of students in larger schools was probably of the

‘mixing’ variety (c.f., Table 4). The point estimates for ρ1 and ζL suggest an upward bias in

estimates of γ2 based on variance contrasts in large schools alone of 71 and 12 percent for math

and reading achievement respectively (c.f., equation (26)). However the null of no bias is easily

accepted in both cases.

On balance the estimates reported in Table 12 provide little evidence that heterogenous class

size effects provide a compelling alternative rationalization for the variance contrasts observed in

the Project STAR data. However, I am unable, given the limitations of the data in hand, to

conclusively dispense with this possibility.

5.4 Outcome measurement error

The assumption that the outcome of interest is measured without error is untenable in most ap-

plications. Even if the variable in hand corresponds to the conceptual outcome of interest, it will



Social Interactions and Excess Variance 35

usually be only noisily observed by the econometrician. Even more often the available measure

provides only a rough proxy for the actual outcome of interest. In the Project STAR application

measurement error is of considerable concern. The available proxies for academic achievement, test

scores in mathematics and reading, only loosely correspond to actual attainment in these subject

areas. Reliability ratios for these tests are well below one, while even ‘true’ test scores would only

provide imperfect measures of actual achievement.

Assume that we do not observe the true outcome of interest, y∗ci, but only the noisy proxy

yci = y∗ci+ vci, where vci|Mc, qc has constant conditional variance σ2υ and is uncorrelated with both

εci and αc. Although not required for the qualitative results, it is also convenient to assume that

εci|Mc, qc has constant conditional variance σ2 as well. Under these conditions and assumptions

(17) and (18) we have

E[gbc |Mc] = ς + γ2σ2E[M−1
c |qc] + σ2υE[M

−1
c |qc]

E[gwc |qc] = σ2E[M−1
c |qc] + σ2υE[M

−1
c |qc]

and a consequent downward bias in bγ2 of
plim
N→∞

(bγ2 − γ2) =
¡
1− γ2

¢
(1− κ) < 0

where κ = σ2
¡
σ2 + σ2v

¢−1 is the signal-to-noise ratio in the test score data. Unlike ordinary least
squares regression, dependent variable measurement error does result in a biased estimate of the

coefficient of interest.

Occasionally auxiliary information on the nature and magnitude of dependent variable mea-

surement error is available (e.g., from validation studies). In these cases it is straightforward to

modify bγ2 to produce consistent estimates of γ2. Given a known signal-noise-ratio, κ, a consistent
estimate γ2 and its asymptotic standard error is:

eγ2EIV = bγ2 · 1κ −
µ
1− κ

κ

¶
, AV ar

¡eγ2EIV ¢ = AV ar
¡bγ2¢ /κ2. (28)

Table 13 uses the above formulae to adjust the γ2 estimates reported in Table 5 for classical

dependent variable measurement error of varying intensities. As the table makes clear, plausible

levels for the signal-to-noise ratio between test scores and actual academic achievement, κ, can lead

to substantial downward bias in bγ2.
If two (classically) noisy measures of the outcome of interest are available, with the measurement

error across the two signals uncorrelated, it is possible to consistently estimate γ2 as well as the

signal-to-noise ratio for the two measures in one-step. Let

gb,(i,j)c = (y(i)c − μ(i) (qc))(y
(j)
c − μ(j) (qc)), gw,(i,j)c =

XMc

i=1
ey(i)c ey(j)c
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for noisy measurements i, j = 1, 2. The moment function

E
£
Z 0c (yc −Wcβ)

¤
= 0, (29)

where

yc =

⎛⎜⎜⎜⎜⎝
g
b,(1,2)
c

Mc · gw,(1,2)c

Mc · gw,(1,1)c

Mc · gw,(2,2)c

⎞⎟⎟⎟⎟⎠ , Wc =

⎛⎜⎜⎜⎜⎝
1 g

w,(1,2)
c 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

⎞⎟⎟⎟⎟⎠ , Zc =

⎛⎜⎜⎜⎜⎝
1 qc 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

⎞⎟⎟⎟⎟⎠ ,

identifies β =
¡
ς, γ2, σ2, σ2 + σ2υ1, σ

2 + σ2υ2
¢0
.

Table 14 reports estimates of β based on the assumption that the math and reading test scores

are independent signals of unobserved true achievement. Ideally independent test scores in the

same subject area would be used for this exercise. Unfortunately multiple measures of this type

are not included in the public release Project STAR data. The GMM estimate of γ2 exceeds five,

consistent with substantial measurement error bias. Indeed, the estimated signal-to-noise ratios for

the math and reading tests are 0.68 and 0.65 respectively. These results illustrate the potential

severity of the measurement error problem.

6 The excess sensitivity approach to identification

The most common and arguably current best practice test for social interactions is a reduced form

test for excess sensitivity (e.g., Sacerdote 2001, Duncan et al 2003, Angrist and Lang 2004). This

method exploits random assignment, or conditional random assignment, of individuals to groups

to motivate simple least squares-based tests for social interactions. These tests are attractive since

their plausibility is straightforward to evaluate and they are easy to implement. Graham and Hahn

(2004) provide a formal overview of this approach.

Implementing these tests requires that in addition to outcomes, we observe a K × 1 vector of
individual-level characteristics, rci. This allows the individual heterogeneity term to be decomposed

into observable and unobservable components, εci = r0ciη + �ci. For ease of exposition and to more

directly focus on the key differences between the excess sensitivity and variance approaches, consider

the case where only endogenous social interactions are present (i.e., ψ = 0).

Substituting εci = r0ciη + �ci into (6) and rearranging to partition achievement into its within-

and between-group components yields the reduced form

yci = r0c
η

1− β
+ (rci − rc)

0 η + uci (30)

= r0cπb + er0ciπb + uci
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where uci = αc
1−β +

1
1−β �c + (�ci − �c) .

Under random assignment of students to classrooms a least squares regression of yci on rc anderci identifies π = (π0b, π0w)0 = ³³ 1
1−β , 1

´
⊗ η0

´0
. The null hypothesis of no social interactions can be

assessed by testing the restriction πb = πw. Positive social interactions imply that πb > πw or that

there is excess between-group sensitivity in outcomes to between-group variation in characteristics.

Note that πb and πw are identical to the coefficients in the within- and between-group regressions

of y on r and hence, formally, the excess sensitivity test is a Hausman and Taylor (1981) test,

although its motivation and interpretation are quite different (Graham and Hahn 2004).

In the augmented linear-in-means model (30) the full parameter vector is now θ =
¡
π0, σ2� , σ

2
α, γ

2
¢0
,

although only an estimate of π is required to implement the test.41 The Wald statistic for the no

social interactions null (H0 : πb0 − πw0 = 0) is

W = N · (bπb − bπw)0 [bVπb + bVπw ]−1 (bπb − bπw)
where bVπb and bVπw are K × K sub-matrices of the estimated large sample variance-covariance

matrix for the reduced form excess sensitivity regression.42 Given the simplifying assumption of

no exogenous effects, H0 is equivalent to the null that the social multiplier, γ, equals one since

πb−πw = (γ − 1) η. In practice excess sensitivity is often assessed by running a regression of yci on
rci and rc and testing the joint significance of the latter set of coefficients. This test is numerically

equivalent to the test for equality of the within- and between- reduced form coefficient vectors given

above.

Table 16 implements the excess sensitivity test for social interactions using Project STAR math

and reading test score data. The table reports estimates of πb and πw (full regression results are

reported in Table 15). Included in rci are the four individual characteristics mentioned in Section 2:

dummies for student race, gender, and free lunch eligibility as well as an age measure. Also included

in the regression are basic classroom-level controls and a school fixed effect (since it is only the

within-school variation in observable classroom composition that is arguably idiosyncratic). Note

that these estimates require random assignment to classrooms, not just to class type.

To facilitate comparisons the between- and within-group coefficients are reported side-by-side in

columns 1 and 2 with column 3 giving the difference. Under positive social interactions the magni-

tude of the between-group coefficients (in absolute value) should be greater than the corresponding

within-group coefficients. The omnibus test of for no excess sensitivity is easily accepted with p-

values of 0.3117 and 0.1670 for math and reading test scores respectively. The only individual-level

covariate displaying significant excess sensitivity is gender.

Overall the excess sensitivity tests provide little evidence of peer group effects. However, they

41Observe that σ2, the variance of individual heterogeneity term in the model without covariates, equals η0Σrrη+σ
2
� ,

where E [r0circi] = Σrr and σ2� is the variance of the residual εci −E∗ [εci|rci].
42Typically the variance-covariance matrix for bπ is of the Huber-White variety with ‘clustering’ at the level of social

groups.
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also provide little evidence against the existence of even quite large effects. Table 16 also reports

tests for the restriction πb = 2 · πw, which would hold if the true social multiplier were two, a
large value and in excess of that implied by both the math and reading estimates of γ2 reported in

Table 5. The test accepts with a p-value of 0.3608 for math achievement and marginally accepts

with a p-value of 0.0770 for reading achievement. The excess sensitivity regressions are consistent

with both very small and very large levels of peer group effects. In principle, the idiosyncratic

variation in observable class composition generated by the Project STAR experiment provides an

ideal opportunity to implement an excess sensitivity test for social interactions; unfortunately the

test is uninformative.

7 Relative power of excess variance and excess sensitivity tests

An obvious reason why the excess sensitivity test to fails reject the no social interactions null is

low power. The idiosyncratic variation in classroom composition generated by random assignment

of students and teachers to classrooms, while exogenous, may be too small to reliably detect the

presence of social interactions. This section derives and compares the large sample power functions

for both the excess variance and excess sensitivity tests. The power functions provide insight into

what design features and test combinations will reliably detect social interactions when present.

The analysis demonstrates that the excess variance test provides a substantially more powerful test

for social interactions than the conventional excess sensitivity test for designs ‘like’ Project STAR.

In order to derive an interpretable expressions, I make the auxiliary assumptions of homoscedas-

ticity and joint normality of (ε0c, αc) throughout. I also assume, without loss of generality, that

σεε = σαε = 0.
43 These assumptions are made ex post in order to derive interpretable expressions.

That is, I assume that normality and homoscedasticity happen to occur in the population being

sampled from but that these additional restrictions are not used in estimation, although in principal

they could be used to derive a more efficient estimator.44 Finally, again for simplicity, I continue

to assume the absence of any exogenous social effects.

7.1 Excess variance test power

Before deriving the actual power function, some additional notation and results are required. First

write the excess variance model in simultaneous equations form with the structural equation

gbc = ς + γ2gwc + uc (31)

and associated first stage

gwc = φw1 + q0cφ
w
2 + vc. (32)

43The normality assumption is only required for the excess variance power function.
44 In particular, these two additional assumptions could be used to derive a maximum likelihood estimator.
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Under assumptions (17) and (18) we have E [uc|qc] = E [uc|qc] = 0 and hence φw2 = E [gwc |qc = 1]−
E [gwc |qc = 0], the denominator of the population Wald estimator. Also write the reduced form
regression as

gbc = φb1 + q0cφ
b
2 + ec (33)

with φb1 = ς + γ2φw1 and φb2 = γ2φw2 .

The power of the excess variance test depends in part on the strength of the first stage. A

unitless measure of instrument strength is the concentration parameter κ0 = Nφw02 V
−1
w φw2 , where

Vw is the large sample variance of bφw2 (c.f., Bound, Jaeger and Baker 1995, Staiger and Stock 1997).
The larger the expected variance contrast, relative to the precision with which it is estimated, the

stronger the instrument. Under the normality assumption it is straightforward to show that

φw2 = σ2
¡
E
£
M−1

c |qc = 1
¤
−E

£
M−1

c |qc = 0
¤¢
,

where the large sample distribution of bφw2 is
√
N(bφw2 − φw2 )

D→ N (0, Vw)

with

Vw = 2σ
4

½
1

π
E

∙
1

M2
c

1

Mc − 1
|qc = 1

¸
+

1

1− π
E

∙
1

M2
c

1

Mc − 1
|qc = 0

¸¾
,

where π = E [qc] or the fraction of small classrooms. The concentration parameter is therefore

κ0 =
N

2

¡
E
£
M−1

c |qc = 1
¤
− E

£
M−1

c |qc = 0
¤¢2

π−1E
h
M−2

c (Mc − 1)−1 |qc = 1
i
+ (1− π)−1 E

h
M−2

c (Mc − 1)−1 |qc = 0
i . (34)

One interesting and unique feature of (34) is that it depends only on the marginal distribution

of class size and not on any features of the distribution of εci, or individual ability. This is a direct

consequence of the auxiliary assumptions of normality and homoscedasticity, which ensure that

the square of the second moment of εci is proportional to its fourth moment. Although these two

assumptions are unlikely to hold in practice, at least exactly, (34) makes clear the importance of

group size variation in ensuring strong identification and is is also likely to be helpful for researchers

interested in designing sampling plans and experiments for detecting social interactions. Equation

(34) also enters the power function for the excess variance test.

We now derive the power function for the no social interactions null

H0 : γ
2 = 1. (35)

The standard difficulty in deriving an asymptotic power function is that if the null is false any

consistent test will reject with probably one as N →∞. Here I follow standard practice and avoid
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degenerate >-shaped power functions by evaluating limiting power for a fixed null under a sequence
of alternative data generating processes (DGPs). In these alternatives the social interactions pa-

rameter, γ2N , follows a ‘Pitman drift’. In particular γ
2
N evolves withN according to γ2N = 1+δ0/

√
N

for some δ0. While the alternative DGP approaches the hypothesized null as the sample size grows,

the rate of shrinkage is parameterized to ensure that the difference
√
N
¡
γ2N − γ20

¢
remains fixed at

δ0. The nuisance parameters σ2 and σ2α remain fixed across the entire sequence of DGPs.

Under these conditions it is straightforward to show that the scaled difference
√
N
¡bγ2N − 1¢

converges in distribution to a normal random variable with mean δ0 and variance equal to Σγγ (θ0),

where Σγγ (θ0) is the lower right-hand element of the asymptotic variance-covariance matrix forbθ = ¡bς, bγ2¢ evaluated at the null. The Wald statistic for (35) therefore converges in distribution to
a non-central χ21,λ random variable with non-centrality parameter λ = δ20/ Σγγ (θ0) . Since, under

Pitman drift,
√
N
¡bγ2N − 1¢ → ¡

γ2N − 1
¢
≡ δ0 this suggests that we can approximate the finite

sample behavior of the Wald statistic for the null of no social interactions for a given DGP in the

sequence with a non-central χ21,λ distribution with non-centrality parameter

λ =
¡
γ2N − 1

¢µ Vb0

N (φw2 )
2 +

1

κ0

¶−1 ¡
γ2N − 1

¢
, (36)

where
³

Vb
N(φw2 )

2 +
1
κ0

´−1
equals (Σγγ (θ0) /N)

−1 as shown in Appendix B.

The second term in the middle parentheses of (36) captures the asymptotic penalty which arises

from having to estimate the first-stage coefficient, φw2 , or the difference in ‘expected’ between-group

outcome variance across the two sets of groups defined by the binary instrument qc. The size of this

penalty is inversely proportional to the concentration parameter for instrument strength derived

above, κ0, and would equal zero if φw2 were known. For φ
w
2 unknown, strong instruments lead to a

more powerful test. Recall that κ0 depends only on the marginal distribution of group size.

The first term in the middle parentheses equals the infeasible Wald statistic for the null hypoth-

esis of no difference in the actual between-group variance in outcomes across the two sets of groups

defined by qc. Appendix B gives the requisite components required to form a complete analytical

expression for Vb0/N (φw2 )
2 . The leading term of Vb0/N (φw2 )

2, however, captures the main factors

driving power. Under the no social interactions null this term equals

1

N

2

π (1− π)

µ
σ2α
σ2

¶2
1¡

E
£
M−1

c |qc = 1
¤
− E

£
M−1

c |qc = 0
¤¢2

and power therefore increases in sample size, N ; increases in π (1− π), which is maximized at

π = 1/2 or when the subsamples defined by qc are of the same size; decreases in σ2α/σ
2, the

ratio of variances for group- and individual-level heterogeneity; and increases in E
£
M−1

c |qc = 1
¤
−

E
£
M−1

c |qc = 0
¤
, highlighting the importance of group-size variation.
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To summarize, power depends on the precision with the first stage and reduced form regressions

are estimated, or equivalently the precision of the numerator and denominator of bγ2WALD. The

precision of the first stage is unaffected by the degree of unobserved group-level heterogeneity as

well as the magnitude of any social interactions since it is based on the within-group variation of

the data (which is purged of these influences). The precision of the reduced form, in contrast, does

depend on the amount of group-level heterogeneity in the population as well as on the marginal

distribution of group-size.

7.2 Excess sensitivity test power

As in the excess variance case we evaluate the power to reject the no excess sensitivity restriction

under a sequence of local alternative DGPs where γN , the social multiplier, evolves with N such

that

HN
1 : γN = 1 + δ0/

√
N.

Observe that πbN−πwN = δ0η/
√
N , which approaches zero as the sample size grows; the alternative

DGP thus remains in a 1/
√
N neighborhood of the no social interactions null. Under this sequence

of alternatives, HN
1 , we can show, proceeding analogously to the excess variance case, that the

Wald statistic for no excess sensitivity converges to a non-central χ2K,λ random variable with non-

centrality parameter,

λ = η0δ0 [Vπb (θ0) + Vπw (θ0)]
−1 δ0η. (37)

Since γN − γ0 = δ0/
√
N by construction, (37) implies that we can approximate the distribution

of the Wald statistic for a given DGP in the sequence of alternatives by a χ2K,λ distribution with

non-centrality parameter,

λ = N · (γ − 1) η0 [Vπb (θ0) + Vπw (θ0)]
−1 η (γ − 1) . (38)

Appendix B shows that Vπb (θ0) + Vπw (θ0) , evaluated at the no social interactions/excess sen-

sitivity null (γ0 = 1), equals µ
σ2� + μMσ2α +

σ2�
μM − 1

¶
· Σ−1rr ,

where μM = E [Mc] and E [r0circi|Mc] = E [r0circi] = Σrr. Substituting into (38) and rearranging

yields

λ = N · (γ − 1)2 η0Σrrησ2α

μM + σ2�
σ2α

1
μM−1

. (39)

Equation (39) illustrates the main factors which determine the large sample power of excess

sensitivity tests. First, power is increasing in the size of the social multiplier. Second it is increasing

in the ratio of observed variation in individual-level ability, η0Σrrη, to unobserved classroom-level
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variation in teacher effectiveness, σ2α. A weakness of the excess sensitivity test is that, unlike the

excess variance one, it only exploits variation contained in observed individual characteristics.

Power is decreasing in mean group size, μM , at a rate which depends on the ratio σ2�/σ
2
α.

Increases in group size have two offsetting effects on the power of the excess sensitivity test. While

larger group sizes improve the precision with which the within-group reduced form coefficients, πw,

are estimated, they reduce the precision with which the corresponding between-group coefficients

are estimated, πb. The second effect dominates for large enough μM . As μM →∞ the power of the

excess sensitivity test approaches zero. Excess sensitivity tests will be most powerful when they are

based on variation in a salient observed characteristic (large η), with large marginal variances (Σrr),

when groups are of modest size (low μM ), and are similar in terms of unobserved environmental

factors (small σ2α).

While these results are intuitive and ex post unsurprising, they are not sufficiently internalized

in much of the recent wave of empirical social interactions research. While random assignment to

groups does help to identify social interactions, it does not guarantee reliable detection of them in

small samples when groups are moderately large, as is the case in Project STAR.

7.3 Calibrated power comparisons

This section calibrates the excess variance and excess sensitivity power functions to the Project

STAR dataset. The variance-component parameters σ2 and σ2α as well as the social multiplier, γ,

are estimated by maximum likelihood under the assumption that y
c
|Mc is multivariate normal.45

Full results are given in Table 17. Estimates of η are taken from the within-group reduced form

coefficients reported in Table 15, and Σrr is replaced by its sample analog. Panel B of Table 18

lists the parameter values used for calibration.

Panel A uses (36) and (39) to compute the power of the excess sensitivity and variance tests to

detect social interactions across repeated samples drawn from the calibrated population (designed

to mimic the Project STAR dataset). For math achievement, given a true social multiplier of 1.75,

the excess sensitivity and variance tests correctly detect social interactions about 85 and 99 percent

of the time respectively. The relative power results for reading achievement are qualitatively similar

with rejection rates of 73 and 98 percent. These are substantial power differences; while the excess

variance test reliably rejects the no social interactions null, the excess sensitivity test fails to reject

15 to 25 percent of the time for the level of social interactions found in the Project STAR data.

The odds of correct rejection using the excess variance test are 26 and 19 times greater for math

and reading achievement respectively.

Panel A also computes the inner and outer inverse power functions for the two tests using the

methods of Andrews (1989). The inner inverse equals the value of the social multiplier below which

the given test fails to reject at least 50 percent of the time. In samples where γ < γII , the given

45Homoscedasticity of εci is also assumed such that σ2(Mc) = σ2; although this is not required for identification.
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test will be worse than one based on a coin flip. The outer inverse equals the value of the social

multiplier above which the test rejects at least 95 percent of the time; for γ ≥ γOI the test will

reliably reject the no social interactions null. Values of γ between the two thresholds define a region

of the alternative where the test, while having some power, is unreliable.

Overall the exercise confirms the superior power of the excess variance test in the Project STAR

design. Unfortunately both tests lack power to detect small to modest levels of social interactions.

In the case of math achievement, for example, the excess sensitivity and variance tests are very

unreliable when the true social multiplier is below 1.5 and 1.4 respectively. These calculations

suggests that the methods and datasets typically employed by researchers may not be able to

reliably detect modest levels of social interactions and that greater emphasis should be placed on

confidence intervals.

8 Conclusion and areas for further research

This paper has outlined a new approach to identifying peer group effects based on excess variance

contrasts across groups of differing sizes. The method exploits excess variance intuition and is robust

to the presence of confounding group-level heterogeneity. Applying the method to the Project STAR

dataset suggests social multipliers between 1.07 and 2.31 and 1.05 to 3.07 for math and reading

achievement respectively. The estimates provide strong evidence that peer group composition was

a substantively important input into the learning process of Project STAR students. The results

of a battery of specification tests, as well as detailed considerations of rival models, suggests that

the social interaction interpretation of these results is appropriate.

By virtue of random assignment, excess sensitivity tests also plausibly identify social interactions

in the Project STAR data. These tests, however, provide no evidence of peer effects. This apparent

contradiction has a straightforward explanation: for designs like Project STAR, tests based on

excess variance contrasts are substantially more powerful than conventional excess sensitivity tests.

While this result is design specific, it does underscore a more general concern that the datasets

and methods typically used by researchers may not reliably detect substantively important levels of

social interactions if present. For the Project STAR design, even the excess variance test is worse

than a coin flip for values of the social multiplier below 1.4, equivalent to a reaction function slope,

β, of about 0.3. Most researchers would consider this a large peer group effect. This suggests that

empirical social interactions research should pay careful attention to test power and make greater

use of confidence intervals.

If peer effects are important for learning, the design of educational policies needs to reflect this

information. Low peer group quality, even at a young age, may have long-run consequences. Currie

and Thomas (1999), working with data from the British National Child Development Study, find

that student performance as early as age seven affects subsequent educational attainment, employ-

ment and adult earnings conditional on controlling for a large number of observable characteristics.
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Krueger (2003), in a brief literature review, suggests that existing evidence is consistent with the

belief that a one standard deviation increase in elementary school test scores is associated with

about 8 percent higher earnings as an adult. This conclusion is also consistent, at least qualita-

tively, with the evidence that parents are willing to pay substantial housing price premiums to

locate in the catchment areas of high performing schools (Black 1999). For these reasons producing

estimates of the size of peer group effects on academic achievement across different grade levels

that are both credibly and strongly identified remains a high priority for future research.

This paper has worked within the linear-in-means framework. This model is the workhorse of

applied social interactions research and is a natural point of departure for exploring identification

through conditional covariance restrictions. Even this simple model has resulted in a problematic

empirical literature and a robust coherent body of research based on it has yet to fully emerge (c.f.,

Manski 1993, Durlauf 2002).

Unfortunately, as noted earlier, the linear-in-means model is unable to answer some of the

most important questions raised by theoretical peer group effects models. The linearity of the

model implies that any redistribution of peers will leave mean achievement unaffected, with only

inequality in achievement changing. The model provides no traction on the equity versus efficiency

trade-offs that typically emerge in the theoretical models and dominate public discussions. Clearly

identification and estimation of richer models of peer group effects is a natural next step.
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A Forms for gbc and gwc required when only a random subsample of individuals in each
group is observed

LetM∗
c denote the actual number of individuals sampled in the c

th group, withMc ≥M∗
c continuing

to denote group size. Let y∗c denote the mean outcome across sampled group members, with yc

denoting the true (unobserved) group mean. Redefine gbc and gwc to equal

gbc =
¡
y∗c − μy (qc)

¢2 − µ 1

M∗
c

− 1

Mc

¶
1

M∗
c − 1

M∗
cX

i=1

(yci − y∗c)
2

gwc =
1

Mc

1

M∗
c − 1

M∗
cX

i=1

(yci − y∗c)
2 .

Observe that gwc and gbc continue to have the conditional expectations

E [gwc |qc] = E

∙
σ2 (wc) (1− ζεε (wc))

Mc
|qc
¸

E
h
gbc |qc

i
= ς (qc) + γ2E

∙
σ2 (wc) (1− ζεε (wc))

Mc
|qc
¸
,

and hence all the estimators discussed in the main text remain the same subject to redefinition of

gwc and gbc .

B Asymptotic power of excess variance and sensitivity tests for social interactions

B.1 Power function for excess variance test

This appendix derives the large sample power function for the excess variance test of the null of no

social interactions given by (36) above. Recall that homoscedasticity and normality are assumed

to hold.

The following preliminary results will proved useful in the derivation. Let x equal the matrix of

group sizes x = (Mc, . . . ,MN )
0 and let y+c = (yc1 − yc, . . . , ycMc − yc, yc)

0. The conditional variance

of the (Mc + 1)× 1 vector y+c is

Ω+c (x) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

Mc−1
Mc

σ2 − σ2

Mc
· · · − σ2
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...
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Mc
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− σ2

Mc
− σ2
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c

Mc−1
Mc

σ2 0

0 · · · · · · 0 ς + γ2 σ2

Mc
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,
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From Anderson (1984, p. 49) we can show that under normality (suppressing the c subscript)

E
£
y+2i y+2k

¤
= ωiiωkk + 2ωikωik, E

£
y+4i

¤
= 3ω2ii

and hence that

V ar (gwc |x) =
2σ4

M2
c

1

Mc − 1
,

V ar
³
gbc |x

´
= 2

∙
ς + γ2

σ2

Mc

¸2
,

Cov
³
gwc , g

b
c |x
´

= 0.

Now consider the reduced form multivariate regression of
¡
gbc , g

w
c

¢
on 1 (qc = 1) and 1 (qc = 0)

with no constant and where 1 (·) denotes the indicator function. Using results on the fourth centered
moments given above we can show that the variance-covariance matrix for the coefficient vector on

the between-group part of this regression will be

V ∗b = 2σ
4γ4diag

(
1

π
E

"µ
λα +

1

Mc

¶2
|qc = 1

#
,

1

1− π
E

"µ
λα +

1

Mc

¶2
|qc = 0

#)
(40)

where λα =
σ2α

(1−β)2
1

σ2γ2
. The variance for the within-group part will be

V ∗w = 2σ
4diag

½
1

π
E

∙
1

M2
c

1

Mc − 1
|qc = 1

¸
,

1

1− π
E
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1

M2
c

1

Mc − 1
|qc = 0

¸¾
. (41)

We can relate these terms to the standard ‘first stage’ and reduced form regressions of gwc and gbc

on 1 and qc respectively by noting that Vw = V ∗w1 + V ∗w0 and Vb = V ∗b1 + V ∗b0, where the subscripts

denote the elements of V ∗b and V ∗w corresponding to the qc = 1 and qc = 0 cases. Denote the four

reduced form coefficients from this regression as φ∗b1 , φ
∗b
0 , φ

∗w
1 and φ∗w0 ; the difference of the first

and second coefficients in the two regressions equals the corresponding coefficients on qc in the first

stage and reduced form regressions, i.e., φw2 = (φ
∗w
1 − φ∗w0 ) and φb2 =

¡
φ∗b1 − φ∗b0

¢
.

An identifying moment corresponding to the Wald estimate of γ2 is

ψc (zc, θ) =

Ã
1 (qc = 1)

1 (qc = 0)

!
(gbc − ς − γ2gwc ),

where qc is a dummy variable for small class/group size.

We have Γ0 = E
£
∂ψN (θ0) /∂θ

0¤ equal to
Γ0 = −

Ã
π πσ2E

£
M−1

c |qc = 1
¤

1− π (1− π)σ2E
£
M−1

c |qc = 0
¤ !
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where π = E [qc] .Again using results on the multivariate normal we can show that Λ0 =E
£
ψc (θ0)ψc (θ0)

0¤
is the 2× 2 diagonal matrix

Λ0 = 2σ
4γ4diag {πE [a (Mc; ρα) |qc = 1] , (1− π)E [a (Mc; ρα) |qc = 0]} ,

where a (Mc;λα) equals
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Standard GMM results yield a large sample variance-covariance matrix of
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Using standard results on partitioned inverse the asymptotic variance-covariance matrix for bγ2WALD

is therefore46
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From (40) and (41) we can rewrite 2σ
4

π E [a (Mc;λα) |qc = 1] = 1
γ4
V ∗b1+V ∗w1 and similarly for the

46When only M∗
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qc = 0 case. Substituting we get
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B.2 Power function for excess sensitivity test

The large sample variance covariance matrix for the ordinary least squares estimator of π =

(π0b, π
0
w)
0 =

³³
1
1−β , 1

´
⊗ η0

´0
is
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where wci = (er0ci, r0c)0, wc = (wc1, . . . , wcM )
0 , and θ =

¡
π0, σ2� , σ

2
α, γ

2
¢0. Observe that σ2, the

variance of individual heterogeneity term in the model without covariates, equals η0Σrrη + σ2� ,

where E [r0circi] = Σrr and σ2� is the residual variance of εci − E∗ [εci|rci]. Under the auxiliary
assumptions of homoscedasticity and the presence of only endogenous social interactions we have
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where ρα,� = σ2α/σ
2
� and γ2 = 1/ (1− β)2 .

The E [w0cwc] terms evaluates to

E
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⎞⎟⎠ =

Ã
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!
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where μM = E [Mc] and the equality E [r0circi|Mc] = E [r0circi] has been assumed.
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The E [w0cΩcwc] term simplifies as follows:

E
£
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¤
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⎡⎣McX
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where use has been made of iterated expectations.

Combing terms the large sample variance-covariance matrix divided by N for bπ is
AV ar (bπ) = γ2σ2

"Ã
1
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1
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0

0 1 + μMρα,�

!
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#
.

Using AV ar (bπ) , the asymptotic variance associated with the difference, bπb− bπw, again divided by
N , is thus:

AV ar (bπb − bπw) = γ2σ2
µ
1 + μMρα,� +

1

γ2
1

μM − 1

¶
·Σ−1rr /N,

which can be rearranged to give the expression in the text.
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Table 1: Means and Standard Deviations for Individual- and Classroom-Level Project
STAR Kindergarten Variables

(1)
Sample
Mean

(2)
Standard
Deviation

(3)
Within-School

r.m.s.e

(4)
Within-Class
r.m.s.e

Individual Test Scores
Math Scores 0 1 0.8935 0.8393
Reading Scores 0 1 0.8954 0.8496

Individual Level Variables
Black 0.3291 0.4699 0.2380 0.2390
Girl 0.4854 0.4998 0.4996 0.4995
FreeLunch 0.4825 0.4997 0.4189 0.4170
Date-of-Birth (DOB) 0.1116 0.3513 0.3482 0.3484

Classroom Level Variables
Blackc 0.3198 0.4071 0.0476 −
Girlc 0.4858 0.1184 0.1178 −
FreeLunchc 0.4774 0.2889 0.1072 −
DOBc 0.1104 0.0927 0.0791 −

Notes: Reported statistics in column 1 of the ‘Individual Test Scores’ and ‘Individual Level Variables’
panels are individual variable means for the 6,172 (out of 6,325) kindergarten students included in the regres-
sion analysis. These students are from 317 (out of 325) classrooms in the 79 Project STAR schools. Omitted
students are from 8 classrooms that either had missing teacher data or could not be clearly disaggregated
into separate classrooms. Test score statistics are based on observations from 5,724 and 5,646 students for
the mathematics and reading exams respectively. Reported test scores have been normalized by the mean
and standard deviation of the distribution of all scores. Column 2 reports the standard deviation of these
variables. Columns 3 and 4 report the (residual) root mean squared error (r.m.s.e) associated with a re-
gression of each variable on a vector of school and classroom dummy variables respectively. The ‘Classroom
Level Variables’ panel reports means and overall and standard deviations for the 317 classroom averages of
each of the individual characteristics and the r.m.s.e associated with the regression of these averages on a
vector of schools dummies.
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Table 2: Conditional Variance Contrasts Across Small and Large Project STAR Class-
rooms

(1)
V ar (xc|SMALL)

(2)
V ar (xc|REG)

(3)
V ar (xc|SMALL)
−V ar (xc|REG)

(4)
V ar(xc|SMALL)
V ar(xc|REG)

Test Scores

Math
0.1672
(0.0231)

0.0946
(0.0110)

0.0726
(0.0256)∗∗

1.7676
(0.3197)∗

Reading
0.1623
(0.0313)

0.0860
(0.0120)

0.0762
(0.0335)∗

1.8861
(0.4485)∗

Individual-Level

Black
0.0020
(0.0005)

0.0015
(0.0003)

0.0005
(0.0006)

1.3465
(0.4401)

Girl
0.0120
(0.0023)

0.0066
(0.0008)

0.0054
(0.0024)∗

1.8136
(0.4089)∗

FreeLunch
0.0148
(0.0013)

0.0079
(0.0008)

0.0069
(0.0015)∗∗

1.8692
(0.2538)∗∗

DOB
0.0059
(0.0008)

0.0040
(0.0005)

0.0019
(0.0009)∗

1.4747

(0.2588)+

Group-Level

Masters
0.1979
(0.0193)

0.1360
(0.0107)

0.0619
(0.0221)∗∗

1.4551
(0.1825)∗∗

BlackTeacher
0.0801
(0.0153)

0.0564
(0.0089)

0.0237
(0.0177)

1.4206
(0.3519)

Experience
29.0593
(3.8104)

25.5142
(2.4279)

3.5450
(4.5182)

1.1389
(0.1845)

CLAD
2.3077
(0.3928)

1.8130
(0.2673)

0.4948
(0.4752)

1.2729
(0.2867)

Notes: Columns 1 and 2 report estimates of the conditional between-group variance for each of the
listed individual and teacher variables by class type. Columns 3 and 4 report the difference and ratio of
these variances respectively. ‘Data’ are class means of residuals from a preliminary regression of each of
the listed variables on a matrix of school dummies and the class-type indicator variable. Squares of these
between-classroom residuals are then regressed on the indicator variables SMALL and REGULAR (with no
constant) to produce the estimates given in columns 1 and 2. The Huber-White variance-covariance matrix
associated with this regression provides asymptotically valid standard errors in this case, even with the
two-step procedure. Standard errors are reported in parentheses. The career ladder variances are computed
using the 289 classrooms/teachers (number small = 112) with non-missing values for this variable. All results
based on the full dataset described in the text. ‘**’, ‘*’, and ‘+’ indicate that the difference of column 1 and
2 variances is statistically different from zero (or their ratio different from one) at the 1, 5 and 10 percent
level respectively.
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Table 3: Covariance of Group- and Individual-Level Characteristics in Small and Large
Classrooms

Conditional Covariance
Contrasts

(1)
Cov (xc, zc|SMALL)

(2)
Cov (xc, zc|REG)

(3)
Cov (xc, zc|SMALL)
−Cov (xc, zc|REG)

Black ×

Masters
−0.0004
(0.0021)

0.0021
(0.0014)

−0.0026
(0.0025)

BlackTeacher
0.0011
(0.0008)

0.0008
(0.0005)

0.0002
(0.0010)

Experience
0.0136
(0.0224)

0.0130
(0.0146)

0.0006
(0.0267)

CLAD
0.0017
(0.0049)

−0.0052
(0.0037)

0.0070
(0.0061)

Girl ×

Masters
−0.0019
(0.0050)

0.0012
(0.0024)

−0.0030
(0.0056)

BlackTeacher
0.0030
(0.0030)

−0.0021
(0.0014)

0.0051
(0.0033)

Experience
0.0730
(0.0535)

0.0623
(0.0318)

0.0107
(0.0623)

CLAD
−0.0180
(0.0185)

−0.0125
(0.0096)

−0.0055
(0.0208)

FreeLunch ×

Masters
0.0002
(0.0050)

0.0011
(0.0022)

−0.0008
(0.0054)

BlackTeacher
0.0002
(0.0024)

−0.0031
(0.0013)

0.0033
(0.0027)

Experience
−0.0677
(0.0462)

−0.0116
(0.0264)

−0.0561
(0.0532)

CLAD
0.0048
(0.0140)

0.0021
(0.0067)

0.0027
(0.0156)

DOB ×

Masters
0.0021
(0.0031)

0.0027
(0.0015)

−0.0006
(0.0035)

BlackTeacher
0.0010
(0.0019)

0.0008
(0.0008)

0.0002
(0.0021)

Experience
0.0268
(0.0280)

−0.0181
(0.0220)

0.0449
(0.0356)

CLAD
−0.0055
(0.0088)

−0.0046
(0.0068)

−0.0009
(0.0111)

Notes: Columns 1 and 2 report estimates of the conditional between-group covariance for each of the listed
individual and teacher variable pairs by class size, while column 3 reports the difference in these covariances.
Cross products of the between-classroom residuals described in the notes to Table 2 are regressed on the
indicator variables SMALL and REGULAR (with no constant) to produce the covariance estimates given in
columns 1 and 2. All results based on the full dataset described in the text. ‘**’, ‘*’, and ‘+’ indicate that
the difference of column 1 and 2 covariances is statistically different from zero at the 1, 5 and 10 percent
level respectively.
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Table 4: Within-Classroom Covariance of Individual-Level Characteristics in Small and
Large Classrooms

Within-Classroom
Covariance Contrasts

(1)
Cov (xci,xcj,|SMALL)

(2)
Cov (xci,xcj,|REG)

(3)
Cov (xci,xcj,|SMALL)
−Cov (xci,xcj,|REG)

Black
−0.00143
(0.0006)

−0.0010
(0.0003)

−0.0005
(0.0006)

Girl
−0.0020
(0.0014)

−0.0035
(0.0008)

0.0015
(0.0016)

FreeLunch
−0.0006
(0.0022)

−0.0009
(0.0008)

0.0003
(0.0024)

DOB
−0.0021
(0.0008)

−0.0016
(0.0004)

−0.0006
(0.0009)

Notes: Raw data are residuals from the preliminary regression described in the notes to Table 2. The
product of these residuals times their leave-own-out mean are then regressed on the indicator variables
SMALL and REGULAR (with no constant) to produce the covariance estimates given in columns 1 and 2.
Standard errors are clustered at the classroom level. Column 3 reports the difference of the column 1 and 2
estimates. ‘**’, ‘*’, and ‘+’ indicate that the difference of column 1 and 2 covariances is statistically different
from zero at the 1, 5 and 10 percent level respectively.
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Table 5: Wald Estimates of γ2 for Normalized Math and Reading Achievement Test Scores

WALD-IV ESTIMATES
(1)

Small (qc= 1)
(2)

Large (qc= 0)
(3)

Small - Large
Panel A : Math Achievement

Observed Between Variance gb
0.1626
(0.0229)

0.0922
(0.0110)

0.0704
(0.0254)

Expected Between Variance gw
0.0531
(0.0030)

0.0303
(0.0011)

0.0228
(0.0032)

Wald Estimate bγ2WALD − − 3.0891
(1.0357)bςWALD − − −0.0156
(0.0381)

F(df1,df2) 1st−Stage − 51.01(1,316) p = 0.0000

Panel B : Reading Achievement

Observed Between Variance gb
0.1533
(0.0301)

0.0824
(0.0119)

0.0708
(0.0324)

Expected Between Variance gw
0.0511
(0.0041)

0.0330
(0.0019)

0.0182
(0.0045)

Wald Estimate bγ2WALD − − 3.8967
(1.8294)bςWALD − − −0.0460
(0.0668)

F(df1,df2) 1st−Stage − 16.27(1,316) p = 0.0001

Number of Classrooms N 123 194 317

Notes: Estimates based on the full sample of 6,172 (out of 6,325) students across 317 (out of 325)
classrooms described in the text. Row 1 of Panel A reports an estimate of mean between-group variance in
math achievement test scores (i.e., sample mean of gbc) by small versus regular/regular-with-aide class types.
Column 3 reports the difference in between-group variance across the two class types. Row 2 reports an
estimate of ‘expected’ between-group variance (i.e., sample mean of gwc ) by class type, with column 3 again
reporting the difference. Both gbc and g

w
c are modified slightly to account for the fact that valid test scores

are not observed for all students in every classroom. The ratio of the column 3 differences in rows 1 and 2
equals the Wald-IV estimate for γ2, which is reported in row 3, column 3. Panel B repeats the exercise for
reading achievement test scores. The first stage ‘F-statistic’ is simply the square of the t-statistic associated
with the row 2, column 3 difference. Recall that yci, as used to compute gbc and g

w
c , is the residual associated

with a preliminary regression of test scores on a vector of school dummy variables and the small class type
dummy; this orthogonalization does not affect the computation of appropriate asymptotic standard errors.
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Table 6: Tests for Social Interactions and 95 Percent Confidence Intervals for γ2

Math Reading
Panel A : Wald Intervals/Tests for bγ2
W
¡
γ20
¢ ¡

H0: γ
2
0= 1

¢
4.07, p = 0.0445 2.51, p = 0.1143n

γ20 ∈ R+|W
¡
γ20
¢
< χ2,0.951

o
(1.06, 5.12) (0.31, 7.48)

Length 4.06 7.17
Right tail-to-left tail length ratio 1 1

Panel B : Wald Intervals/Tests for eγ =pbγ2
W (γ0) (H0: γ0= 1) 6.61, p = 0.0106 4.42, p = 0.0364n
γ0 ∈ R+|W (γ0) < χ2,0.951

o
(1.18, 2.34) (1.06, 2.89)

Length 1.16 1.83
Right tail-to-left tail length ratio 1 1

Panel C : ELR Intervals/Tests for eγ =pbγ2 & bγ2
LR (γ0) (H0: γ0= 1) 4.47, p = 0.0344 4.15, p = 0.0417n
γ0 ∈ R+|LR (γ0) < χ2,0.951

o
(1.07, 2.31) (1.05, 3.07)

Length 1.24 2.02
Right tail-to-left tail length ratio 0.81 1.18n

γ20 ∈ R+|LR
¡
γ20
¢
< χ2,0.951

o
(1.15, 5.34) (1.10, 9.42)

Length 4.18 8.32
Right tail-to-left tail length ratio 1.16 1.97

Notes: The Wald intervals reported in panel A are based on the normal approximation to the sampling
distribution bγ2; those in panel B are based on the delta approximation for the sampling distribution of eγ =pbγ2. The empirical likelihood confidence intervals reported in panel C are based on the χ2 approximation
to the sampling distribution of the (profiled) empirical likelihood saddle-point criterion function (c.f., Newey
and Smith 2004). This statistic, unlike the Wald one, is invariant to one-to-one parameter transformations.
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Table 7: Peer Groups and Difference in Standardized Math and Reading Test Scores
Math

Score Change
Reading

Score Change

Above average vs. below average student
1.1409
(0.0181)

1.1573
(0.0269)

Classroom of above average vs. below average students
0.8643
(0.3376)

1.1272
(0.5361)

Above average vs. below average Project STAR classroom
0.2023
(0.0790)

0.2628
(0.1246)

Above average vs. below average teacher (upper bound estimate)
0.4046
(−)

0.3932
(−)

Small vs. Regular/Regular-with-aide classroom
0.1631
(0.0466)

0.1452
(0.0431)

Notes: Calculations for rows 1 to 4 are derived from GMM estimate of β =
³
ς γ2 σ2 μ1/M

´0
based on

the moment function (23). Normality of the underlying αc and εci distributions is also assumed. The row 5
calculation is based on the regression results reported in Table 15. All standard errors computed using the
delta method.

Table 8: Estimated Effects of Student Sorting on Achievement Inequality

Hypothetical Experiment
Math

σy. Ratio
Reading
σy . Ratio

Math
E [∆yci]

Reading
E [∆yci]

Modest to no sorting
1.0853
(0.0403)

1.1243
(0.0761)

0
(−)

0
(−)

Medium to no sorting
1.2385
(0.1060)

1.3386
(0.1916)

0
(−)

0
(−)

Perfect to no sorting
1.6672
(0.2625)

1.9078
(0.4482)

0
(−)

0
(−)

Eliminate black/white gap in εci
0.9495
(0.0151)

0.9628
(0.0119)

0.2674
(0.0609)

0.2551
(0.0711)

Eliminate free lunch gap in εci
0.9304
(0.0100)

0.9177
(0.0124)

0.3781
(0.0696)

0.4541
(0.1117)

Notes: Columns 1 and 2 report estimates of the of standard deviation of math and reading achievement in
the stated counterfactual relative to those actually observed in the Project STAR dataset (a random assign-
ment benchmark). Columns 3 and 4 report estimates of the change in mean math and reading achievement
associated with each counterfactual. Standard errors are reported in parentheses and computed by applying
the delta method to the large sample variance-covariance matrix of the GMM estimates of β∗=

¡
β, ηb ηp

¢0
based on the moment function (23). Modest, medium and perfect sorting correspond to ζεε equal to 0.1,
0.3, 1.0 respectively. Full details for each hypothetical experiment are provided in the main text.
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Table 9: Estimates of γ2 Based on Excess Variance Contrasts across Small and Medium
versus Medium and Large Classrooms

Small/Medium
(WALD)

Medium/Large
(WALD)

Combined
(GMM)

Panel A : Math Achievement

γ2
4.030
(1.4282)

−0.8482
(3.5575)

3.1789
(1.1277)

F(df1,df2) 1st−Stage 28.20(1,219) 8.20(1,212) 25.45(2,314)
H0 : γ2s/m = γ2m/l − − p = 0.2488

Panel B : Reading Achievement

γ2
4.5312
(2.5477)

0.2144
(2.7112)

3.2251
(1.7330)

F(df1,df2) 1st−Stage 9.14(1,219) 6.08(1,212) 12.34(2,314)
H0 : γ

2
s/m = γ2m/l − − p = 0.2828

N 221 214 317

Notes: The small, medium, and large designations of classrooms are as described in the text. Estimation
for columns 1 and 2 follows the procedure used in Table 5, using data from the appropriate subsample.
Column 3 reports two-step GMM estimates on γ2 based on the regression gbc = ς + γ2gwc with the three
class size dummies serving as instruments. The null that γ2s/m = γ2m/l is tested using the Sargan-Hansen
test of overidentifying restrictions associated with the Column 3 estimates.

Table 10: Robustness to Upward Bias from Substitutibility between Teacher Quality and
Class Size

Math

ξ
³
σ2α(0)|bγ2, bφw2 , γ2 = 1´ Reading

ξ
³
σ2α(0)|bγ2, bφw2 , γ2 = 1´

σα(0) = 0.1 2.40 2.50
σα(0) = 0.3 1.24 1.26bγ2 3.0891 3.8967bφw2 0.0228 0.0182

Notes: Rows 1 and 2 report the degree of substitutability between teacher quality and class size that
would be required to produce the γ2 estimates reported in Table 5 assuming two different values for standard

deviation of teacher effectiveness in regular-sized classrooms, σα(0). The values of bφw2 = \E [gwc |qc= 1] −
\E [gwc |qc= 0] and bγ2 used in the calibration are from rows 2 and 3, column 3, of Table 5.
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Table 11: Estimates of γ2 Based on Excess Variance Contrasts across High and Low
Experience Heterogeneity Subsamples

Std (Expc) ≥ 5
(WALD)

Std (Expc) < 5
(WALD)

Combined
(GMM)

Panel A : Math Achievement

Constant
0.0250
(0.0701)

−0.0198
(0.0389)

−0.0214
(0.0357)

Std (Expc) ≥ 5 years − − 0.0491
(0.0214)

γ2
3.0683
(1.8388)

2.9586
(1.1359)

3.0002
(0.9922)

F(df1,df2) 1st−Stage 12.45(1,138) 55.20(1,175) 33.80(2,313)
H0 : γ2HH = γ2LH − − p = 0.9593

Panel B : Reading Achievement

Constant
−0.0901
(0.1342)

−0.0052
(0.0503)

−0.0780
(0.0760)

Std (Expc) ≥ 5 years − − 0.0831
(0.0405)

γ2
6.5031
(4.2795)

2.1251
(1.1520)

3.7781
(1.7280)

F(df1,df2) 1st−Stage 7.03(1,138) 9.35(1,175) 8.19(2,313)
H0 : γ

2
HH = γ2LH − − p = 0.2966

N 140 177 317

Notes: Columns 1 and 2 report Wald estimates of γ2 based on subsamples exhibiting ‘high’ and ‘low’
degrees of heterogeneity in years of teacher experience. The construction of the two subsamples is described
in the main text. LetHHc= 1 if the cth classroom is in the high heterogeneity subsample and zero otherwise
(LH refers to low heterogeneity). Column 3 reports two-step GMM estimates on γ2 based on the regression
gbc = ςLH+(ςHH − ςLH) ·HHc+γ2gwc where g

w
c is instrumented with the small class type dummy and its

interaction with HHc. The null that γ2LH = γ2HH is tested using the Sargan-Hansen test of overidentifying
restrictions associated with the Column 3 estimates.
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Table 12: Tests for Heterogenous Class Size Effects, Sorting, and Relative Bias Estimates

Math Math Reading Reading
Dependent Variable Mc · gwc NLS NLS-RES NLS NLS-RES

σω
0.8005
(0.0235)

0.8189
(0.0142)

0.8284
(0.0359)

0.8508
(0.0252)

ρ1
1.0798
(0.0373)

1.0825
(0.0376)

1.0165
(0.0517)

1.0215
(0.0495)

ζL
−0.0692
(0.0702)

− −0.0835
(0.1148)

−

bγ2−γ2
γ2

¡
Relative Bias of bγ2¢ 0.7109

(1.9105)
− 0.1213

(1.6164)
−

R2 0.7654 0.7647 0.5956 0.5948
N 317 317 317 317

Notes: Nonlinear least squares estimates of σ2ω , ρ1, and ζL based on equation (27) for math and reading
achievement respectively. The fourth row reports estimates of the relative bias of an estimate of γ2 based
only on classrooms located in schools with more than three classrooms. Columns 2 and 4 report estimates
with ζL constrained to zero. Reported standard errors calculated via a percentile bootstrap with 1,000
replications (E

£
M−1

c |qc= 1
¤
and E

£
M−1

c |qc= 0
¤
are set equal to their sample analogs and assumed to be

non-stochastic).

Table 13: Implied Values of γ2 for Different Signal-to-Noise Ratios

Classical Measurement Error
(1)

κ = 1.00
(2)

κ = 0.90
(3)

κ = 0.80
(4)

κ = 0.60
(5)

κ = 0.40

Math Scores (eγ2EIV ) 3.0891
(1.0357)

3.3212
(1.1508)

3.6114
(1.2946)

4.4818
(1.7262)

6.2228
(2.5893)

Reading Scores (eγ2EIV ) 3.8967
(1.8294)

4.2186
(2.0327)

4.6209
(2.2868)

4.8278
(3.0491)

8.2418
(4.5735)

Notes: Rows 1 and 2 use equation (28) and the estimates of γ2 reported in Table 5 to correct for classical
measurement error in yci of varying intensities.
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Table 14: Measurement-Error-Corrected Estimates of γ2

GMM

ς
−0.0405
(0.0505)

γ2
5.0609
(2.1625)

σ2
0.4819
(0.0189)

σ2 + σ2υ_Math
0.7363
(0.0342)

σ2 + σ2υ_Reading
0.7069
(0.0204)

γ
2.2496
(0.4806)

κMath =
σ2

σ2+σ2υ1

0.6817
(0.0160)

κReading =
σ2

σ2+σ2υ2

0.6545
(0.0165)

N 317

Notes: GMM estimates of β =
¡
ς, γ2, σ2, σ2+σ2υ1, σ

2+σ2υ2
¢
based on the moment function (29).

Standard errors for the social multiplier, γ, and the implied signal-to-noise ratios for the two tests, κ1
and κ2, are recovered via the delta method.
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Table 15: OLS Conditional Mean Reduced Form Linear-in-Means Model of Social Inter-
actions Estimates for Normalized Kindergarten SAT Math and Reading Scores

Reduced Form
(1)
OLS
Math

(2)
OLS
Reading

Student-level

πBLACK
−0.3710
(0.0537)∗∗

−0.2467
(0.0546)∗∗

πGIRL
0.1311

(0.0228)∗∗
0.1595

(0.0249)∗∗

πFREELUNCH
−0.4243
(0.0283)∗∗

−0.4611
(0.0285)∗∗

πDOB
−0.2848
(0.0357)∗∗

−0.1974
(0.0357)∗∗

Class means

πBLACK

0.1133
(0.4950)

−0.5974
(0.4200)

πGIRL
0.3610
(0.1835)∗

0.2788

(0.1711)+

πFREELUNCH

−0.1060
(0.2030)

0.0073
(0.1776)

πDOB

−0.2022
(0.2723)

0.1625
(0.2432)

Class-level

πSMALL
0.1631

(0.0466)∗∗
0.1452

(0.0431)∗∗

πREGAIDE
−0.0182
(0.0447)

−0.0392
(0.0394)

πBLACKTEACHER
0.0344
(0.0791)

0.0361
(0.0841)

πMASTERS
−0.0290
(0.0441)

−0.0073
(0.0409)

πEXPERIENCE
0.0077

(0.0042)+
0.0095
(0.0039)∗

School fixed effects Y es Y es

F(df1,df1) for H0: πr= 0
1.20(4,316)
p = 0.3117

1.63(4,316)
p = 0.1670

N 317 317
R2 0.2805 0.2747
(ny, nw) (5724, 6172) (5646, 6172)

Notes: Rows ‘**’, ‘*’, and ‘+’ denote that the reported coefficient is significantly different from zero at the
1, 5 and 10 percent level respectively. Reported standard errors are heteroscedastic robust with clustering at
the classroom level. All regressions include school fixed effects; ny denotes the total number of students with
valid kindergarten test score data, while nw denotes the total number of students in the N = 317 included
classrooms regardless of test score status. Observations for all students are used to compute the observed
peer composition variables. This avoids an error-in-variables problem that is described by Manski (1993)
and Graham and Hahn (2004).
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Table 16: Variable-by-Variable Tests for Excess Sensitivity in Normalized Kindergarten
SAT Math and Reading Scores

Excess Sensitivity
(1)
πb

(2)
πw

(3)
πb − πw

PANEL A : Math

πBLACK
−0.2577
(0.4861)

−0.3710
(0.0537)

0.1133
(0.4950)

πGIRL
0.4921
(0.1842)

0.1311
(0.0228)

0.3610
(0.1835)∗

πFREELUNCH
−0.5283
(0.2008)

−0.4243
(0.0283)

−0.1060
(0.2030)

πDOB
−0.4871
(0.2693)

−0.2848
(0.0357)

−0.2022
(0.2723)

Omnibus Test Results Wald Statistic df p-value
χ2K (H0 : πr = πer) 1.20 4 0.3117
χ2K (H0 : πr = 2 · πer) 1.09 4 0.3608
PANEL B : Reading

πBLACK
−0.8441
(0.4092)

−0.2467
(0.0546)

−0.5974
(0.4200)

πGIRL
0.4384
(0.1696)

0.1595
(0.0249)

0.2788

(0.1711)+

πFREELUNCH
−0.4538
(0.1773)

−0.4611
(0.0285)

0.0073
(0.1776)

πDOB
−0.0349
(0.2399)

−0.1974
(0.0357)

0.1625
(0.2432)

Omnibus Test Results Wald Statistic df p-value
χ2K (H0 : πr = πer) 1.63 4 0.1670
χ2K (H0 : πr = 2 · πer) 2.13 4 0.0770

Notes: Columns 1 and 2 report the least squares coefficients on the between-and within-group transforms
of the individual-level regressors entering the reduced form (see Table 15). Column 3 reports the difference
in these two sets of coefficients variable-by-variable. ‘**’,‘*’, and “+” denote significance of these differences
at the 1, 5 and 10 percent levels respectively. Reported standard errors are heteroscedastic robust with
clustering at the classroom level. The ‘Omnibus Test Results’ panel reports Wald tests for the stated multi-
coefficient restriction along with degrees-of-freedom and asymptotic p-values.
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Table 17: Maximum Likelihood Estimates of the Linear-in-Means Model Based on Co-
variance Restrictions

Math Reading
Panel A : ML Estimates

σ2
0.7045
(0.0136)

0.7227
(0.0140)

σ2α
σ2

1
(1−β)2

0.0051
(0.0620)

−0.0043
(0.0542)

γ2
3.0576
(1.2307)

2.8132
(1.0816)

LogL -7,293.7 -7,244.7
N 317 317
(ns, no) (5,724, 6,172) (5,646, 6,172)
p-values for LR Test of H0: γ

2= 1 0.0668 0.0737

Notes: Likelihood is based on the assumption of joint normality of (ε0c, αc)
0 |wc. Standard errors are

computed using the conditional Fisher Information. See the web appendix for more details on the likelihood
and its maximization.

Table 18: Power of Excess Sensitivity and Variance Tests in Repeated Samples Calibrated
to Mimic the Project STAR Dataset

Math
Power

Inner
inverse
γII [β]

Outer
inverse
γOI [β]

Reading
Power

Inner
inverse
γII [β]

Outer
inverse
γOI [β]

Panel A : Power
Excess Sensitivity 0.8469 1.52 [0.34] 1.88 [0.47] 0.7309 1.53 [0.35] 1.91 [0.48]
Excess Variance 0.9937 1.38 [0.28] 1.63 [0.39] 0.9808 1.37 [0.27] 1.62 [0.38]
Relative Odds 28.51 18.81

Panel B : Calibration
σ2 0.7045 0.7227
ρα = σ2α/σ

2 0.0017 0.0000
η0Σrrη 0.0568 0.0545
σ2� = σ2 − η0Σrrη 0.6477 0.6682
γ = 1/ (1− β) 1.7486 1.6773

β 0.43 0.40

Notes: Power approximations computed using the inverse CDF of a non-central χ2 random variable with
the non-centrality parameters given the text. The inner and outer inverse power functions are computed as
described by Andrews (1989).


