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1 Introduction

This paper describes a discrete vector valued dynamic model and its implementation.
This work is motivated by problems arising in the use of individual survey data to
forecast the simultaneous behavior of certain characteristics of a population.

The contribution of this paper is to propose a model of the joint distribution of
a high dimensional vector of discrete variables and of its evolution over time. We
do so by means of a Hidden Markov Model (HMM). The model combines features
of multiple indicator-multiple cause (MIMIC) models1 and LISREL factor-analytic
models2 in the sense that some interpretable structure is imposed on the relations
between a given number of latent variables that generate the observations with
features of filtering algorithms like the Kalman filter which allow us to estimate the
evolution over time of the latent variables. In fact, in its most simple form, the
model proposed here can be seen as the discrete counterpart of a Kalman filter,
where both the latent and observed variables are discrete.

The model proposed performs a dimension reduction of chosen groups of vari-
ables, which are each represented by a latent variable whose dynamics are modelled.
It can also constitute a building block of a larger model used in forecasting and pol-
icy analysis. It further has the advantages that it can both be estimated without use
of simulation (the EM-algorithm is used) and can also incorporate directly missing
observations hence removing the need for separate imputation procedures.

To the best of our knowledge this is the first application, in economics, of an
HMM to panel survey data with the above characteristics. Most of the applica-
tions of the HMM framework in economics are in the area of finance and constitute
mostly time series applications of HMM to a single series or applications to switching
regression models.

For the purposes of illustration we model the evolution of health and wealth
of the oldest old population using and HMM and present some preliminary and
mostly descriptive results based on data from the AHEAD survey. The relevant
characteristics of the population under study are the health status as characterized
by the presence or absence of certain health conditions and the wealth status of the
oldest old individuals as defined by their portfolio. The HMM formulation tries to
capture the effect of multiple health risks and allows for the possibility of testing
causality between different health and wealth components.

This paper is organized as follows: section 2 describes a simple HMM and uses
this simplified model to derive the algorithms used in estimation and testing and
to discuss general approximating properties of hidden Markov models; section 3
presents the formulation of a problem in the area of economics of aging in terms

1See Borsch-Supan, McFadden & Schnabel (1996) for an application of MIMIC models in the
economics of aging literature

2See Joreskog (1973) for an extensive discussion
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of HMM and discusses interpretation, testing, incorporation of missing values and
forecasting; section 4 gives a brief description of the AHEAD data, with particular
focus on the patterns of missing data for the wealth related questions of the survey;
section 5 illustrates the methodology proposed by describing the evolution of wealth
portfolios composed of 12 different types of assets over a 8 year period using an HMM
as well as the evolution of 12 health conditions.

2 Hidden Markov Models - HMM

A Hidden Markov model (HMM) is generally in the following way: if {Xt}∞t=1 is a
(first order) Markov process in a finite state space and {Yt}∞t=1 is a deterministic
or stochastic function of {Xt}∞t=1 then {Yt}∞t=1 is a HMM. Usually {Yt}∞t=1 depends
on {Xt}∞t=1 only locally. Moreover {Yt}∞t=1 is generally not Markov and can have
a complicated dependence structure. Still, the conditional distribution of {Xt}∞t=1

given {Yt}∞t=1 is simple in the sense that it has a first order Markov structure3.
Generally {Yt}T

t=1 is an observed sequence whereas {Xt}T
t=1 is assumed to exist but

is not observed. The possibility of modelling complex structures of {Yt}∞t=1 through
a simple formulation makes HMMs attractive and they have been been applied in a
wide range of areas: speech recognition (Rabiner (1989)), neurophysiology (Fredkin
& Rice (1986)) and biology (Leroux & Puterman (1992)). A well known tool in
the economics and econometrics literature with essentially the same structure is
the Kalman filter. The HMM is basically the same model but both the state and
observed variables are discrete. As we describe the estimation procedures for HMM
we will frequently refer to the Kalman filter in order to make this analogy more
concrete. Another frequent application in economics of similar models occurs in
time-series under the name of Markov-switching or regression-switching models4 .

2.1 Notation

The following notation will be used throughout the paper: {Xt}∞t=1 will denote a
finite-state, homogeneous, discrete time Markov chain. This chain is not observed.
The state space of Xt has K elements which will be identified with the set SX =
{e1, . . . , eK} where ei are unit vectors in RK with unity in the ith component. We
may write Xt = i by which we mean Xt = ei and X i

t will denote the i
th component

of Xt (i.e. Xt = i means X i
t = 1 and Xj

t = 0 ∀j �= i) . The sequence {Xt}∞t=1 will
be first order Markov, that is

P (Xt+1|X1, . . . , Xt) = P (Xt+1|Xt)

3It also usually assumed that {Xt}∞t=1 is an homogenous first order Markov chain.
{Xt}∞t=1|{Yt}∞t=1 will still be first order Markov but not homogeneous

4See Hamilton for a survey of that literature
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and the transition matrix will be denoted by A = [aji] where aji is defined as

aji = P (Xt+1 = j|Xt = i)

Note that by definition the columns of A add to 1 (i.e. 1′A = 1′ where 1 is a
conformable vector of 1’s) and that

E(Xt+1|Xt) = AXt

Define the residual Vt by difference:

Vt = Xt − E(Xt|Xt−1) = Xt − AXt−1

Similarly {Yt}T
t=1 will denote the sequence of observations. Yt takes values on a

discrete set ofM elements. This set will be identified with the set SY = {f1, . . . , fM}
where fi are unit vectors in RM with unity in the ith component. Yt depends only
on current Xt that is

P (Yt|X1, . . . , Xt, Y1, . . . , Yt−1) = P (Yt|Xt)

for all t and we let the matrix C = [cji] define the mapping from Xt to Yt, where

cji = P (Yt = j|Xt = i)

With this notation we also have that

E(Yt|Xt) = CXt

and by definition the columns of C sum to 1 (1′C = 1′). Similarly define the residual
Ut as:

Ut = Yt − E(Yt|Xt) = Yt − AXt

The marginal distribution of X1 will be denoted by π.
In order to shorten the notation in some long expressions we will replaceX1, . . . , Xt

by X1:t.

2.2 Graphical representation

The model just described is represented in the diagram of figure 1 using graphical
models’ schematics. We follow the convention of denoting observed variables by
shaded nodes and latent (unobserved) variables by empty nodes. This representa-
tion is useful in two ways: it is a succinct representation of the joint distribution
of (X1, . . . , XT , Y1, . . . , YT ) and it provides an economical way of stating substan-
tive assumptions. This follows because we can, in a mechanical way, recover the
conditional independence relations of the joint distribution from the graphical rep-
resentation (Pearl (2000, Theorem 1.2.5, page 18)). This representation will become
useful in the description of our extension of model to characterize the evolution
of health and wealth among the oldest old and especially in the discussion of the
meaning of the causal relations implied by it.
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Figure 1: HMM

2.3 Estimation

We review the most common estimation procedures used in HMM. The present ex-
position of the estimation algorithms used for this simple HMM carries over virtually
unchanged to the models discussed in section 3. We assume that we are given N
i.i.d. observations of the paths Y1:T . The full likelihood (that is the likelihood if we
observed both X and Y ) of a given sequence can be factorized as5:

P (X1:t, Y1:t, θ) = P (X1)
T∏

t=1

P (Yt|Xt)
T∏

t=2

P (Xt|Xt−1) (1)

=
K∏

i=1

π
Xi

1
i

T∏
t=1

K∏
i=1

M∏
j=1

c
Y j

t Xi
t

ji

T∏
t=2

K∏
i=1

K∏
j=1

a
Xj

t Xi
t−1

ji (2)

where θ is a vector containing the elements of π, A and C. To obtain the likelihood of
the observed data one should integrate (sum in this case) the above expression with
respect to the distribution of the unobserved X. This operation can be performed
in a efficient way as will be described. One can then use maximization routines to
obtain estimates of the parameters of interest. Another approach is to use the EM-
algorithm (Dempster, Laird & Rubin (1977), McLachlan & Krishnan (1997)) which
operates directly with the full likelihood which has a much simpler form and whose
maximization is much simpler. The EM algorithm, however, has the disadvantage
of progressing only linearly close to the maximum of a function yielding a slow
convergence. We will therefore use a combination of both optimization routines as
suggested in Ruud (1991). Initially the EM will be used and when convergence slows
down a gradient method is employed. We describe both approaches in turn.

5We omit the sample index n for ease of notation

5



The full log-likelihood of an observation is:

l(θ,X, Y ) =
K∑

i=1

X i
1 ln(πi) +

K∑
i=1

M∑
j=1

[
T∑

t=1

Y j
t X

i
t

]
ln(cji) +

K∑
i=1

K∑
j=1

[
T∑

t=2

Xj
t X

i
t−1

]
ln(aji)

=
K∑

i=1

X i
1 ln(πi) +

K∑
i=1

M∑
j=1

mY X
ji ln(cji) +

K∑
i=1

K∑
j=1

mXX
ji ln(aji)

In order to maximize the log-likelihood of the observed data the via the EM algo-
rithm to the full log-likelihood L(θ,X, Y ) =

∑N
n=1 ln(θ,X, Y ). The EM-algorithm is

an iterative procedure in which each iteration is composed of two steps: an E-step
in which a conditional expectation is calculated and a M-step, a maximization step.
In the E-step of iteration k + 1 we calculate Q(θ|Y, θk) = E (L(θ,X, Y ) |Y, θk ) ,
where θk are the parameters estimated in iteration k, and in the M-step we maxi-
mize Q(θ|Y, θk) with respect to θ to obtain θk+1. In the present case Q(θ|Y, θk) has
a very simple form:

Q(θ|Y, θk) =
K∑

i=1

N∑
n=1

E
(
X i

1,n |Y, θk

)
ln(πi) + (3)

K∑
i=1

M∑
j=1

[
N∑

n=1

T∑
t=1

E
(
Y j

t,nX
i
t,n |Y, θk

)]
ln(cji) + (4)

K∑
i=1

K∑
j=1

[
N∑

n=1

T∑
t=2

E
(
Xj

t,nX
i
t−1,n |Y, θk

)]
ln(aji) (5)

=
K∑

i=1

X̂ i
1 ln(πi) +

K∑
i=1

M∑
j=1

m̂Y X
ji ln(cji) +

K∑
i=1

K∑
j=1

m̂XX
ji ln(aji) (6)

Once E
(
X i

1,n |Y, θk

)
, E

(
Y j

t,nX
i
t,n |Y, θk

)
and E

(
Xj

t,nX
i
t−1,n |Y, θk

)
are computed (the

E-step) maximization is straightforward. In order to be able to calculate these quan-
tities all we need is the posterior distribution of X given the observed data Y . More
specifically we need to calculate P (Xt|Y1, . . . , YT , θ) and P (Xt−1, Xt|Y1, . . . , YT , θ)
for t = 1, . . . , T . Since the algorithms to calculate these are important in themselves
we will describe them in detail.
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2.3.1 Filtered estimates of the latent states

A recursion, forward in time, to compute the filtered estimates of the latent state
Xt defined as P (Xt|Y1, . . . , Yt) can be derived as follows:

α(Xt+1) � P (Y1:t+1, Xt+1)

=
∑

Xt∈SX

P (Y1:t+1, Xt, Xt+1)

=
∑

Xt∈SX

P (Y1:t+1, Xt+1|Xt)P (Xt)

=
∑

Xt∈SX

P (Y1:t|Xt)P (Xt+1|Xt)P (Yt+1|Xt+1, Xt)P (Xt)

=
∑

Xt∈SX

α(Xt)P (Xt+1|Xt)P (Yt+1|Xt+1) (7)

The quantity α(Xt) can be interpreted as an unnormalized conditional proba-
bility function of Xt where the conditioning is on information available up to time
t. The filtered estimate is directly obtained by normalization, P (Xt|Y1, . . . , Yt) =
α(Xt)/

∑
Xt

α(Xt)
In vector notation the above recursion translates into αt+1 = diag(A · αt)C

′Yt+1

where the ith entry of the vector αt is α(ei), α1 = diag(π)C ′Y1 and ‘diag(·)’ denotes
a diagonal matrix with the argument in the main diagonal. We note that this recur-
sion is the discrete time analog of the Kalman filtering recursions. One important
aspect of this recursion is that

∑
XT∈SX

α(XT ) = P (Y1, . . . , YT ), so at the end of the
recursion we obtain, at no extra cost, the likelihood of the observed data. This again
parallels with the more familiar use of the Kalman filter to evaluate the likelihood
of the observed data in an ARMA model (see for example Hamilton (1994) chapter
13).
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2.3.2 Smoothed estimates of the latent states

To finally obtain P (Xt|Y1, . . . , YT ) we decompose it as follows:

γ(Xt) � P (Xt|Y1:T )

=
∑

Xt+1∈SX

P (Xt, Xt+1|Y1:T )

=
∑

Xt+1∈SX

P (Xt|Xt+1Y1:T )P (Xt+1|Y1:T )

=
∑

Xt+1∈SX

P (Xt, Xt+1, Y1:t)∑
Xt∈SX

P (Xt, Xt+1, Y1:t)
γ(Xt+1)

=
∑

Xt+1∈SX

P (Xt+1|Xt)α(Xt)∑
Xt∈SX

P (Xt+1|Xt)α(Xt)
γ(Xt+1)

This derivation establishes a recursion which allows the calculation of γ(Xt) =
P (Xt|Y1, . . . , YT ) for t = 1, . . . , T . This recursion begins with γ(XT ) = α(XT )/

∑
XT

α(XT )
by definition of γ and α. In a similar way one can obtain a recursion to compute
P (Xt, Xt+1|Y1, . . . , YT ).

P (Xt, Xt+1|Y1:T ) =
P (Y1:T |Xt, Xt+1)P (Xt+1|Xt)P (Xt)

P (Y1:T )

=
P (Y1:t|Xt)P (Yt+1:T |Xt+1)P (Xt+1|Xt)P (Xt)

P (Y1:T )

=
α(Xt)P (Yt+1|Xt+1)P (Yt+2:T |Xt+1)P (Xt+1|Xt)

P (Y1:T )

= α(Xt)P (Yt+1|Xt+1)P (Xt+1|Xt)
γ(Xt+1)

α(Xt+1)

We have thus derived a forward-backward algorithm that computes the posterior
probability of the latent variables given the observations. This algorithm coupled
with the maximization step described earlier forms what is know in the HMM liter-
ature as the Baum-Welsh updates (Baum & Petrie (1966), Baum, Petrie, Soules &
Weiss (1970)). A more detailed discussion of these algorithms is given for example
in Rabiner (1989).

Inspecting the algorithms described it can be seen that the complexity of the
computation of the log-likelihood is linear in the number of observations, number
of periods, observed variables and quadratic in the number of underlying states, so
implicit integration over the unobserved X variables can be performed efficiently.
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2.3.3 Gradient methods

Using similar procedures one can also compute the score of the observed likelihood
from the complete data. It is well known that the score of the observed log-likelihood
is related to the score of the full log-likelihood by s(Y, θ) = E (s(X,Y, θ) |Y, θ ) (
Ruud (1991) lemma pag. 318). Since the dependence of s(X,Y, θ) on X is linear
on the sufficient statistics computed above the calculation of the observed score is
straightforward and is equal to ∂Q(θ′|Y, θ)/∂θ′|θ where differentiation is with respect
to the first argument. The Hessian of the observed log-likelihood can be computed
using a general identity for models with missing data (see Louis (1992) page 227),

D2l(Y, θ) = E
[
D2l(X,Y, θ)

∣∣Y, θ] + E [s(X,Y, θ)s(X,Y, θ)′|Y, θ]− s(Y, θ)s(Y, θ)′

where D denotes the differential operator. It is generally computationally intensive
to calculate the second term on the right hand side of the expression above, since
it involves estimating higher order moments of the latent variables. So for purposes
of maximization the BHHH algorithm is particularly convenient.

It is nevertheless of interest to calculate the Hessian for purposes of variance
estimation. To do this it may be useful to turn to methods that allow a simple
estimation of general functions of latent variables.

2.3.4 A more general filter

The alternative methods described in this section allow us to to construct the expec-
tation of more general functions of the latent variables. These methods are based
on the so-called reference probability methods. Elliott, Aggoun & Moore (1995)
provide an extensive treatment of the topic. The use of these techniques avoids the
forward-backward recursion of Baum-Welsh type algorithms. The following exposi-
tion is based on Elliott et al. (1995, Theorem 5.3, page 31).

It is useful to note in advance that:

β(Xt−1) � P (Xt−1|Xt, Y1:t)

=
P (Xt−1, Xt, Y1:t)∑

Xt−1∈SX
P (Xt−1, Xt, Y1:t)

=
P (Xt−1, Y1:t−1)P (Xt|Xt−1)∑

Xt−1∈SX
P (Xt−1, Y1:t−1)P (Xt|Xt−1)

=
α(Xt−1)P (Xt|Xt−1)∑

Xt−1∈SX
α(Xt−1)P (Xt|Xt−1)

Now let H be a general functional of the type Ht(X1:t) =
∑t

s=1 hs(Xs). In
order to compute E (HT |Y1:T ) a recursion is defined on E (Ht|Xt, Y1:t). Hav-
ing computed E (HT |XT , Y1:T ) one can obtain E (HT |Y1:T ) by integrating against
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γ(XT ) = P (XT |Y ). The calculation of E (Ht|Xt, Y1:t) proceeds as follows:

E (Ht|Xt, Y1:t) =
∑

Xt−1∈SX

E (Ht|Xt, Xt−1, Y1:t)P (Xt−1|Xt, Y1:t)

=
∑

Xt−1∈SX

E (Ht−1|Xt−1, Y1:t−1) β(Xt−1) + ht(Xt)

We illustrate the use of the above technique by computing the sufficient statistics

for π, A and C, respectively: P (X1|Y1:T ), E
(∑T

s=2 Xs−1Xs |, Y1:T

)
andE

(∑T
s=1 XsYs |, Y1:T

)
.

To compute the sufficient statistic for π take h1(X1) = X1 and ht = 0 for t > 1:

P (X1|Xt, Y1:t) =
∑

Xt−1∈SX

P (X1|Xt, Xt−1, Y1:t)P (Xt−1|Xt, Y1:t)

=
∑

Xt−1∈SX

P (X1|Xt−1, Y1:t−1)β(Xt−1)

Similarly taking ht(Xt) = Xt−1Xt and h1 = 0 we compute the sufficient statistic
for A:

E

(
t∑

s=2

Xs−1Xs |Xt, Y1:t

)
=

∑
Xt−1∈SX

E

(
t∑

s=2

Xs−1Xs |Xt, Xt−1, Y1:t

)
P (Xt−1|Xt, Y1:t)

=
∑

Xt−1∈SX

E

(
t−1∑
s=2

Xs−1Xs |Xt−1, Y1:t−1

)
β(Xt−1) +Xt

Finally the sufficient statistics for C requires taking ht(Xt) = YtXt:

E

(
t∑

s=1

XsYs |Xt, Y1:t

)
=

∑
Xt−1∈SX

E

(
t∑

s=1

XsYs |Xt, Xt−1, Y1:t

)
P (Xt−1|Xt, Y1:t)

=
∑

Xt−1∈SX

E

(
t−1∑
s=1

XsYs |Xt−1, Y1:t−1

)
β(Xt−1) +XtYt

2.3.5 Missing values

Missing values can be directly integrated into the estimation procedure. From the
description in section 2 of the forward-backward recursions one can see that there
is only one step in which actual data is used. This step is the recursion that cal-
culates α(Xt), the forward recursion. The quantity α(Xt) can be interpreted as the
(unnormalized) conditional distribution P (Xt|Y1:t) and each step of the recursion
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can be loosly seen as calculation the expected value of X in the next period by ap-
plying the transition matrix A and also by using new information that has become
available at time t + 1 that is Yt+1. If Yt+1 is missing this means that there is no
new information to update α(Xt) to α(Xt+1) so the only change in α should be
the one that reflects the fact the one period has passed. This is captured by the
diagonal matrix diag(A · αt) in the recursion αt+1 = diag(A · αt)C

′Yt+1. This result
can be readily obtained by integrating Yt+1 out of expression 7. The computation
of the sufficient statistics with missing Y is also straightforward since the quantity
E

(
Y j

t,nX
i
t,n |i, Y1:s

)
equivalent to E(Y j

t,n|X i
t,n)E

(
X i

t,n |a, Y1:n

)
d the first term of this

product corresponds to a column of the appropriate C matrix.

2.4 Statistical properties

Consistency of MLE of HMM parameters has been studied by Leroux (1992)and
Leroux & Puterman (1992) and the conditions under which asymptotic normality
holds have been established in Bickel & Ritov (1996) and Bickel, Ritov & Rydén
(1998). The asymptotic theory in the work just referenced deals with the case where
T → ∞. In the present application we are interested in the case where n → ∞. In
the case where the dimension of the latent states is assumed to be known, standard
asymptotic theory applies. If on the other hand we allow the size of X to grow
with sample size then our model is in fact a MLE sieve whose properties can be
studied using the tools of empirical processes theory. Wong & Shen (1995) and
more recently Genovese & Wasserman (2000) have established rates of convergence
for MLE sieves and Gaussian mixture sieves respectively using entropy methods.
These same methods can be applied to the present case. We leave this for future
work.

3 Modelling health and wealth evolution using

HMM

We wish to study the dynamics of health and wealth among the oldest old (70 years
or older).We will do so by modelling the joint dynamics of health status as well as
the that of socio-economic status (SES), taking into account how the dynamics of
the former affect the latter and vice-versa. The purpose of building such a model
is that one can then use it to forecast the evolution of a population and to study
the effects of a policy intervention on the dynamics of health and wealth. To be
suitable for these tasks the model should pass some tests that verify if certain causal
relationships are present and that the model is valid in different time periods. We
will return to these points below when we discuss forecasting and testing within our
framework.
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We think of an individual at each point in time as being characterized by an
health state and a SES state. Each possible health state is characterized by the
presence or absence of certain health conditions. Over time, individuals transition
between different health states and eventually fall into a terminal health state which
we identify as death. Similarly a SES state is characterized, for example, by the
presence of certain assets in the individual’s portfolio and their value. Transition
between SES states also occurs during the lifetime of the individual and one would
expect, according to the life cycle hypothesis, that at older ages a substantial de-
crease in wealth is observed which would be represented by transitions from states
associated with higher wealth to states associated with lower wealth. Interplay be-
tween health and SES dynamics occurs in the sense that being in a certain health
state has a certain effect on the transition between SES states and likewise each
SES state the individual might be, affects in a different way the transition between
health states. The existence of these cross-effects is testable within the framework
developed here.

The true states are not observed. We observe instead the elements that charac-
terize these states, that is the health conditions of an individual and his portfolio
composition and other SES variables. We interpret health and SES variables as
providing noisy information about the underlying health and SES state.

The modelling approach just described can be implemented as an HMM. It is
important to note that this approach is not as restrictive as it might seem since, as
Künsch, Geman & Kehagias (1995) have shown, any discrete stationary process can
be approximated, in distribution, as close as desired by an HMM.6

The AHEAD panel survey used for this study will be described in some detail in
section 4. For the moment we will think of SES as being characterized by a set of
categorical variables (wealth quartiles, income quartiles, ownership of certain types
of assets, etc) and health as characterized by the presence of certain diseases or
conditions (cancer, stroke, diabetes, high blood pressure, etc).

Missing data is a pervasive problem, specially in questions pertaining to wealth
and income, so imputation plays an important role in the construction of wealth
and income variables when analyzing AHEAD data. Within the HMM framework
neither imputation nor aggregation of categorical wealth and income variables are
necessary. The method can deal with these problems directly. We will comment on
this aspect in more detail below.

The construction of a model that analyzes the evolution of health and SES has
been done in McFadden, Hurd, Adams, Merrill & Ribeiro (2002). In that work
each health condition is modelled directly as a function of exogenous variables and
previous health conditions. The cost of modelling in this way the evolution of a high
dimensional vector is that certain restrictions on the correlation structure of health

6Their result is actually more general since it also applies to functions of discrete Markov random
fields. In both cases the approximation is obtained by increasing the number of hidden states
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conditions have to be imposed and consequently the multiple risk structure of health
conditions and its implications for duration pattern of certain health states may not
be correctly accounted for. However, in that study, tests for the off diagonal terms
of the covariance matrix of the latent variables that define each health condition
are not statistically different from zero. The present approach is more generous in
accounting for the multiple risk structure of incidence of health conditions at the
cost of some interpretability of the underlying health states. It also has the potential
of providing a more flexible characterization of the dynamics of wealth, and more
importantly it provides an integrated approach to handling missing data which was
previously dealt with with imputation.

In what follows we formalize the model just discussed and comment on some of
its aspects in more detail.

3.1 A probabilistic model

We assume the existence of two discrete latent variables XW
t and XH

t that de-
scribe the “state of the world” for SES and health respectively. Let XW

t ∈ SXW =
{e1, . . . , eKW

} and XH
t ∈ SXH = {e1, . . . , eKH

}, that is there are KW possible states
that characterize SES and KH possible states that characterize health. There is no
particular ordering to these states, but we will provide an interpretation below. We
assume that the processes evolve over time as first order Markov chains and further
that, conditional on the past, XW

t and XH
t are independent. Bellow we provide

ways to test for these hypothesis. In essence we have:

P (XW
t , XH

t |XW
1:t−1, X

H
1:t−1) = P (XW

t , XH
t |XW

t−1, X
H
t−1)

= P (XW
t |XW

t−1, X
H
t−1)P (X

H
t |XW

t−1, X
H
t−1) (8)

for all t. These state variables in turn generate the observations. For example, an
individual in a given state of health (XH = ei, for some i) is more likely to have
certain health conditions than an individual in another state. A similar interpre-
tation applies to XW . We observe DH variables that characterize health status
denoted by Y H1 , . . . , Y HDH and DW variables that characterize SES which we de-
note by Y W1 , . . . , Y WDW . Since neither XW

t nor XH
t are observed we think of the

observations as providing noisy information about the state in which the individ-
ual might be. We further assume that conditional on the current underlying state
X the current observations are mutually independent and independent over time.
Formally, this assumption is stated as:

P (Y W
t , Y H

t |XW
1:T , X

H
1:T , Y

W
1:T\t, Y

H
1:T\t) = P (Y W

t , Y H
t |XW

t , XH
t )

= P (Y W
t |XW

t )P (Y H
t |XH

t )

=

DW∏
i=1

P (Y W,i
t |XW

t )

DH∏
i=1

P (Y H,i
t |XH

t ) (9)
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Figure 2: A HMM model for health and wealth transitions

In the notation introduced in section 2 (also see figure 1) the assumption expressed
in (8) is simply a restriction on the elements of the matrix A. The restriction in (9)
states that there is a matrix C for each of the observed Y s. All these assumptions
are captured in the representation of this model in figure 2.

3.1.1 Interpretation

We cannot a priori give an interpretation to the various latent states (values of X).
We can nevertheless, after estimating our model, give an interpretation analogous to
the interpretation given in factor models. In factor or principal component analysis,
factors are interpreted by inspecting their correlation with the observed variables.
In this case we will estimate P (Yt|Xt) for all observed variables Y and for all possible
states of X - in our notation these are the C matrices. An individual in a given
state (say with XH

t = ei) will be more likely to have certain health conditions than
an individual in a different state (say with XH

t = ej), so an interpretation of states
by associating them with the set of conditions they will most likely give rise to is
possible. Restrictions can also be imposed on the matrix A that will imply a certain
interpretation for the latent states. For example if the matrix A corresponding to
the wealth transitions is set to be lower triangular then each state will represent a
lower level of wealth. The dynamics of this system will imply that households will
ultimately converge to one state (the low wealth state) and the transitions can be
interpreted as running down one’s wealth which occurs at older ages.

3.1.2 Identification

This will obviously raise the question of identification of the parameters of our
models, and whether there is an alternative structure which will equally fit the data.
Related literature on identification in HMM models has tackled this problem. Ito,
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Amari & Kobayashi (1992) give necessary and sufficient conditions for identification
in the case where C defines a deterministic map. At this point we note that our
formulation is equivalent to that case. For the purpose of studying identification, the
model presented can then be translated into the case where C defines a deterministic
map. We do this by redefining the hidden state as (X,Y ) redefining C to be the
projection f(X,Y ) = Y (see for example Baum & Petrie (1966)). More recently
Rydén (1996) extends the identification results to continuous time and Larget (1998)
provides a canonical representation for HMM.

3.2 Specification Tests

One straightforward way to test the restrictions we have imposed is to use LM-type
tests. Despite the fact that these tests don’t require re-estimating the parameters
they do require evaluating the gradient of the alternative hypothesis with the existing
parameters. The new gradient in turn requires computing new sufficient statistics
under the alternative which can by computationally demanding in particular for the
statistics involving the latent variables. Standard asymptotic theory of LM tests
would apply in these cases (Newey & McFadden 1994). We propose tests based
on some moment conditions implied by the assumptions we have imposed. These
tests have the advantage that they can be computed with the output available from
the maximization routines and can, for the most part, be interpreted as conditional
tests for independence in contingency tables.

3.2.1 Testing independence of Y ’s given X

Within a given time period our assumptions imply:

E(Y 1
t − C1Xt)(Y

2
t − C2Xt)

′ = 0

⇔ E(Y 1
t Y

2′
t − C1XtY

2′
t − Y 1

t X
′
tC

′
2 + C1XtX

′
tC

′
2) = 0

⇔ E(Y 1
t Y

2′
t − C1XtX

′
tC

′
2) = 0

Note that the zeros in the equality refer to matrices of zeros. The two last expression
have empirical counterparts which can be computed. First we condition on the
data to obtain and estimate of the latent variables for each observation. For the
integration over Y we take the empirical version, that is we want to test if the
following means are jointly zero:

1

n

n∑
i=1

Y 1
itY

2′
it − Ĉ1E(XitX

′
it|Y1:T )Ĉ

′
2

The first term in this sum is just the contingency table between variables Y 1 and
Y 2 at period t. If the dimension of X collapses to 1 (i.e. there is no latent variable)
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the above test reduces to testing if the cell probabilities are equal to the product
of the marginal probabilities. Note also that the quantities needed to compute the
above statistic are already available from the optimization routine described earlier.

Our assumptions also imply that, conditional on X, a given Y is independent
over time. The procedure just described is also applicable in this situation replacing
Y 2

t with Y 1
t+1, C2 with C1 and the second Xt with Xt+1.

3.2.2 Testing the first order Markov assumption

One can also test for the validity of the Markov assumption using the principle just
described. The following moment is implied by that assumption:

E(Xt+1 − AXt)(Xt − AXt−1)
′ = 0

⇔ E(Xt+1X
′
t − AXtX

′
t −Xt+1X

′
t−1A

′ + AXtX
′
t−1A

′) = 0

With the exception of the term Xt+1X
′
t−1, the empirical counterparts of the terms

in the last expression can be computed from the output of the algorithms described
in section 2. Again the procedure amounts to testing if the following sample means
are jointly zero:

1

n

n∑
i=1

[E (Xit+1X
′
it |Y1:T )− ÂE (XitX

′
it |Y1:T )−

E
(
Xit+1X

′
it−1 |Y1:T

)
A′ + AE

(
XitX

′
it−1 |Y1:T

)
A′]

3.2.3 Causality

Causality tests can be interpreted as a further restriction to the ones in expression
(8). Lack of causality from health to wealth, for example, can be formulated as
P (XW

t |XW
t−1, X

H
t−1) = P (XW

t |XW
t−1). In terms of the graphical representation of

figure 2, lack of causality is equivalent to removing the upward diagonal edges from
the XH to the XW nodes. There is an important underlying assumption about what
our model truly represents in this definition of causality tests. Usually causality tests
are stated in terms of conditional independence of certain observed variables. This
is in particular the case of McFadden et al. (2002). If we interpret our model as
a structural model, that is, if we assume that the true underlying structure is one
where there are underlying states that give rise to observations that merely give
indications as to which state we might be in, then this definition of causality is the
relevant one. However if the model just described is seen as just a parsimonious
way to describe the high dimensional joint distribution of Y , then the test one
should be doing is P (Y W

t |Y W
t−1, Y

H
t−1) = P (Y W

t |Y W
t−1). Unfortunately the fact that

we might have P (XW
t |XW

t−1, X
H
t−1) = P (XW

t |XW
t−1) does not imply that we will also

have P (Y W
t |Y W

t−1, Y
H
t−1) = P (Y W

t |Y W
t−1) except in the particular case where there are

only 2 periods (i.e. T = 2).
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3.3 Estimation

Estimation is similar to the procedures described in section 2. The few differences
from that setting are that now we observe multiple variables at each moment in
time and that we would like to include exogenous covariates in the specification of
the transition matrix A. More specifically we expect that factors like age might
affect the transition of some states to others. Also the time between interviews
should reasonably affect the transition matrix. For each observation, these changes
leave the calculation of the posterior expectations defined in expressions (3), (4)
and (5) unchanged. Since each column of A is, by definition, a probability function,
the maximization with exogenous variables can simply be parameterized as a set of
multinomial logits (one for each column) with appropriately calculated weights and
dependent variables.Moreover, there is nothing in the formulation of the problem
that prevents us from using directly disaggregated wealth and income information
coded as categorical variables.

It should also be noted that the easy incorporation of missing values can be used
as a modelling tool to deal with the varying inter-wave periods. One could assume
that the transition matrix A referred to, say, a three month transition period. Since
data is collected every 24-36 months the time periods in between would correspond
to missing data for all variables.

3.4 Forecasting, policy analysis and further studies

To forecast the evolution of a population over time using an estimated HMM model
one starts with a sample of the population and uses each observation to make draws
from the posterior distribution of X given Y . Thus for each individual one makes
multiple imputations of his or her possible underlying state. Once simulated values
of X are obtained, the dynamics of X are fully described by the model as well as
the transition from forecasted values of X back to predicted Y . This can be seen
as more than an instrument of prediction. Since subsequent waves of AHEAD will
become available in the near future, a test of the model should be how well it can
predict the observed outcomes in new data. This of course can be done with the
current data by estimating the model on a subset of the waves and predicting the
outcomes of the remaining waves.

Careful modelling of the transition matrix A with exogenous variables that also
constitute variables suitable of policy manipulation will make the model an instru-
ment of policy analysis since now different forecasts can be produced under different
policy scenarios. For example making the transition matrix of wealth states depend
of the existence to prescription drug financing would help predict the effect of differ-
ent Medicare polices with respect to drug financing. Also, the effect new discovery
can be analyzed. For example a cure for a certain health condition would mean that
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that condition would no longer be present in the starting population. In turn, in
the forecasting procedure described above, states that gave rise to that condition
should be under sampled and the subsequent evolution of the system would reflect
that fact.

One event we will analyze in the future is the effect of eligibility to Medicare
on health and wealth outcomes especially of those individuals who were uninsured
previously. At the present time a significant part of an earlier cohort (born in 1931-
1941) which was being interviewed as part of the HRS panel survey is now meeting
eligibility criteria Medicare. The methodology proposed in this paper will be used
to investigate if eligibility to Medicare creates a structural change in the evolution
of health and/or SES and if so what is its impact.

4 The AHEAD Panel Data

4.1 Sample Characteristics

Our data come from the Asset Dynamics among the Oldest-Old (AHEAD) study7.
This is a panel of individuals born in 1923 or earlier and their spouses. At base-
line in 1993 the AHEAD panel contained 8222 individuals representative of the
non-institutionalized population, except for over-samples of blacks, Hispanics and
Floridians. Of these subjects 7638 were over the age of 69 and the remainder were
younger spouses. There were 6052 households, including individuals living alone or
with others, in the sample. The Wave 1 surveys took place between October 1993
and August 1994 with half the total completed interviews finished before Decem-
ber 1993. The Wave 2 surveys took place approximately 24 months later, between
November 1995 and June 1996, with half the total completed interviews finished
before February 1996. The Wave 3 surveys took place approximately 27 months
after Wave 2, between January and December 1998, with half the total completed
interviews finished before March 1998. In each wave there was a long but thin tail
of interviews heavily populated by subjects who had moved, or required proxy in-
terviews due to death or institutionalization. AHEAD is a continuing panel but it
has now been absorbed into the larger Health and Retirement Survey (HRS) which
is being conducted on a three year cycle.

4.2 Wealth data

AHEAD individuals and couples are asked for a complete inventory of assets and
debts. Subjects are asked first if they have any assets in a specified category, and if

7The AHEAD survey is conducted by the University of Michigan Survey Research Center for
the National Institute on Aging (see Soldo, Hurd, Rodgers & Wallace (1997))
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so, they are asked for the amount. A non-response is followed by unfolding bracket
questions to bound the quantity in question and this may result in complete or
incomplete bracket responses. We consider 10 asset categories plus debt and mort-
gages. The ownership and missing data patterns are summarized in Tables 1 and
2. Non-response to the ownership question is small. In Wave 1 94% of the house-
holds had complete responses to all 12 categories considered. For waves 2 and 3 this
value is 92% and 88% respectively. More than 75% of the households declared to
own between 1 and 5 assets in all waves. For each asset considered individually the
percentage of missing observations is between 1.2% and 3.8% for wave 1, between
0.8% and 4% for wave 2 and between 1% and 6.2% for wave 3.

The problem of non-response is more severe in amount questions. Tables 3-5 sum-
marize the patterns of missing data for the amount variable for each asset. In each
wave only 40% of the households had complete amount information for all assets
considered. Roughly 28% had a non response in one asset only. The rate of non-
response to the amount question is between 15% and 26% for the most commonly
held assets (checking account, transportation, CD’s stocks and housing). The use
of unfolding brackets reduces complete non-response to less than 4% in most cases.
With this rate of missing data, imputation usually plays an important role in the
construction of wealth variables. The methods described here circumvent the need
for imputation.

5 Illustrative results

For the purpose of illustration we estimate models for health and wealth evolution
separately. We first estimate the evolution of each asset in isolation, controlling
for transitions from two person household to single households. These results are
presented in tables W.1.1-W.1.12. For reference table W.0 has the breakpoints of
each asset category. Finally we estimate an HMM model of the evolution of health
conditions and mortality (tables H.1-H.2). We comment on these models in turn.

When analyzing the evolution of each asset separately we have a different latent
variable controlling the evolution of holdings of that asset as well as spouse mor-
tality. For the latent variable we specified 8 categories. The first 4 we associate
with single households and the last 4 with couples. We do this by restricting the
appropriate matrix C. Since for some of the assets most households don’t change
their portfolio by significantly since they tend to concentrate on one category (no
ownership) the latent states capture not only different holdings of those assets but
also different spouse mortality across households. This is in particular the case of
real estate, business, IRAs, Stocks, Bonds, CDs and debt. For checking accounts,
transportation and housing assets the latent variable captures mostly different levels
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of asset holdings. In most assets a transition from states with higher holdings to
states with lower holdings occurs and this rate of decrease is usually different in
singles and couples. The death of a spouse is also associated with reductions in
certain assets in particular real estate and mobile homes.

To summarize the information contained in the health variables we assume the
existence of a single underlying health variable with 8 categories which generates the
observed health conditions. By restriction of the parameters one of categories of the
latent variable is identified with death. The HMM procedure groups individuals by
the prevalence of certain health conditions with each group (category of the latent
variable having its own mortality rate. For example groups 4 and 8 represent rela-
tively healthy individuals at the beginning of the survey whose health deteriorates
over time. For individuals in group 8 the deterioration in health can occur due to
the appearance of cancer. Group 3 is highly associated with diabetes and high blood
pressure, with high blood pressure, incontinence and cognitive impairment, group 6
with lung problems and group 7 with cancer. For the most part there is little evo-
lution in health conditions except when an individual dies and as mentioned before
when a respondent belongs to a group of relatively health people. We note the these
results are just meant to be illustrative. The transition matrix has been restricted
to be a bordered diagonal capturing the idea that health deteriorates by moving to
more healthy states to states that are similar in the health conditions that are rel-
evant but represent poorer health. Also no use of other exogenous covariates, such
as age, race and education, has been made. These are likely to affect the transition
from state to state and most certainly the mortality rate.

A finally note of the specification tests that were proposed is due. Tests of
independence of Y in a given period conditional on X pass for the most part in the
health conditions. Tests of independence of Y over time usually fail. The failure is
more severe in the asset case. Given the simplified models used and the lack of use
of other control variables this is not to surprising. There is still room to develop
the models and to analyze the interaction between health and wealth. Had the tests
passed then we would have captured all the asset and wealth evolution is separate
and simple models so any hope of finding any interaction between health and wealth
would be gone.

6 Final remarks

We have proposed and described an empirical model which can be used to study the
joint evolution of a relatively large vector of discrete variables over time. The model
draws on factor analytic and filtering literature and can in its most simple form be
described as discrete Kalman filter. We illustrated with simple examples how the
model operates. We have also proposed future work which will have has building
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blocks the models described here.
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A Tables

Table 1: Ownership non-response and asset ownership

Missing Owned
Asset Wave 1 Wave 2 Wave 3 Wave 1 Wave 2 Wave 3
Checking account 3.4 2.6 2.9 73.2 81.4 80.2
Transportation 1.2 0.8 1.0 69.6 64.8 61.3
CDs/Sav. Bonds/T. Bills 3.8 3.4 4.2 20.5 29.7 28.8
IRA 2.5 2.0 2.6 14.2 16.6 16.9
Bonds 3.3 2.4 3.4 5.3 8.5 7.7
Stocks 3.1 2.6 3.2 18.2 27.6 27.3
House 1.2 3.3 5.9 70.6 71.3 71.1
Real Estate 2.3 1.4 1.4 17.7 14.6 11.4
Business 1.6 1.1 1.3 3.9 5.8 5.2
Other assets 2.9 2.1 2.9 9.4 8.2 8.7
Mortgage 1.5 4.0 6.2 11.2 8.5 9.1
Debt 2.5 1.6 2.1 13.9 13.7 12.1
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Table 2: Number of ownership non-responses and number of assets

Missing Owned
# of assets Wave 1 Wave 2 Wave 3 Wave 1 Wave 2 Wave 3
0 93.5 91.8 88.2 7.3 5.8 6.5
1 2.1 2.1 2.8 12.2 11.3 11.5
2 1.1 3.5 5.7 16.9 14.0 14.4
3 0.4 0.4 0.6 20.1 18.3 19.3
4 0.3 0.4 0.5 18.7 19.0 18.3
5 0.4 0.2 0.4 12.1 14.3 14.0
6 0.2 0.3 0.3 6.9 9.8 9.3
7 0.2 0.1 0.3 3.5 4.8 4.1
8 0.3 0.1 0.2 1.4 1.9 2.2
9 0.1 0.1 0.3 0.7 0.5 0.4
10 0.6 0.2 0.3 0.2 0.2 0.1
11 0.0 0.4 0.0 0.0 0.0 0.0
12 0.7 0.3 0.6 0.0 0.0 0.0

Table 3: Breakdown of amount non-response - Wave 1

Wave 1
Asset Regular B. Irreg. B. Non-resp. Total
Checking account 16.3 6.8 3.4 26.6
Transportation 14.6 2.4 1.2 18.2
CDs/Sav. Bonds/T. Bills 4.7 2.7 3.8 11.3
IRA 2.5 1.1 2.5 6.2
Bonds 1.5 0.7 3.3 5.5
Stocks 6.1 2.1 3.1 11.3
House 18.2 3.1 1.2 22.6
Real Estate 4.6 1.2 2.3 8.2
Business 2.1 0.3 1.5 3.9
Other assets 2.3 0.6 2.9 5.8
Debt 1.7 0.3 2.5 4.4
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Table 4: Breakdown of amount non-response - Wave 2

Wave 2
Asset Regular B. Irreg. B. Non-resp. Total
Checking account 20.8 7.4 2.6 30.8
Transportation 11.8 10.6 0.8 23.2
CDs/Sav. Bonds/T. Bills 6.6 3.7 3.4 13.7
IRA 1.4 3.9 2.0 7.3
Bonds 2.2 1.4 2.4 6.1
Stocks 9.6 3.2 2.5 15.4
House 17.3 3.3 3.3 23.9
Real Estate 3.9 0.8 1.4 6.1
Business 1.9 0.9 1.1 3.9
Other assets 1.8 0.6 2.1 4.5
Debt 2.1 0.4 1.6 4.1

Table 5: Breakdown of amount non-response - Wave 3

Wave 3
Asset Regular B. Irreg. B. Non-resp. Total
Checking account 13.9 9.2 2.9 26.1
Transportation 13.1 2.5 1.0 16.6
CDs/Sav. Bonds/T. Bills 4.5 4.5 4.2 13.2
IRA 1.8 3.6 2.6 8.0
Bonds 1.6 1.3 3.4 6.3
Stocks 6.9 4.8 3.2 14.9
House 8.0 8.4 5.9 22.3
Real Estate 2.6 1.0 1.4 5.0
Business 1.3 0.9 1.3 3.4
Other assets 1.6 0.8 2.9 5.3
Debt 1.4 0.5 2.1 4.0
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Table 6: Number of assets with amount non-response

% of Households
# of assets Wave 1 Wave 2 Wave 3

0 41.77 34.77 41.00
1 27.99 28.90 28.32
2 15.28 17.22 14.45
3 7.25 8.70 7.60
4 3.60 5.39 4.17
5 1.55 2.39 2.07
6 0.85 1.05 1.04
7 0.41 0.45 0.31
8 0.36 0.23 0.39
9 0.18 0.23 0.29
10 0.41 0.21 0.27
11 0.36 0.47 0.10
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TABLE W.0

Asset category lower breakpoints

1 2 3 4 5 6
rlst 0 1 2.5K 125K 500K 1000K

bsns 0 1 5K 10K 100K 1000K

ira 0 1 10K 25K 100K 400K

stck 0 1 2.5K 25K 125K 400K

chck 0 1 5K 50K 150K 300K

bond 0 1 2.5K 10K 100K 400K

cd 0 1 2.5K 25K 125K 250K

trns 0 1 5K 25K 200K

othr 0 1 5K 50K 100K

debt 0 1 0.5K 5K 50K

mobh 0 1 5K 10K 20K 100K

hous 0 1 15K 50K 150K 500K

1



TABLE W.1.1
ASSET: Real Estate

Conditional Distribution of Y given X
X1 X2 X3 X4 X5 X6 X7 X8

Y1 0.875 0.976 0.995 0.174 0.875 0.976 0.995 0.174
Y2 0.001 0.004 0.003 0.035 0.001 0.004 0.003 0.035
Y3 0.102 0.017 0.002 0.475 0.102 0.017 0.002 0.475
Y4 0.021 0.001 0.000 0.228 0.021 0.001 0.000 0.228
Y5 0.001 0.001 0.000 0.057 0.001 0.001 0.000 0.057
Y6 0.000 0.000 0.000 0.030 0.000 0.000 0.000 0.030

Transition matrix
t+1\t X1 X2 X3 X4 X5 X6 X7 X8

X1 0.620 0.003 0.000 0.095 0.000 0.228 0.000 0.008
X2 0.367 0.585 0.076 0.000 0.000 0.003 0.007 0.000
X3 0.000 0.411 0.924 0.002 0.000 0.319 0.001 0.021
X4 0.013 0.000 0.000 0.903 0.000 0.000 0.000 0.101
X5 0.000 0.000 0.000 0.000 0.074 0.110 0.000 0.061
X6 0.000 0.000 0.000 0.000 0.923 0.081 0.429 0.000
X7 0.000 0.000 0.000 0.000 0.000 0.259 0.550 0.011
X8 0.000 0.000 0.000 0.000 0.003 0.000 0.014 0.797

Initial distribution
P0 0.135 0.184 0.272 0.051 0.150 0.005 0.140 0.064

Notes: States 1-4 correspond to single member households and states 5-8 correspond to couples
Lower left block of transition matrix is restricted to be zero.
The conditional probability of Y given X=1,…,4 is retricted to be equal to the conditional
distribution when X=5,…,8
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TABLE W.1.2
ASSET: Business

Conditional Distribution of Y given X
X1 X2 X3 X4 X5 X6 X7 X8

Y1 0.271 0.988 0.995 0.994 0.271 0.988 0.995 0.994
Y2 0.015 0.001 0.001 0.001 0.015 0.001 0.001 0.001
Y3 0.020 0.000 0.000 0.000 0.020 0.000 0.000 0.000
Y4 0.241 0.007 0.004 0.001 0.241 0.007 0.004 0.001
Y5 0.428 0.004 0.000 0.004 0.428 0.004 0.000 0.004
Y6 0.025 0.001 0.000 0.001 0.025 0.001 0.000 0.001

Transition matrix
t+1\t X1 X2 X3 X4 X5 X6 X7 X8

X1 0.849 0.019 0.000 0.001 0.084 0.012 0.000 0.000
X2 0.100 0.227 0.191 0.000 0.016 0.376 0.001 0.000
X3 0.000 0.754 0.277 0.419 0.000 0.376 0.001 0.144
X4 0.051 0.000 0.532 0.579 0.005 0.000 0.000 0.236
X5 0.000 0.000 0.000 0.000 0.724 0.000 0.000 0.001
X6 0.000 0.000 0.000 0.000 0.054 0.152 0.224 0.000
X7 0.000 0.000 0.000 0.000 0.000 0.084 0.266 0.261
X8 0.000 0.000 0.000 0.000 0.117 0.000 0.509 0.357

Initial distribution
P0 0.026 0.135 0.303 0.178 0.040 0.000 0.307 0.012

Notes: States 1-4 correspond to single member households and states 5-8 correspond to couples
Lower left block of transition matrix is restricted to be zero.
The conditional probability of Y given X=1,…,4 is retricted to be equal to the conditional
distribution when X=5,…,8
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TABLE W.1.3
ASSET: IRA

Conditional Distribution of Y given X
X1 X2 X3 X4 X5 X6 X7 X8

Y1 0.966 0.124 0.941 0.988 0.966 0.124 0.941 0.988
Y2 0.000 0.143 0.002 0.009 0.000 0.143 0.002 0.009
Y3 0.004 0.244 0.002 0.001 0.004 0.244 0.002 0.001
Y4 0.022 0.317 0.051 0.002 0.022 0.317 0.051 0.002
Y5 0.008 0.146 0.004 0.000 0.008 0.146 0.004 0.000
Y6 0.000 0.027 0.000 0.000 0.000 0.027 0.000 0.000

Transition matrix
t+1\t X1 X2 X3 X4 X5 X6 X7 X8

X1 0.445 0.040 0.000 0.325 0.121 0.002 0.000 0.001
X2 0.013 0.926 0.001 0.000 0.000 0.086 0.000 0.000
X3 0.000 0.034 0.695 0.278 0.000 0.005 0.271 0.009
X4 0.542 0.000 0.304 0.398 0.879 0.000 0.079 0.005
X5 0.000 0.000 0.000 0.000 0.000 0.012 0.000 0.306
X6 0.000 0.000 0.000 0.000 0.000 0.816 0.000 0.000
X7 0.000 0.000 0.000 0.000 0.000 0.079 0.534 0.297
X8 0.000 0.000 0.000 0.000 0.000 0.000 0.117 0.382

Initial distribution
P0 0.051 0.057 0.000 0.533 0.000 0.113 0.002 0.244

Notes: States 1-4 correspond to single member households and states 5-8 correspond to couples
Lower left block of transition matrix is restricted to be zero.
The conditional probability of Y given X=1,…,4 is retricted to be equal to the conditional
distribution when X=5,…,8
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TABLE W.1.4
ASSET: Cheking

Conditional Distribution of Y given X
X1 X2 X3 X4 X5 X6 X7 X8

Y1 0.028 0.053 0.149 0.791 0.028 0.053 0.149 0.791
Y2 0.098 0.157 0.712 0.189 0.098 0.157 0.712 0.189
Y3 0.568 0.656 0.135 0.015 0.568 0.656 0.135 0.015
Y4 0.230 0.109 0.003 0.003 0.230 0.109 0.003 0.003
Y5 0.052 0.025 0.000 0.000 0.052 0.025 0.000 0.000
Y6 0.025 0.000 0.000 0.001 0.025 0.000 0.000 0.001

Transition matrix
t+1\t X1 X2 X3 X4 X5 X6 X7 X8

X1 0.954 0.000 0.000 0.000 0.005 0.390 0.000 0.000
X2 0.001 0.913 0.000 0.000 0.005 0.495 0.000 0.000
X3 0.000 0.087 1.000 0.000 0.000 0.115 0.111 0.022
X4 0.045 0.000 0.000 1.000 0.000 0.000 0.000 0.238
X5 0.000 0.000 0.000 0.000 0.646 0.000 0.000 0.000
X6 0.000 0.000 0.000 0.000 0.328 0.000 0.103 0.000
X7 0.000 0.000 0.000 0.000 0.000 0.000 0.755 0.000
X8 0.000 0.000 0.000 0.000 0.016 0.000 0.031 0.740

Initial distribution
P0 0.120 0.160 0.222 0.138 0.250 0.000 0.080 0.030

Notes: States 1-4 correspond to single member households and states 5-8 correspond to couples
Lower left block of transition matrix is restricted to be zero.
The conditional probability of Y given X=1,…,4 is retricted to be equal to the conditional
distribution when X=5,…,8
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TABLE W.1.5
ASSET: Stock

Conditional Distribution of Y given X
X1 X2 X3 X4 X5 X6 X7 X8

Y1 0.073 0.181 0.976 0.975 0.073 0.181 0.976 0.975
Y2 0.022 0.095 0.002 0.011 0.022 0.095 0.002 0.011
Y3 0.061 0.372 0.010 0.008 0.061 0.372 0.010 0.008
Y4 0.291 0.318 0.012 0.001 0.291 0.318 0.012 0.001
Y5 0.333 0.030 0.000 0.006 0.333 0.030 0.000 0.006
Y6 0.221 0.004 0.000 0.000 0.221 0.004 0.000 0.000

Transition matrix
t+1\t X1 X2 X3 X4 X5 X6 X7 X8

X1 0.951 0.001 0.000 0.018 0.158 0.001 0.000 0.000
X2 0.000 0.932 0.007 0.000 0.046 0.000 0.041 0.000
X3 0.000 0.067 0.308 0.593 0.000 0.050 0.516 0.014
X4 0.049 0.000 0.685 0.389 0.001 0.000 0.000 0.000
X5 0.000 0.000 0.000 0.000 0.794 0.233 0.000 0.000
X6 0.000 0.000 0.000 0.000 0.000 0.602 0.037 0.000
X7 0.000 0.000 0.000 0.000 0.000 0.115 0.406 0.697
X8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.290

Initial distribution
P0 0.074 0.073 0.493 0.000 0.071 0.079 0.000 0.209

Notes: States 1-4 correspond to single member households and states 5-8 correspond to couples
Lower left block of transition matrix is restricted to be zero.
The conditional probability of Y given X=1,…,4 is retricted to be equal to the conditional
distribution when X=5,…,8
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TABLE W.1.6
ASSET: Bond

Conditional Distribution of Y given X
X1 X2 X3 X4 X5 X6 X7 X8

Y1 0.330 0.985 0.988 0.692 0.330 0.985 0.988 0.692
Y2 0.038 0.001 0.004 0.003 0.038 0.001 0.004 0.003
Y3 0.066 0.008 0.002 0.013 0.066 0.008 0.002 0.013
Y4 0.331 0.006 0.006 0.152 0.331 0.006 0.006 0.152
Y5 0.179 0.000 0.000 0.098 0.179 0.000 0.000 0.098
Y6 0.056 0.000 0.000 0.042 0.056 0.000 0.000 0.042

Transition matrix
t+1\t X1 X2 X3 X4 X5 X6 X7 X8

X1 0.802 0.003 0.000 0.304 0.002 0.001 0.000 0.122
X2 0.185 0.295 0.442 0.000 0.000 0.582 0.002 0.000
X3 0.000 0.703 0.528 0.024 0.000 0.047 0.016 0.060
X4 0.013 0.000 0.030 0.673 0.010 0.000 0.000 0.534
X5 0.000 0.000 0.000 0.000 0.621 0.045 0.000 0.000
X6 0.000 0.000 0.000 0.000 0.001 0.320 0.542 0.000
X7 0.000 0.000 0.000 0.000 0.000 0.004 0.425 0.261
X8 0.000 0.000 0.000 0.000 0.366 0.000 0.016 0.024

Initial distribution
P0 0.038 0.298 0.293 0.012 0.063 0.000 0.296 0.000

Notes: States 1-4 correspond to single member households and states 5-8 correspond to couples
Lower left block of transition matrix is restricted to be zero.
The conditional probability of Y given X=1,…,4 is retricted to be equal to the conditional
distribution when X=5,…,8
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TABLE W.1.7
ASSET: CD

Conditional Distribution of Y given X
X1 X2 X3 X4 X5 X6 X7 X8

Y1 0.202 0.979 0.911 0.185 0.202 0.979 0.911 0.185
Y2 0.052 0.001 0.018 0.064 0.052 0.001 0.018 0.064
Y3 0.268 0.015 0.051 0.287 0.268 0.015 0.051 0.287
Y4 0.360 0.005 0.020 0.352 0.360 0.005 0.020 0.352
Y5 0.072 0.000 0.000 0.081 0.072 0.000 0.000 0.081
Y6 0.045 0.000 0.000 0.031 0.045 0.000 0.000 0.031

Transition matrix
t+1\t X1 X2 X3 X4 X5 X6 X7 X8

X1 0.369 0.015 0.000 0.433 0.000 0.054 0.000 0.189
X2 0.083 0.796 0.532 0.000 0.009 0.277 0.012 0.000
X3 0.000 0.189 0.424 0.151 0.000 0.226 0.002 0.085
X4 0.548 0.000 0.044 0.416 0.000 0.000 0.000 0.196
X5 0.000 0.000 0.000 0.000 0.299 0.046 0.000 0.244
X6 0.000 0.000 0.000 0.000 0.057 0.265 0.550 0.000
X7 0.000 0.000 0.000 0.000 0.000 0.133 0.340 0.007
X8 0.000 0.000 0.000 0.000 0.635 0.000 0.095 0.279

Initial distribution
P0 0.050 0.289 0.178 0.125 0.133 0.001 0.222 0.003

Notes: States 1-4 correspond to single member households and states 5-8 correspond to couples
Lower left block of transition matrix is restricted to be zero.
The conditional probability of Y given X=1,…,4 is retricted to be equal to the conditional
distribution when X=5,…,8

Distribution of Y given X=1

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.400

1 2 3 4 5 6

Distribution of Y given X=2

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1 2 3 4 5 6

Distribution of Y given X=3

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

1 2 3 4 5 6

Distribution of Y given X=4

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.400

1 2 3 4 5 6

8



TABLE W.1.8
ASSET: Tranportation

Conditional Distribution of Y given X
X1 X2 X3 X4 X5 X6 X7 X8

Y1 0.020 0.032 0.542 0.977 0.020 0.032 0.542 0.977
Y2 0.208 0.797 0.308 0.018 0.208 0.797 0.308 0.018
Y3 0.659 0.169 0.145 0.005 0.659 0.169 0.145 0.005
Y4 0.109 0.002 0.004 0.001 0.109 0.002 0.004 0.001
Y5 0.003 0.000 0.000 0.000 0.003 0.000 0.000 0.000

Transition matrix
t+1\t X1 X2 X3 X4 X5 X6 X7 X8

X1 0.877 0.001 0.000 0.000 0.107 0.000 0.000 0.002
X2 0.048 0.802 0.163 0.000 0.045 0.000 0.000 0.000
X3 0.000 0.197 0.296 0.000 0.000 0.000 0.000 0.058
X4 0.075 0.000 0.541 1.000 0.023 0.000 0.000 0.620
X5 0.000 0.000 0.000 0.000 0.819 1.000 0.000 0.000
X6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
X7 0.000 0.000 0.000 0.000 0.000 0.000 0.175 0.134
X8 0.000 0.000 0.000 0.000 0.006 0.000 0.825 0.186

Initial distribution
P0 0.153 0.152 0.041 0.295 0.250 0.047 0.061 0.001

Notes: States 1-4 correspond to single member households and states 5-8 correspond to couples
Lower left block of transition matrix is restricted to be zero.
The conditional probability of Y given X=1,…,4 is retricted to be equal to the conditional
distribution when X=5,…,8
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TABLE W.1.9
ASSET: Other

Conditional Distribution of Y given X
X1 X2 X3 X4 X5 X6 X7 X8

Y1 0.981 0.996 0.444 0.614 0.981 0.996 0.444 0.614
Y2 0.011 0.003 0.064 0.069 0.011 0.003 0.064 0.069
Y3 0.008 0.000 0.307 0.226 0.008 0.000 0.307 0.226
Y4 0.000 0.001 0.076 0.041 0.000 0.001 0.076 0.041
Y5 0.000 0.000 0.109 0.050 0.000 0.000 0.109 0.050

Transition matrix
t+1\t X1 X2 X3 X4 X5 X6 X7 X8

X1 0.263 0.364 0.000 0.635 0.000 0.155 0.000 0.188
X2 0.671 0.636 0.005 0.000 0.010 0.187 0.000 0.000
X3 0.000 0.000 0.967 0.191 0.000 0.000 0.000 0.321
X4 0.065 0.000 0.028 0.175 0.006 0.000 0.000 0.000
X5 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.044
X6 0.000 0.000 0.000 0.000 0.862 0.601 0.083 0.000
X7 0.000 0.000 0.000 0.000 0.000 0.057 0.365 0.000
X8 0.000 0.000 0.000 0.000 0.118 0.000 0.552 0.447

Initial distribution
P0 0.589 0.000 0.037 0.016 0.289 0.002 0.066 0.001

Notes: States 1-4 correspond to single member households and states 5-8 correspond to couples
Lower left block of transition matrix is restricted to be zero.
The conditional probability of Y given X=1,…,4 is retricted to be equal to the conditional
distribution when X=5,…,8
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TABLE W.1.10
ASSET: Debt

Conditional Distribution of Y given X
X1 X2 X3 X4 X5 X6 X7 X8

Y1 0.495 0.958 0.977 0.434 0.495 0.958 0.977 0.434
Y2 0.074 0.015 0.015 0.065 0.074 0.015 0.015 0.065
Y3 0.294 0.017 0.006 0.202 0.294 0.017 0.006 0.202
Y4 0.137 0.010 0.000 0.123 0.137 0.010 0.000 0.123
Y5 0.000 0.000 0.002 0.175 0.000 0.000 0.002 0.175

Transition matrix
t+1\t X1 X2 X3 X4 X5 X6 X7 X8

X1 0.866 0.000 0.000 0.572 0.194 0.000 0.000 0.020
X2 0.014 0.000 0.552 0.000 0.125 0.000 0.356 0.000
X3 0.000 1.000 0.448 0.334 0.000 0.013 0.006 0.000
X4 0.120 0.000 0.000 0.094 0.000 0.000 0.000 0.000
X5 0.000 0.000 0.000 0.000 0.494 0.000 0.000 0.972
X6 0.000 0.000 0.000 0.000 0.180 0.000 0.362 0.000
X7 0.000 0.000 0.000 0.000 0.000 0.987 0.277 0.007
X8 0.000 0.000 0.000 0.000 0.008 0.000 0.000 0.001

Initial distribution
P0 0.063 0.000 0.513 0.065 0.004 0.278 0.000 0.077

Notes: States 1-4 correspond to single member households and states 5-8 correspond to couples
Lower left block of transition matrix is restricted to be zero.
The conditional probability of Y given X=1,…,4 is retricted to be equal to the conditional
distribution when X=5,…,8
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TABLE W.1.11
ASSET: House

Conditional Distribution of Y given X
X1 X2 X3 X4 X5 X6 X7 X8

Y1 0.027 0.954 0.014 0.028 0.027 0.954 0.014 0.028
Y2 0.089 0.003 0.003 0.000 0.089 0.003 0.003 0.000
Y3 0.755 0.008 0.044 0.001 0.755 0.008 0.044 0.001
Y4 0.124 0.023 0.915 0.052 0.124 0.023 0.915 0.052
Y5 0.006 0.011 0.023 0.850 0.006 0.011 0.023 0.850
Y6 0.000 0.000 0.001 0.070 0.000 0.000 0.001 0.070

Transition matrix
t+1\t X1 X2 X3 X4 X5 X6 X7 X8

X1 0.864 0.004 0.000 0.007 0.170 0.000 0.000 0.000
X2 0.130 0.989 0.084 0.000 0.012 0.262 0.028 0.000
X3 0.000 0.007 0.863 0.000 0.000 0.000 0.120 0.001
X4 0.006 0.000 0.054 0.993 0.000 0.000 0.007 0.144
X5 0.000 0.000 0.000 0.000 0.761 0.000 0.000 0.000
X6 0.000 0.000 0.000 0.000 0.058 0.728 0.032 0.000
X7 0.000 0.000 0.000 0.000 0.000 0.010 0.771 0.013
X8 0.000 0.000 0.000 0.000 0.000 0.000 0.041 0.842

Initial distribution
P0 0.109 0.303 0.181 0.047 0.047 0.069 0.179 0.064

Notes: States 1-4 correspond to single member households and states 5-8 correspond to couples
Lower left block of transition matrix is restricted to be zero.
The conditional probability of Y given X=1,…,4 is retricted to be equal to the conditional
distribution when X=5,…,8
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TABLE W.1.12
ASSET: Mobile home

Conditional Distribution of Y given X
X1 X2 X3 X4 X5 X6 X7 X8

Y1 0.999 0.110 0.156 0.997 0.999 0.110 0.156 0.997
Y2 0.000 0.008 0.209 0.000 0.000 0.008 0.209 0.000
Y3 0.000 0.027 0.154 0.001 0.000 0.027 0.154 0.001
Y4 0.000 0.108 0.158 0.001 0.000 0.108 0.158 0.001
Y5 0.001 0.734 0.313 0.000 0.001 0.734 0.313 0.000
Y6 0.000 0.013 0.010 0.001 0.000 0.013 0.010 0.001

Transition matrix
t+1\t X1 X2 X3 X4 X5 X6 X7 X8

X1 0.693 0.052 0.000 0.001 0.125 0.000 0.000 0.008
X2 0.002 0.948 0.000 0.000 0.000 0.000 0.672 0.000
X3 0.000 0.000 0.894 0.008 0.000 0.000 0.000 0.000
X4 0.305 0.000 0.106 0.991 0.226 0.000 0.118 0.000
X5 0.000 0.000 0.000 0.000 0.647 0.059 0.000 0.988
X6 0.000 0.000 0.000 0.000 0.001 0.597 0.129 0.000
X7 0.000 0.000 0.000 0.000 0.000 0.344 0.081 0.004
X8 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000

Initial distribution
P0 0.608 0.016 0.017 0.000 0.012 0.023 0.000 0.325

Notes: States 1-4 correspond to single member households and states 5-8 correspond to couples
Lower left block of transition matrix is restricted to be zero.
The conditional probability of Y given X=1,…,4 is retricted to be equal to the conditional
distribution when X=5,…,8
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TABLE H.1
Health evolution

Probability of having health condition Y given X
Y\X X1 X2 X3 X4 X5 X6 X7 X8

DIED 1 0 0 0 0 0 0 0
HEART 0.539 0.296 0.411 0.275 0.366 0.445 0.296 0.161
CANCER 0.328 0.015 0.139 0.015 0.062 0.163 0.969 0.007
STROKE 0.275 0.117 0.138 0.074 0.195 0.112 0.081 0.006
DIABET 0.630 0.004 0.995 0.008 0.034 0.028 0.030 0.014
HIGHBP 0.561 0.065 0.682 0.950 0.974 0.494 0.451 0.040
FALL 0.333 0.289 0.171 0.096 0.268 0.174 0.145 0.032
ARTHRT 0.692 0.285 0.327 0.262 0.394 0.314 0.216 0.164
HIPFRC 0.146 0.126 0.049 0.036 0.107 0.063 0.056 0.004
INCONT 0.363 0.517 0.297 0.010 0.794 0.317 0.304 0.014
LUNG 0.213 0.020 0.111 0.015 0.032 0.933 0.037 0.017
PSYCH 0.559 0.218 0.155 0.073 0.259 0.171 0.112 0.028
COGIMP 0.569 0.422 0.376 0.292 0.427 0.355 0.284 0.264
DEPRES 0.578 0.126 0.125 0.058 0.185 0.161 0.078 0.036

Transition matrix
t+1\t X1 X2 X3 X4 X5 X6 X7 X8

X1 1 0.100 0.114 0.047 0.111 0.116 0.090 0.033
X2 -     0.876 0.000 -     -     -     -     0.099
X3 -     0.024 0.886 0.025 -     -     -     -     
X4 -     -     0.000 0.825 0.000 -     -     -     
X5 -     -     -     0.103 0.889 0.003 -     -     
X6 -     -     -     -     0.000 0.881 0.000 -     
X7 -     -     -     -     -     0.000 0.910 0.028
X8 -     0.000 -     -     -     -     0.000 0.841

Initial distribution
P0 -     0.125 0.120 0.253 0.093 0.085 0.098 0.227
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TABLE H.2
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