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1.  Introduction
   

The problem of revealed stochastic preference asks the question:  Are the distributions of choices

observed for a population of individuals in a variety of choice situations consistent with rational choice

theory, which postulates that individuals maximize preferences?  In economic consumer theory, each

choice situation is defined by a budget set; in psychometrics, by the alternatives offered in an

experiment; and in political voting behavior, by the issues presented in an election.  Distributions of

responses arise because of taste heterogeneity in the population, or because of stochastic elements in

individual preferences.  The last possibility connects rational choice theory to psychometric models of

choice based on random scale maximization.  This paper synthesizes the relatively complete solutions

to the revealed preference problem that have been obtained for finite choice sets, and extends these

results to the non-finite choice sets commonly encountered in economic consumer behavior.  This paper

is based primarily on unpublished research that Marcel K. Richter and I did in 1971, and on subsequent

published results for the finite case by Falmagne (1978) and by McFadden and Richter (1990).  Ket

Richter has had an impact on economic theory far beyond the papers published over his name.  It is a

fitting tribute to his career to draw upon his unpublished ideas and words to suggest the scope and

significance of his influence. 

The origin of the revealed stochastic preference problem is the classical economic theory of revealed

preference, where the Samuelson-Houthaker Strong Axiom of Revealed Preference (SARP) and Richter's

Congruence Axiom provide tight necessary and sufficient conditions for consistency of one individual's

choices with preference maximization; see Samuelson (1938), Houthaker (1950), Richter (1966,1971).

Marschak (1960) connected this theory to the psychometric literature (Thurstone (1927), Luce (1959)),

posing the question of when observed choice probabilities could be rationalized as consistent with

random utility maximization (RUM).  Papers addressing the revealed stochastic preference problem

include Block and Marschak (1960), McFadden and Richter (1971,1990), McFadden (1973,1975),

Falmagne (1978), Fishbern (1978), Cohen (1980), Barbara and Pattanaik (1986), McLennan (1990),
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Fishburn and Falmagne (1989), Barbara (1990), Cohen and Falmagne (1990), Fishburn (1992), and

Bandyopadhyay, Dasgupta, and Pattanaik (1999).2 

The ingredients of a revealed preference problem are the universe of objects of choice, a family of

feasible budget sets giving the alternatives from which a decision-maker must choose, a class of

permissible decision rules consistent with a specified theory of choice behavior, and observations on the

probabilities of choices made.  Both the SARP and the Congruence Axiom consider classes of decision

rules that maximize a preference preorder.  They differ in that the SARP requires permissible

decision-rules to produce unique maxima on feasible budget sets, and assumes a unique offer is

observed, while the Congruence Axiom allows decision rules that yield multiple maxima,  and assumes

that decision-makers offer the sets of acceptable alternatives in the case of ties.  One can generate a

variety of revealed preference problems by varying the ingredients, particularly the family of feasible

sets, the class of permissible decision rules, and the structure of observations.  Some of the possibilities

are discussed in the conclusion.

This paper is organized as follows.  Section 2 sets notation and gives a formal statement of the

revealed stochastic preference problem.  Section 3 reviews the revelation problem when the universe of

alternatives is finite, and relates the necessary and sufficient conditions for this problem obtained by

McFadden and Richter (1971, 1990) and by Falmagne (1978).  Section 4 gives the McFadden and

Richter (1971) results on the extension of set functions, together with new results on countable

additivity.  Section 5 draws upon this mathematical theory to obtain necessary and sufficient conditions

for the revealed stochastic preference problem with a non-finite universe of alternatives that includes

the classical economic consumer problem.  Section 6 concludes with discussion of further extensions

and problems.
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2.  The Revealed Stochastic Preference Problem
   

2.1.  Notation.  The following notation for the space of alternatives, the choice situations, observed

behavior, and the hypothesis of rational behavior will be used throughout the paper:

   
(X,X) a metric space X of possible objects of choice, and the Borel F-algebra X of subsets of X.

Q  a non-empty index set, a metric space interpreted as indexing the feasible choice situations.

B(q)  a non-empty set in X for q 0 Q, interpreted as the set of available alternatives, or "budget

set", in choice situation q.

d:Q 6 X  a decision rule that maps Q into subsets of X, with iiii … d(q) f B(q), interpreted as a

behavior rule that designates the decision-maker's acceptable alternatives in B(q).  The

decision rule is decisive if d(q) is a singleton; a non-decisive choice is interpreted as the

offer of a set of "tied" alternatives.

(q,C) a pair, termed a trial; composed of a feasible choice situation q 0 Q and a set C 0 X.  The

outcome of a trial is a success (failure) if C contains (excludes) the choice d(q) made by

an individual in situation q.  A trial can be a partial success if the decision rule is

non-decisive and d(q) intersects C but is not contained in C.

(D.D,.) a probability space consisting of a set D of decision rules, a Boolean F-algebra D of

measurable subsets of D, and a probability . on D.  This is interpreted as the universe of

decision rules that could appear in a population of decision-makers. 

Aq  a choice probability on X for q 0 Q, with Aq(C) for C 0 X interpreted as the proportion

of individuals in the population with choice functions satisfying d(q) f C.  The algebra

D contains the sets D(q,C) = {d0D|d(q)fC} for q 0 Q and C 0 X, so that the probability

Aq(C) / .(D(q,C)) that the trial (q,C) is a success is defined.  The choice probability

satisfies Aq(B(q)) = 1, and if the decision rules of the population are almost surely

decisive, it satisfies Aq(C) + Aq(Cc) = 1.  More generally, let Aq
- and Aq

+ denote

set-valued bounds for q 0 Q, satisfying Aq
-(C) # .(D(q,C)) # Aq

+(C) for C 0 X.

t = <(q1,C1),...,(qm,Cm)> a trial sequence, an ordered sequence with repetitions permitted, and

elements (qi,Ci) 0 Q×X for i = 1,...,m, where m is a positive integer.
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H a set of choice functions in D, interpreted as the choice functions consistent with a specified

hypothesis of rational choice behavior.  The algebra D contains H, so that the sets H(q,C)

= D(q,C)1H are contained in the Boolean F-algebra H = {A1H|A 0 D} for q 0 Q and C 0

X, and .(H(q,C)) is defined as the probability that the trial (q,C) is a success for decision

rules that satisfy the rational choice hypothesis.

"H(t) the H-intersection number of a trial sequence t = <(q1,C1),...,(qm,Cm)>, defined to be the

maximum number of successes for the sequence attainable by a choice function in H:

 "H(t) = maxd0H 1(d(qi)fCi).

u:X 6 ú a utility or scale function on X, a representation of a preference preorder.  A utility

function u is weakly decisive if d(q) = d(q;u) / {x0B(q)|u(x)$u(xN) for all xN0B(q)} is

non-empty for q 0 Q, and is  decisive if d(q;u) is a singleton for q 0 Q.

(U,U,<)  a non-empty set of utility functions u specified by a hypothesis of rational choice

behavior, a metric space, with U the Borel F-algebra of subsets of U, and < a probability

on U, termed a random utility maximization (RUM) model.  A space of decision rules

(H,H,.) and a space of utility functions (U,U,<) are consistent (or, the set H of decision

rules is U-rational) if each u 0 U is weakly decisive, and each d 0 H is of the form d(q;u)

for some u 0 U and all q 0 Q, the inverse image of H(q,C) is in U for q 0 Q, C 0 X (i.e.,

U(q,C) / {u0U|d(q;u)f C for q0Q and C0X} 0 U), and .(H(q,C)) = <(U(q,C)).

"U(t) the U-intersection number of a trial sequence t = <(q1,C1),...,(qm,Cm)>, defined to be the

maximum number of successes for the sequence attainable by a utility function in U; i.e.,

"U(t) = maxu0U 1(d(qi;u)fCi).  If the space H of decision rules and the space U

of utility functions are consistent, then the decision-rule and utility intersection numbers

are the same.

  
2.2.  Discussion.  The central results in this paper concern random utility maximization, and utilize

spaces (U,U,<) of weakly decisive utility functions.  These results will have equivalent restatements in

terms of the consistent space of decision rules (H,H,.).  We will also give some results directly for a

space of hypothesized decision rules (H,H,.); these can be applied to theories of choice other than

random utility maximization.  The universe (D,D,.) of decision rules will play no direct role in our



     3 A correspondence is continuous if it is upper and lower hemicontinuous in the terminology of Hildenbrand
(1974, I.B.III).  When the space of closed non-empty subsets of (X,X) is metrized by the Hausdorff distance, then an
equivalent characterization is that B(q) is a continuous function from Q into this metric space.
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analysis; but is useful in interpreting revealed preference problems as null hypotheses H on this universe.

In this interpretation, the revealed preference problem can be viewed as an extreme case of the

econometric problem of estimating the probability measure . or bounding .(H).

In the classical theory of economic consumer demand, each alternative is a commodity vector

represented by a point in a closed consumption set X contained in the non-negative orthant of ún; X is

often assumed to be convex.  The space of choice possibilities Q is a set of n-vectors of positive

commodity prices q = (q1,...,qn), where income is normalized to one.  Then, the possible choice sets are

the budget sets  B(q) = {x = (x1,...,xn) 0 X| q1 x1 + ...  + qn xn # 1}; with Q restricted so that B(q) is

always non-empty. The admissible behavior rules H f D under the theory of utility-maximizing choice

behavior  are those consistent with a specified family of weakly decisive utility functions U.  For this

setup, it will often be natural to impose some combination of the following assumptions: [A1].  X is

compact and convex; [A2] The feasible choice sets B(q) are closed and convex for q 0 Q; [A3] Q is a

metric space, and the mapping B(q) from Q into non-empty subsets of X is a continuous,

compact-valued, convex-valued correspondence;3 [A4a] Utility functions u 0 U are uniformly bounded,

continuous and quasi-concave, or uniformly Lipschitz, and strictly quasi-concave, [A4b] Utility

functions u 0 U are defined on an open neighborhood of X, and are uniformly bounded and concave.

A complete theory of choice behavior requires either (1) that the structure of the choice problem is

such that decision rules are always decisive, if necessary through the introduction of explicit tie-breaking

mechanisms, or (2) that decision-makers are observed to offer sets of “tied” acceptable alternatives and

they passively accept assignments from their offers.  An incomplete theory that does not specify tie-

breaking mechanisms may nevertheless be empirically complete if in practice decision-rules are almost

surely decisive.  Shape restrictions may ensure that economic consumer choice is decisive; i.e., if budget

sets are compact and convex, and admissible utility functions are continuous and strictly quasi-concave,

then decision rules always yield singletons.  However, more generally utility maximization does not rule

out ties.  We will assume that offer sets of admissible alternatives are observed, and define Aq(C) to be
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the probability that the observed offer set in choice situation q is contained in C.  The sum of the

probabilities Aq(C) + Aq(Cc) is less than one if the probability of a partial success (where d(q) intersects

but is not contained in C) is positive.  In this case, we can consider observed lower bounds Aq
- on the

probabilities of success and upper bounds Aq
+ on the probabilities of success or partial success (i.e.,

Aq
+(C) = 1 - Aq

-(Cc)).  Alternately, if we observe Aq(C) + Aq(Cc) = 1 for all C 0 X, then admissible

decision rules are almost surely decisive at each q 0 Q, and Aq is an almost surely complete description

of the distribution of demand.

   
2.3.  Revelation Problems.  We define the revelation problems we will consider.

   
2.3.1. The Revealed Distribution Problem: If Aq is a probability on X for q 0 Q, find a probability

. on H (or, by extension, a probability  . on D satisfying  .(H) = 1) such that Aq(C) = .(H(q,C)) for C

0 X, q 0 Q.  [Alternately, find a probability < on U such that Aq(C) = <(U(q,C)) for C 0 X, q 0 Q].

   
2.3.2. The Revealed Dominating Distribution Problem.  If Aq

- and Aq
+ are non-negative bounded

set functions on X for q 0 Q, find a probability . on H such that Aq
-(C) # .(H(q,C)) # Aq

+(C) for C 0

X, q 0 Q.  [Alternately, find a probability < on U with Aq
-(C) # <(U(q,C)) # Aq

+(C) for C 0 X, q 0 Q].

   
2.4. The Axiom of Revealed Stochastic Preference [ARSP]: For a class H of hypothesized decision

rules, or alternately, for a class U of hypothesized utility functions, and for each finite sequence of trials

t = <(q1,C1),...,(qm,Cm)> with Ci 0 X and qi 0 Q,

 # "H(t) = maxd0H 1(d(qi)fCi),                                                   (1)

or alternately, 

# "U(t) = maxu0U 1(d(qi;u)fCi).                                                   (2)

The expressions "H(t) and "U(t) are, respectively, the H-intersection number and U-intersection

number for the trial sequence t.  When H is U-rational, these numbers coincide.  More generally, the

axiom may be applied to hypothesized decision rules H that are not necessarily obtained from utility

maximization.  ARSP says that the sum of choice probabilities over a finite sequence of trials is no larger
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than the maximum number of successes that an admissible decision rule [alternately, an admissible

utility function] can produce.  A central result for the revealed distribution problem, due to McFadden

and Richter (1971), is that under some regularity conditions, ARSP is necessary and sufficient for

consistency of observed choice probabilities with a specified theory of choice behavior.

3.  Finite Families of Choice Situations
   

3.1. Discussion.  In psychometric and voting applications, as well as discrete choice applications in

economics and marketing, it is natural to consider choice situations in which the space of possible

alternatives is finite.  The classical economic choice problem can also be interpreted as finite when the

index set Q of budgets is finite, so that X can be partitioned into a finite family of subsets {X1,...,Xm}

with the property for each i = 1,...,m and q 0 Q, either Xi f B(q) or Xi1B(q) = iiii, and X is the field

generated by the partition.  In this case, observations provide no information on choice behavior within

partition sets, so that the partition sets can themselves be defined as the objects of choice.  

Throughout this section, we will define the index set Q as the family of feasible "budget sets" in X,

and name singleton sets by their elements, so that AB(x) denotes a choice probability for C = {x} when

B is a feasible choice set in the family Q, and by construction AB(x) = 0 for x ó B.  Note that if X

contains m elements, then there are m! possible total orders of these elements.  We will represent these

orders by the finite family U of utility functions from X onto the integers {1,...,m}; note that this

definition excludes ties, so that utility-maximizing choice functions will be decisive. 

The revealed stochastic preference problem was originally examined for the case of X finite by

Marschak (1960), Block and Marschak (1960), and Luce and Suppes (1965), and it is for this case that

the most complete characterizations of a solution have been given, by McFadden and Richter (1971,

1990), Falmagne (1978), and Barbara (1990).  A closely related result with a different application was

obtained by Freedman and Purves (1969).  We will need several definitions.

     
3.2.  Definitions.

3.2.1. A set Q of choice situations forms a net if for every feasible set of alternatives, every larger set

contained in X is also feasible; i.e., if B 0 Q and A f X\B, then BcA 0 Q.  A set of choice situations

is exhaustive if it forms a net and it contains each singleton in X.
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3.2.2. Suppose choice situations Q form a net.  Let #(A) denote the number of elements in a subset

A of X.  For x 0 X\A 0 Q, the Block-Marschak polynomial Kx,A is the function

Kx,A = (-1)#(A)-i AX\C(x).                                                                 (3)

The Block-Marschak polynomials can also be defined recursively, with

Kx,iiii = AX(x),

Kx,A = AX\A(x) - Kx,C,

for all A f X\B and B 0 Q; see Falmagne (1978, Theorem 2).  An implication of this construction is

AB(x) = Kx,C for B 0 Q.  When the choice probabilities are the result of utility maximization,

Barbara and Pattanaik (1986) provide a useful interpretation of Kx,A as the probability of the event that

x is ranked behind the elements of A and ahead of all the remaining elements in X\A.  

For a trial (B,x) with x 0 B 0 Q, and for u 0 U, define aB,x,u = 1(x=argmaxxN0Bu(xN)).  Form a column

vector B composed of subvectors for each B 0 Q, with each subvector composed of the choice

probabilities AB(x) for x 0 B.  Form the matrix A with element aB,x,u in the row corresponding to the trial

(B,x) and column u for u 0 U.  An element of A is one if the associated trial is a success for the specified

utility function, and is zero otherwise.  Then, integer-weighted column sums of A will be the number

of successes attainable for a specified trial sequence (with repetitions given by the integer weights) for

the various utility functions, and the maximum of these column sums will be the U-intersection number

for the trial sequence.

3.3.  Theorem.  If X is finite, U is the class of utility functions that totally order X, Q is a family of

choice situations, with B 0 Q a non-empty subset of X, and AB(x) is a choice probability for x 0 B 0 Q

satisfying AB(B) = 1, then the following conditions are equivalent:

 (a) There exists a probability < on U that rationalizes the choice probability; i.e., 
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AB(x) = aB,x,u<u for x 0 B 0 Q.                                                      (4)

 (b) The system of linear inequalities B # A<, < $ 0, 1N< # 1 has a solution.  

 (c) The linear program min
<,s 1Ns subject to < $ 0, s $ 0, A< + s $ B, 1N< # 1 has an optimal solution

with s = 0.

 (d) The linear program maxr,t (rNB - t) subject to 0 # r # 1, t $ 0, and rNA # t1N has no positive

solution.

 (e) The choice probabilities AB(x), x 0 B 0 Q, satisfy ARSP [cf 2.4].

If the set Q of feasible choice situations forms a net, then (a)-(e) are equivalent to 

 (f) The Block-Marschak polynomials Kx,X\B for x 0 B 0 Q, are non-negative.

   
Proof: If a probability < satisfies (a), then it satisfies (b) with B = A<.  Conversely, if B satisfies (b), then

B = A< since B satisfies AB(B) = 1, so that (a) is satisfied.  But < solves (b) if and only if < and s = 0

solve (c).  The linear program (d) is dual to the linear program (c), so that (c) has an optimal solution

with s = 0 if and only if (d) has no positive solution; see Karlin (1959, V.4.1).  An optimal solution to

(d) satisfies t = maxurNAu, where Au is a column of A.  Thus, (d) has a positive optimal solution if and

only if for some r satisfying 0 # r # 1, one has rNB > t = maxurNAu.  But if this is true, then one can

achieve the strict inequality with a vector r whose components are all rational numbers.  Clear a common

denominator so that r is a vector of non-negative integers.  Then, maxurNAu is the intersection number

of the sequence of trials with the components of r giving the number of repetitions for each trial, so that

(d) has a positive solution if and only if ARSP in (e) is violated.  This establishes that (a)-(e) are

equivalent.

Consider condition (f), and suppose Q forms a net so that the Block-Marschak polynomials Kx,A are

defined for x 0 X\A 0 Q.  Let r = <r1,...,rk> denote an ordered sequence of the elements of a set A =

{r1,...,rk} f X, where k = 0,...,#(X), and RA denote the family of all ordered sequences r of the elements

of A.  Let B\r denote the set of elements of B that are not contained in the sequence r.  For r f B, define

Sr,B = {u0U|u(r1) > ...  > u(rk) > u(x) for x0B\r}. 
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Then, Sr,B contains the utility functions for which the elements in r are ranked in descending order and

are better than any remaining elements in B.  If (a) holds, it is immediate from the construction of Sr,B

that for x 0 B 0 Q, AB(x) = <(S<x>,B).  The sets Sr,B for B 0 Q have the property that S<r,x>,B for x 0 B\r

is a partition of Sr,B (Falmagne, 1978, Lemma 1) and for x 0 B 0 Q and A = X\B, S<x>,B = S<r,x>,X,

with the sets in this union disjoint (Falmagne, 1978, Lemma 2).  Note that S<x>,X = U.  The family

of sets T0 = {S<r,x>,X|x0B0Q and r 0 RC for C f X\B} then form a Boolean semi-algebra (Neveu (1965,

1.6.1).  Consider the sets Mx,A = {u0U|u(xN) > u(x) > u(xO) for xN0A and x … xO0X\A} = S<r,x>,X,

and note that the sets in the last union are disjoint.  Barbara and Pattanaik (1986, Theorem 2.1) utilize

the recursive definition of Kx,A to prove by induction for x 0 X\A 0 Q that when (a) holds,

Kx,A = <(Mx,A) = <(S<r,x>,X) $ 0.

Then, (a) implies (f).

Suppose that the Block-Marschak polynomials are non-negative for a class of feasible choice sets Q

that forms a net, so that (f) holds.  Following Falmagne (1978, Theorem 4), construct a set-valued

function < on T0 in the following steps:

(1) For x 0 X, <(S<x>,X) = Kx,iiii / AX(x).

(2) For x,y 0 X, x … y, <(S<y,x>,X) = Kx,{y} / AX\{y}(x) - AX(x).

 (3) Suppose < has been defined for Sr,X with r 0 RA for all A such that X\A 0 Q and #(A) < k.

Suppose A meets this condition with #(A) = k-1, and suppose x 0 X\A satisfies (X\A)cx 0 Q.  Define

) = <(Sr,X).  Then, define <(S<r,x>,X) by the recursion <(S<r,x>,X) = Kx,A"<(Sr,X)/) if ) > 0, and

otherwise <(S<r,x>,X) = 0.

It is immediate from this construction and the fact that S<r,x>,X is a partition of Sr,X for x 0 X\r that < is

non-negative and additive on T0, with <(U) = 1; see Falmagne (1978, Lemma 4).  Then < has a unique

extension to a probability on the Boolean algebra T generated by T0 (Neveu, 1964, 1.6.1).  Further,
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defining <(A) = sup{<(B)|B0T&BfA} for A f U extends < to a probability on the Boolean algebra of

all subsets of U; see Neveu (1965, I.6.2).  The final step of the proof is to show that the constructed

probability < satisfies (a).  Since AB(x) = Kx,C for B 0 Q, it is sufficient to show that   Kx,A

=  <(Mx,A)  = <(S<r,x>,X)   for   X\A 0 Q .   But the construction <(S<r,x>,X) = Kx,A"<(Sr,X)/)  

implies <(S<r,x>,X) = Kx,A.  This completes the proof.  ~

3.4.  Remarks.  The equivalence of (a)-(e) was established by McFadden and Richter (1971,1990).  The

equivalence of (a) and (f) when the family of feasible choice sets is exhaustive was established by

Falmagne (1978), with useful interpretation and refinements given by Barbara and Pattianiak (1986).

Theorem 3.3 generalizes the Falmagne result slightly by noting that it is not necessary that the feasible

choice sets be exhaustive, provided that they form a net so that the Block-Marschak polynomials are

defined.  

The linear programs (c) and (d) provide finite algorithms that can, in principle, determine if observed

choice probabilities can be rationalized.  These are, further, completely general, requiring no particular

structure for the set of feasible choice situations.  The construction for condition (f) is also a finite

algorithm, with the advantage that each step in the recursive construction of the measure < defines a

probability on a Boolean semi-algebra of subsets of U.  In some applications, such as construction of

bounds, this intermediate information may be directly useful.  The primary limitation of the

Block-Marschak polynomial condition is that it requires that the feasible choice sets form a net.  This

excludes some natural applications, such as those where only paired comparisons are observed, or those

defined by economic budget sets for a finite number of price vectors.

Part of the literature on stochastic choice has concentrated on situations where decision-makers are

faced with binary choice situations; see Luce (1959), McLennon (1991), Fishburn (1999).  Falmagne's

condition on the Block-Marschak polynomials is not applicable to this case, and while ARSP is

applicable, it does not fully exploit the geometry of the polytope containing the vectors of rationalizable
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choice probabilities.  Fishburn (1992) surveys the results on this problem, including the mathematical

literature on the polytopes generated by the decisive preference preorders.

4. Extension of Set Functions
   

4.1.  The Dominance Problem.  The results of this paper for the non-finite case hinge on the

following mathematical problem:  If P is a non-negative bounded set function on a family S of subsets

of a non-empty set H, find a probability 0 on the Boolean algebra T generated by S such that 0(S) $ P(S)

for S 0 S.  The following axiom is the key to the existence of a solution..

   
4.2.  The Dominance Axiom.  For each finite sequence t = <S1,...,Sm> in S, with repetitions allowed, 

P(Si) # "H(t) = maxd0H 1(d0Si).                                                        (5)

   
4.3.  Finitely-Additive Extension Theorem..  P is a non-negative bounded set function satisfying the

dominance axiom on a family S of subsets of a non-empty set H if and only if there exists a finitely

additive probability 0 on a Boolean algebra T of subsets of H containing S such that 0(S) $ P(S) for S

0 S.  If, further, S is closed under complementation and contains H, and P satisfies P(S) + P(Sc) = 1 for

S 0 S, then 0(S) = P(S) for S 0 S.

   
Proof: Necessity of the dominance axiom:.  Let S1,...,Sn be a sequence of sets in S, and T1,...,Tm the

partition of H that they induce.  Then Tj 0 T.  Let kj equal the number of sets Si containing Tj.  Then 

P(Si) # 0(Si) = kj"0(Tj) # maxj#mkj / "D(<S1,...,Sn>).

   
Sufficiency of the dominance axiom:  Suppose P satisfies the dominance axiom.  Let Y denote the

linear space spanned by the indicator functions 1S of the sets S 0 T, and Z denote its linear subspace

spanned by the indicator functions 1S of the sets S 0 S.  Define on Y the norm 2f2 = supd0H|f(d)|.  Define

a convex cone in Z, 
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W = {f0Z| f = for m > 0, non-negative scalars ki, and Si 0 S}, 

and on W define the functional 

p(f) = sup{ kiP(Si)|f = for m > 0, non-negative scalars ki, and Si 0 S}.

On the space ú×Z with the norm |r|+ 2f2 for (r,f) 0 ú×Z, define the sets A1 = {(r,f)0ú×Z|r $ 2f2} and A2

= {(r,f)0ú×W|r < p(f)}.  Then A1 and A2 are convex cones, and A1 has a non-empty interior in the norm

topology of Z.  Suppose A1 and A2 have a common point (r0,f0).  Then, 2f02 # r0 < p(f0) - g for some

positive g.  From the definition of p(f), there exists a representation f0 = such that p(f0) #

kiP(Si) + g/2 .  Then  supd0H  <  kiP(Si) - g/2.  Since this inequality is

continuous in the ki, these numbers can be chosen to be rational, and a common denominator cleared so

that the inequality supd0H  < kiP(Si) holds for some ki integral.  Considering a

sequence of sets Si with repetitions ki for i = 1,...,m gives a violation of the dominance axiom.  Hence,

A1 and A2 are disjoint.  A separating hyperplane theorem (Dunford and Schwartz (1964, V.2.8) implies

the existence of a non-zero continuous linear functional (8,.) on ú×Z such that 8r - .(f) $ 0 for (r,f) 0

A1 and 8r - .(f) # 0 for (r,f) 0 A2.  If 8 # 0, the first inequality holds at (1,0) 0 A1 only if 8 = 0.  However,

8 = 0 requires .(f) # 0 for all f 0 Z, implying .(f) / 0, a contradiction of (8,.) non-zero.  Hence, 8 > 0,

and we can normalize it to one.  Then, the first inequality implies 2f2 $ .(f) on Z, while the second

inequality implies .(1S) $ P(S) for S 0 S.  The Hahn-Banach theorem implies . can be extended to a

linear functional on Y satisfying .(f) # 2f2.  Then 0(S) = .(1S) is a finitely additive probability satisfying

the dominance condition 0(S) $ P(S) for S 0 S.

If S is closed under complementation and P(S) + P(Sc) = 1 for S 0 S, then the inequality 1 = P(S) +

P(Sc) # 0(S) + 0(Sc) = 1 implies 0(S) = P(S) for S 0 S.  ~

   



     4 The class S is almost surely finite if it is countable, and P(S) = 0 for all except a finite number of sets S in S.
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4.4.  Compact families.  A family K of subsets of a set H is compact if every sequence of members

with the finite intersection property has a non-empty intersection.  The family formed from K by the

operations of finite union and countable intersection is again compact (Neveu, 1965, 1.6.1).

   
4.5.  Tightness.  Suppose a non-negative bounded set function P is defined on a family S of subsets

of a set H.  Suppose that S is closed under complementation and contains H, and that P(S) + P(Sc) = 1

for S 0 S.  The function P is tight if there is a compact family of subsets K of H such that for each , >

0 and S 0 S there exist SN 0 S and K 0 K such that SNNNNf K f S  and P(S) - P(SN) < ,.  

The definition does not require that P(K) be defined for K 0 K, but simplifies (to the requirement that

P(S) - P(K) < , for some K f S and K 0 K) when K f S.  If S is (almost surely) finite, it is itself a

compact class.4  More generally, suppose H can be partitioned into “atoms” {H1,...,HN} plus a non-atomic

set H0, S0 is a family of subsets of H0, and S is a family whose members can be written as finite unions

of sets in S0 and the atoms H1,...,HN, or complements of such sets.  If K0 is a compact class of subsets of

H0 that is closed under countable intersection, then K formed by finite unions of H1,...,HN, and sets K 0

K0 is again a compact class.  Thus, P can satisfy our definition of tightness even if it has a finite number

of atoms.  When S is a Boolean algebra and K is contained in S, our definition of tightness coincides with

that of Neveu (1965, I.6.3).  The following result relates tightness and countable additivity.

   
4.6.   Lemma.  If P is a non-negative, finitely additive set function defined on the Boolean algebra T0

generated by a family S of subsets of a non-empty set H, and if P is tight on S, then P is countably

additive on T0, and has a unique countably additive extension to the Boolean F-algebra T generated by

T0.  Conversely, if P is countably additive on a Boolean F-algebra T, then each of the following conditions

is sufficient for it to be tight:

 (a) H is a Polish space (i.e., a complete separable metric space) and T is its Borel F-field.

 (b) H is a compact Hausdorff space with a countable base, and T is its Borel F-field.

 (c) H is a countable space, and T is the field of all subsets of H.
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Proof:  Suppose P is finitely additive on the Boolean algebra T0 generated by a family of sets S, and P is

tight on S.  We show that P is tight on T0, and consequently F-additive.  First let Tn =  Si be a finite

intersection of sets Si 0 S.  The tightness assumption on P implies there exists a compact class K of

subsets of H, which we take without loss of generality to be closed under finite union and countable

intersection, such that given , > 0 there exist SiN f Ci f Si with Ci 0 K and P(Si) - P(SiN) < ,@2-i.  The set

Ci is in K.  The set inclusion ( Si ) \ ( SiN) f (Si \ SiN) and the additivity and sub-

additivity of P imply

P( Si ) - P ( SiN) = P(( Si ) \ ( SiN))

 # P(Si \ SiN) = [P(Si) - P(SiN)] # ,.

Then P satisfies the definition for tightness on the family S1 of all sets formed from S by the operation

of countable intersection.  Next, consider the family S2 of all sets formed from S1 by the operation of

finite union V =  Tj of pairwise disjoint sets Tj 0 S1.  From the previous construction, there exist

Cj 0 K and TjN 0 S1 satisfying TjN f Cj f Tj and P(Tj ) - P(TjN) # ,/N, implying Kj 0 K, VNNNN =

TjN 0 S2 , and P(V) - P(VN) # ,.  But S2 = T0 (Neveu, 1965 I.2.2), so that we have established that

P is tight on T0 .

Suppose sets Vn,VnN 0 T0 and Cn 0 K satisfy VnNf Cn f Vn , P(Vn) - P(VnN) # ,, and Vn ` iiii.  Then,  Cn

` iiii, and compactness implies there exists N such that VNN f CN = iiii.  Then P(VNN) = 0, implying   P(VN)

# ,, and P is continuous at iiii, and hence countably additive.  The Hahn extension theorem (Dunford,

1964, III.5.8) establishes that P has a unique countably additive extension to the Boolean F-algebra T

generated by T0.  

Consider the sufficient conditions for tightness.  Condition (a) is given by Neveu (1965), II.7.3.

Condition (b) reduces to condition (a) by the Urysohm metrization theorem.  Condition (c) reduces to

condition (a) by assigning H the metric D(x,y) = 1(x…y).  ~
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4.7.  Countably Additive Extension Theorem.   Suppose S is a family of subsets of a non-empty set

H that contains H and is closed under complementation, and  P is a non-negative bounded set function

on S that satisfies  P(S) + P(Sc) = 1 for S 0 S and is tight.  Then, P satisfies the dominance axiom if and

only if there exists a countably additive probability 0 on the Boolean F-algebra T of subsets of H

generated by S such that 0(S) = P(S) for S 0 S.

   
Proof:  The proof of Theorem 4.3 establishes the existence of 0 finitely additive on T and satisfying 0(S)

= P(S) for S 0 S if and only if the dominance axiom holds.  This also establishes the necessity of the

dominance axiom when 0 is countably additive.  For the sufficiency of the dominance axiom, apply the

first result in Lemma 4.6 to the finitely additive measure 0.  ~

5. Solutions for General Revealed Stochastic Preference Problems.
   

5.1.  Discussion.  Consider the revealed distribution problem of 2.3.1, where Aq is a probability on X

for q 0 Q, and one seeks a probability . on H, or alternately a probability < on U, that rationalizes the

observed choice probabilities.  Theorem 5.2 establishes that the Axiom of Revealed Stochastic Preference

(ARSP) in 2.4 is necessary and sufficient for the existence of a finitely additive probability solving the

revealed distribution problem.  Its corollaries extend this result to solve the revealed dominating

distribution problem.  Theorem 5.3 gives regularity conditions under which ARSP is necessary and

sufficient for the existence of a countably additive representation solving the revealed distribution

problem.  Its corollaries show that these regularity conditions are met for a formulation of the classical

economic consumer revealed preference problem.   

   
5.2.  Theorem.  Suppose Aq is a finitely additive probability on X, q 0 Q, satisfying Aq(C) + Aq(Cc)

= 1 for each C 0 X.  Then ARSP is necessary and sufficient for the existence of a finitely additive

probability 0 on H solving the revealed distribution problem.
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Proof: Recall that (H,H) is the measurable space of hypothesized decision rules, with H(q,C) /

{d0H|d(q)fC} for q 0 Q and C 0 X.  Define the class of sets S = {H(q,C)|q0Q and C0X}.  By

assumption, H contains S.

Necessity.  Suppose 0 is a finitely additive probability satisfying Aq(C) = 0(H(q,C)) for q 0 Q and C

0 X.  For a finite sequence of trials t = <(q1,C1),...,(qm,Cm)> with Ci 0 X, qi 0 Q, define Si = H(qi,Ci), i

= 1,...,m, and P(Si) = 0(H(qi,Ci)).  Theorem 4.3 then implies that 0 satisfies the dominance axiom; i.e.,

# "H(t).  This condition coincides with ARSP.

Sufficiency.  Suppose ARSP.  If and H(q1,C1) = H(q2,C2), then

# "H(<H(q1,C1),H(q2,C2
c)>) = 1,

implying .  Hence, one can define uniquely a set function P on S satisfying

P(H(q,C)) = Aq(C), C 0 X, q 0 Q.  By construction, P satisfies the dominance axiom. Theorem 4.3 then

establishes that the dominance problem has a solution, and hence that there exists a finitely additive

probability 0 on H such that Aq(C) # 0(H(q,C)) for C 0 X, q 0 Q.  Since Aq is a probability satisfying

Aq(C)+Aq(Cc) = 1, this solution satisfies Aq(C) = 0(H(q,C)) for C 0 X, q 0 Q, and hence solves the

revealed distribution problem.  ~

   
5.2.1.  Corollary to Theorem 5.2.  If Aq is a non-negative bounded set function on X, q 0 Q, then a

necessary and sufficient condition for the existence of a finitely additive probability 0 on H satisfying

Aq(C) # 0(H(q,C)) for C 0 X, q 0 Q, is that Aq satisfy ARSP.

   
5.2.2.  Corollary to Theorem 5.2.  If Aq

- and Aq
+ are non-negative bounded set functions on X, q 0

Q, then a necessary and sufficient condition for the existence of a finitely additive probability 0 on H

solving the revealed dominating distribution problem is that the function Aq on X, q 0 Q defined by Aq(C)

= max{Aq
-(C),1-Aq

+(Cc)} satisfy ARSP.
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Proof:  Necessity of ARSP.  If there exists a probability 0 on H such that A-

q(C) # 0(H(q,C)) # A+
q(C)

for all C 0 X, then 0(H(q,Cc)) # A+
q(Cc), implying 1 - A+

q(Cc) # 0(H(q,C)), and hence 0(H(q,Cc)) $

Aq(C).  Corollary 5.2.2 then implies that Aq satisfies ARSP.

Sufficiency of ARSP.  If Aq satisfies ARSP, then by Corollary 5.2.1, there exists 0 on H such that Aq(C)

# 0(H(q,C)).  Then A-
q(C) # 0(H(q,C)) and 1 - A+

q(Cc) # 0(H(q,Cc)) imply the result.  ~

   
5.3. Theorem.  Suppose the universe of alternatives X is a complete separable metric space, and let

X be its Borel F-field.  Suppose the feasible choice sets B(q) are non-empty compact subsets of X.

Suppose the set H of decision rules consistent with a hypothesis of rationality is given a topology whose

basis are the sets H(q,C) for q 0 Q and open C 0 X.  Suppose that H is a compact space in this topology,

and let H be its Borel F-field.  Suppose Aq is a countably additive probability on X, q 0 Q, satisfying

Aq(C) + Aq(Cc) = 1 for each C 0 X, and Aq(B(q)) = 1.  Then ARSP is necessary and sufficient for the

existence of a countably additive probability 0 on H solving the revealed distribution problem.

   
Proof: The necessity of ARSP is immediate from Theorem 5.2.  To prove sufficiency, suppose ARSP

holds, and that 0 is a finitely additive probability, given by Theorem 5.2, that satisfies 0(H(q,C)) = Aq(C)

for q 0 Q, C 0 X.  For C 0 X open, the set H(q,C)c is closed by construction, and satisfies 0(H(q,C)c) =

1 - Aq(C) = Aq(Cc).  Then, the family S0 = {H(q,C)c|q0Q, open C0X} is a family of closed subsets of a

compact space, and is therefore a compact class.  On the family S = {H(q,C)c|q0Q,C0X}, 0 satisfies

0(H(q,C)c) = Aq(Cc) = sup{Aq(CNc))|CN open, C f CN}= sup{0(H(q,CN)c)|CN open, C f CN},

since by Lemma 4.6 Aq is countably additive, hence tight, on the compact feasible choice sets B(q).

Therefore, 0 is tight on S, and Lemma 4.6 implies that it is countably additive on H.  ~

   
5.3.1.  Corollary.  Suppose X is a convex compact metric space with metric D, and the feasible choice

situations B(q) are convex closed non-empty subsets of X.  Suppose Aq is a (countably additive)

probability on X, q 0 Q, satisfying Aq(C) + Aq(Cc) = 1 for each C 0 X, and Aq(B(q)) = 1.  Suppose

decision-makers are hypothesized to maximize utilities from a family U of uniformly bounded functions

on X that are equicontinuous; i.e., for each g > 0 there exists * > 0 such that x,xN 0 X and D(x,xN) < *
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implies supu0U|u(x)-u(xN)| < g.  Then ARSP is necessary and sufficient for the existence of a (countably

additive) probability < on U solving the revealed distribution problem.

   
Proof:  The Arzela-Ascoli theorem (Dunford and Schwartz, 1964, IV.6.8) establishes that U is a compact

subset of the space C(X) of continuous functions on X, with 2u2 = supx0X|u(x)| for u 0 C(X).  For open

C 0 X, the set U(q,C) = {u0U|supx0C1111B(q) u(x) > supxN0B(q)\Cu(xN)} is open.  To show this, suppose u 0

U(q,C).  Then there exists xO 0 B(q) with u(xO) > supxN0B(q)\Cu(xN) + g for some g > 0.  Consider uN

satisfying 2u-uN2 < g/3.  Then, uN(xO) > supxN0B(q)\CuN(xN) + g/3, implying uN 0 U(q,C).  Hence, U(q,C) with

C open is an open set in U.  Theorem 5.3 then gives the result.  ~

   
5.3.2.  Corollary.  Suppose X is a convex compact subset of a locally convex normed linear space L, and

the feasible choice situations B(q) are convex closed non-empty subsets of X.  Suppose Aq is a countably

additive probability on X for q 0 Q, satisfying Aq(C) + Aq(Cc) = 1 for each C 0 X, and Aq(B(q)) = 1.

Suppose decision-makers are hypothesized to maximize utilities from a family U of uniformly bounded

and concave functions on an open set containing X.  Then ARSP is necessary and sufficient for the

existence of a countably additive probability < on U solving the revealed distribution problem.

   
Proof: Assume that the uniform bound on u 0 U is 2u2 # 1.  Each point in X has an open neighborhood

that is contained in the open set on which utility functions are defined.  Since X is compact, it has a

maximum diameter :.  Also, one can extract from the open neighborhoods a finite sub-cover; let 8 be

the diameter of the smallest neighborhood in this sub-cover.  Suppose x,xN 0 X.  By construction, the

domain of the functions in U contains x - (xN-x)8/:.  Then, for 0 < 2 < 1, concavity implies

  u((1-2)x+2xN) $ (1-2)u(x) + 2u(xN), or u(x+2(xN-x)) - u(x) $ 2[u(xN)-u(x)] $ -22

  and

u(x) = u((8/(2:+8))(x+2(xN-x))+(2:/(2:+8))(x-(xN-x)8/:))

$ (8/(2:+8))u(x+2(xN-x))+(2:/(2:+8))u(x-(xN-x)8/:), or

  u(x+2(xN-x)) - u(x) # (2:/(2:+8))[u(x+2(xN-x))-u(x-(xN-x)8/:)] # 22:/8.

Given g > 0, choose 2 = g"min(1/2,8/2:).  Then, U satisfies the condition that x,xN 0 X with D(x,xN) <

2 implies |u(x) - u(xN)| < g for all u 0 U, and Corollary 5.3.1 gives the result.  ~
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5.4.  Remarks.  Theorem 5.3 is difficult to apply without sufficient conditions for the compactness of

the set H of hypothesized decision rules.  Corollary 5.3.2, which was suggested by Rosa Matzkin,

provides conditions which correspond to the classical revealed preference problem.  The requirement that

the utility functions u 0 U be defined on an open set containing X can be replaced by a condition on the

subgradient ''''(x,u) = {p0L*|u(y)-u(x) # p(y-x) for y 0 X} that there exist a bound K > 0 such that iiii …

''''(x,u)1{p 0L*| 2p2 < K} for x 0 X, u 0 U; see Matzkin (1992), Brown and Matzkin (1996)..  

If in Corollary 5.3.1, Q is compact and B(q) is a continuous correspondence, then it is sufficient to test

ARSP for trial sequences drawn from a countable subset of the set of possible trials, and if ARSP fails,

this will be detected in a finite number of trials; see McFadden (1979).  Thus, under these regularity

conditions, a test of the validity of ARSP is computable.  Going further, one can consider a net formed

by nests of trial sequences t = <(q1,C1),...,(qm,Cm)>; i.e., sequences t1 f t2 f ..., and utilize the linear

program in Theorem 3.1 (c) to recover the convex closed sets Gt of rationalizing probabilities on the finite

algebras of subsets of H induced by the trial sequences tk, provided ARSP holds.  For each set H1 in the

Boolean algebra generated by the H(q,C)c for C open and q 0 Q, the net formed by the probabilities

0t(H1) for 0t 0 Gt and a net of trial sequences t containing the trials that enter the finite intersection and

union operations that produce H1 will contain a sub-net that converges to 0(H1) for a probability 0 that

solves the revealed distribution problem in Theorem 5.2.  Thus, there is a sequence of finite linear

programming problems that provide a computable test of ARSP, and computable bounds for the

rationalizing probabilities.

Two published papers have considered somewhat different versions of the issue of countably additive

rationalizations.  McFadden (1975) examines the question of when a joint probability over endowments

and a compact set of preferences can be found that rationalize observed moments, such as per capita mean

market demands.  By restricting and redefining the observed moments, the general moment problem can

be specialized to the revealed distribution problem.  Cohen (1980) extends the finite analysis considered

in Section 3 to the case where X is infinite, but all choice sets B(q), q 0 Q, are finite.  The

Block-Marschak polynomials are defined for each finite restriction of X, and a net of choice sets

contained in this restriction.  Now consider a net of nested restrictions of X, and generalized sequences

of the probability measures constructed by Falmagne’s method, as described in Theorem 3.3.  Conditions

are then given under which a generalized subsequence has a countably additive limit.  Cohen’s proof is



     5 Homotheticity restrictions permit stochastic preference versions of the computational tests of revealed
preference theory developed by Varian (1982,1983).  One could go further and formulate parametric or
nonparametric econometric tests of ARSP for a variety of hypothesized decision models.
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difficult, but the essential idea is that when choices can be rationalized for all nested sequences of finite

X, and compactness conditions hold in the limit so that there can be no countable union of disjoint sets

with positive measure, then the Kolmogorov consistency theorem and the Caratheodory extension

theorem apply to achieve countable additivity.  Theorem 5.3 and its corollaries provide more easily

checked conditions for countable additivity, and handle the economic choice application where choice

sets are not finite.

6.  Extensions
   

New revealed preference problems can be generated by varying the family of feasible choice sets, the

class of permissible decision rules, and the structure of observations.  For example, one could consider

classes of permissible choice rules that are either more restrictive than classical preference maximization

(e.g., optimization of smooth preferences, or preferences that are homothetic, have linear Engle curves,

or are in parametric families) or less restrictive (e.g., incomplete optimization of preferences, preferences

that are not preorders, or preferences that are context or perception-dependent).5  One could also consider

observational situations encountered in practice (e.g., composition of market and experimental choice

data, conditional distributions or conditional moments of choices given observable consumer

characteristics).  The classical revealed preference problem is traditionally formulated under the

assumption that an individual's choices are observed in a sequence of static budget situations without

carry-over of durables, experience, or learning from one situation to the next.  The revealed distribution

problem assumes that individuals are not tracked and that information is collected only on a population's

distributions of choices.  However, our analysis of this problem has maintained the assumption that the

budget situations are static, without dynamics introduced by intertemporal maximization and state

dependence.  A much broader class of revealed preference problems could be formulated that allow these

dynamic elements, and account explicitly for the panel data structure implicit in observation of repeated

choice situations.  For example, the observed choices of an individual in repeated choice situations may

be interpreted as a realization of a stochastic process indexed by the choice situations, and the distribution
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of the stochastic process in a population, or its moments, may constitute the observations that can be

analyzed. 

The Axiom of Revealed Stochastic Preference can be applied to many classes of permissible choice

rules; the only modifications come in the properties and interpretation of the choice probabilities and the

determination of intersection numbers for trial sequences.  For an expanded menu of revealed preference

problems, if observed choice data are consistent with the specified class of permissible choice rules,

additional interesting questions arise:  Do the observations identify a unique distribution, or identify

bounds on the possible distributions (McFadden, 1975)?  Can the analysis be made conditional on

observed population characteristics, with solutions that reflect the systematic variation in choice

distributions with these characteristics?  Many of these extended revealed stochastic preference problems

have not been studied, and deserve the attention of economic theorists.
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