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Abstract

A mixed logit is specified with partworths that are transforma-
tions of normally distributed terms, including censored normals, log-
normals, and Sp distributions which are bounded on both sides. The
model is estimated by Bayesian MCMC procedures, which are espe-
cially well-suited to mixed logit with normal distributions. The trans-
formations provide greater flexibility for the distributions of partworths
without appreciably diminishing the speed of the MCMC calculations.
The method is applied to data on customers’ choice among vehicles
in stated choice experiments. The flexibility that the transformations
allow is found to greatly improve the model, both in terms of fit and
plausibility.

1 Introduction

Mixed logit is a flexible discrete choice model that incorporates random
variation in partworths. McFadden and Train (2000) show that mixed logit
can approximate any random utility choice model to any degree of accuracy
through appropriate specification of distributions of the partworths. Pro-
cedures for estimating mixed logits have been developed within both the

*A Gauss routine and manual to implement the procedures described in this paper
are available on Train’s website at http:\\elsa.berkeley.edu\ ~train. We are grateful for
comments from Peter Rossi on an earlier version of this paper.



classical (e.g., Revelt and Train, 1998, Brownstone and Train, 1999) and
Bayesian traditions (Allenby, 1997; Sawtooth Software, 1999.)

The vast majority of applications of mixed logit have used normal distri-
butions for the partworths. However, since the normal is unbounded on each
side of zero, its use in many setting is inappropriate. A normal distribution
for a price coefficient implies that some share of the population actually
prefer higher prices. Also, since the normal distribution overlaps zero, a
normal distribution for a price coefficient precludes the calculation of the
distribution of willingness to pay: The willingness to pay for an attribute
is the partworth of that attribute divided by the price coefficient. If the
distribution of price coeflicients overlaps zero, then the willingness to pay is
unboundedly large for some customers. Generally, the mean willingness to
pay does not exist when the price coefficient is normal. A normal distribu-
tion is also inappropriate for the partworth of a desirable attribute that is
valued (or, at worst, ignored) by all customers or an undesirable attribute
that is disliked (or ignored) by all customers. Similarly, when an attribute
consists of various levels, the partworth for each higher level must logically
be no smaller than the partworth for each lower level; normal distributions
do not embody this requirement.

Bounded distributions can and have been used in mixed logits estimated
by both the classical and Bayesian procedures (e.g., Boatwright et al., 1999;
Train, 1998; Johnson, 2000). However, each estimation procedure, while
feasible with bounded distributions, entails numerical difficulties that are
intrinsic to its form, as described and illustrated by Train (2001). In par-
ticular: Classical procedures handle triangular and similarly bounded dis-
tributions easily while Bayesian procedures are exceedingly slow with these
distributions. On the other hand, fully correlated partworths are difficult to
handle in classical procedures due to the proliferation of parameters, while
the Bayesian procedures accommodate these correlations readily. Obtaining
partworths that are bounded and correlated has been difficult with either
procedure.

Bayesian procedures operate effectively with normals because of the con-
venient posteriors that arise with normals. In this paper, we build upon the
observation in Train (2001) that the Bayesian procedures operate as effec-
tively with log-normals as normals because the log-normal is simply a trans-
formation of the normal that does not entail any extra parameters. This con-



cept is expanded by using other transformations that provide various types
of bounded distributions. These transformations can operate on correlated
normals to provide correlated partworths with bounded distributions. The
numerical advantages of the Bayesian procedures with correlated normals
are retained while having partworths whose distributions are bounded.

Many useful distributions can be obtained as simple transformations
of normals. Let [ be normally distributed with mean b and variance w.
Bounded distributions are obtained through the following kinds of transfor-
mations. These transformations are weakly monotonic (non-decreasing in
() and depend only on 8 without utilizing b and w.

e Log-normal. The transformation is ¢ = exp(3). The distribution is
bounded below by zero. It is useful for the partworths of attributes
that are liked by all customers. The sign is reversed for undesirable at-
tributes, such as a price variable, such that the partworth is necessarily
negative.

e Normal censored from below at zero. The transformation is ¢ =
maz(0, 3). There is a mass at zero, with the density above zero being
the same as the normal density of 5. The share at zero is ®(—b/w),
where ® is the standard normal cumulative distribution. This trans-
formation is useful for partworths of an attribute that some customers
do not care about (i.e., are indifferent to its presence and simply ig-
nore) and other customers find desirable. The estimation of b and w
determines the share massed at zero and the share distributed above
ZEro.

e Johnson’s (1949) Sp distribution.! The transformation ¢ = exp(3)/(1+
exp()) creates a partworth that is distributed between zero and one,
with mean, variance and shape determined by the mean and variance
of 3.2 For a distribution that has support from ¢ to u, the transfor-
mation is ¢ = £+ (u—{) - (exp(B)/(1 + exp(S3))). The Sp distribution
is useful for a variety of purposes. Sp densities can be shaped like
log-normals but with an upper bound and with thinner tails below the
bound. Sp densities are more flexible than log-normals: they can be

1See also Johnson and Kotz, 1970, p. 23.
2 As Johnson and Kotz note, the formulas for the moments are very complex. We cal-
culate them through simulation as described section 4. The median is 1/(1+ exp(b//w)).



shaped like a plateau with a fairly flat area between drop-offs on each
side (as in Figure 2 for our application) and can even be bi-modal.
When a lower bound other than zero is specified, the distribution is
useful for an attribute that some people like and others dislike but
for which there is a limit for how much the person values having or
avoiding the attribute.

For multiple partworths, 3 is generalized to be a vector with length equal
to the number of partworths, with mean vector b and variance matrix €.
Each partworth is defined as a transformation of the corresponding element
of 3. The covariance among the elements of 5 induces covariance among the
partworths. As such, the procedure allows for correlated partworths under
any combination of the above distributions.

Numerous authors have implemented log-normal distributions within
mixed logit, including Bhat (1998, 2000), Train (1998), Revelt and Train
(1998), and Johnson (2000). However, experience indicates that the param-
eters of log-normal distributions are hard to estimate with classical proce-
dures, due to the fact that the log-likelihood surface is highly non-quadratic.
Bayesian procedures seem to work more effectively for log-normals (Train,
2001.) Johnson (2000) examined censored normals and found that they
provided more reasonable results and better fit than uncensored normals in
his application. The use of the Sp distribution seems to be new. We will
investigate its usefulness in the context of our application.

Boatwright et al. (1999) developed Bayesian procedures for handling
truncated normal distributions. Truncated normals cannot be accommo-
dated within our procedure because the necessary transformation entails b
and € rather than depending only on 3.3 Since the population parameters
affect the utility of each customer through this transformation, the posteriors
for b and € conditional on the 3’s depend on the choices of the respondents
and no longer have the convenient form that we utilize. Boatwright et al.
implement methods that account for this fact and can be generalized to
other types of bounded distributions. These methods are considerably more
difficult and slower computationally than those we utilize in this paper. The
question for the researcher for a particular application is whether transfor-
mations of normals that do not depend on b and €2 can adequately represent

3E.g., a normal truncated below at zero is created as ¢ = ® '(m(l —z) +2) - w+b
where z = ®((8 — b) /w) and m = ®(—b/w).



the relevant distributions of partworths. If so, the simple methods in this
paper can be exploited; if not, the methods of Boatwright et al. can be
used.?

While the estimation procedure that we describe is Bayesian, the re-
sults can be interpreted from either a Bayesian or classical perspective.
Bayesian interpretation is of course straightforward since the procedure itself
is Bayesian. Classical interpretation is less well recognized. The Bernstein-
von Mises theorem (see, e.g., Train, 2003, for a discussion with historical
references) establishes that, under conditions that are maintained in our
specification, the mean of the Bayesian posterior is a classical estimator that
is asymptotically equivalent to the maximum likelihood estimator. The the-
orem also establishes that the covariance of the posterior is the asymptotic
covariance of this estimator. The results from the Bayesian procedures can
therefore be interpreted by a classical researcher in the same way that the
researcher would interpret estimates obtained by maximum likelihood. To
facilitate this interpretation, we present our results in the format that is
standard for classically estimated models, namely by reporting the param-
eter estimates and their standard errors.

In section 2, we describe Bayesian estimation of a mixed logit with nor-
mally distributed partworths. We then show in section 3 how this procedure
is changed to accommodate transformations of the normal. We apply the
method in section 4 to data on customers’ choice among vehicles.

2 Mixed logit with normally distributed partworths

The Bayesian procedure for this model was developed by Allenby (1997) and
implemented by Sawtooth Software (1999).% Person n faces a choice among
J alternatives in each of T' time periods. J can be as small as 2, and T can
be as small as 1. The person’s utility from alternative j in period ¢ is

/
Unjt = ﬁnxnjt + enjt,

4(Classical estimation procedures accommodate truncated normals as readily as nor-
mals; see, e.g., Revelt (1999.) However, as stated above, classical procedure have difficulty
dealing with correlated partworths due to the proliferation of parameters.

®Related methods for probit models were developed by Albert and Chib (1993), Mc-
Colluch and Rossi (1994), and Allenby and Rossi (1999).



where e,;; ~ iid extreme value and 3, ~ N(b,2). The vectors of variables
Znjt and partworths 3, have length K. Person n chooses alternative 7 in
period t if Unit > Uyjt Vj # i. Denote the person’s chosen alternative in
period t as y,¢, the person’s sequence of choices over the T time periods
as Yn = (Yni,-.-,Ynr), and the set of y,Vn as Y. Conditional on f,, the
probability of person n’s sequence of choices is the product of standard logit

formulas: :
eﬁnxnynt t

L(yn | Bn) =] S Pt
J

t

The unconditional probability is the integral of L(y, | 8,) over all values of
0B, weighted by the density of G,:

Po(yn | b,0) = / Llyn | B)g(Bn | b, Q)dC2.

where g(-) is the multivariate normal density. This unconditional probability
is called the mixed logit choice probability, since it is a product of logits
mixed over a density of partworths.

For Bayesian analysis, it is necessary to specify the prior on the model
parameters. The prior on b is specified to be normal with sufficiently large
variance that it is effectively flat from a numerical perspective. We specify
the prior on €2 as inverted Wishart with K degrees of freedom and parameter
K1 where I is the K-dimensional identity matrix. This density is denoted
IW(Q | K,KI). With these priors, the joint posterior on 3,Vn , b and € is

A(Ba¥n, 0,2 | Y) o< [T(L(yn | B)g(B | b, DIW(Q | K, KI).

Information about the posterior is obtained by taking draws from the
posterior and calculating relevant statistics, such as moments, over these
draws. Gibbs sampling is used to facilitate the taking of draws (see Casella
and George, 1992, for a general explanation of Gibbs sampling.) In par-
ticular, draws are taken sequentially from the conditional posterior of each
parameter given the previous draw of the other parameters. The sequence
of draws from the conditional posteriors converges to draws from the joint
posterior.

The conditional posterior distributions in this model are especially conve-
nient. Given 3 and €, the posterior on bis N(3,Q/N) with 3 = (1/N) ¥ B,.
This distribution is easy to draw from: A draw of b is created as b =



B+ Ln, where L is the lower-triangular Choleski factor of /N and 7 is
K-dimensional vector of independent draws from a standard normal den-
sity. A draw of the vector b requires only K draws from a random number
generator, K means over N terms each, and a few arithmetic calculations.
It takes a tiny fraction of a second.

Given b and 3, the conditional posterior of Qis IW (2 | K+N, KI+NV),
where V = (1/N) >(8, — b)(B, — b)’. Draws from the inverted Wishart are
easily obtained. Take K + N draws of K-dimensional vectors of iid standard
normal deviates. Calculate the Choleski factor, M, of (KI+NV)~!. Create
S = 3 .(Mn,)(Mn,). Then Q = S~! is a draw. This calculation is also
extremely fast.

The only computationally intensive part is drawing 3,Vn. Given b and
Q, the conditional posterior for 3, is proportional to L(y, | Bn)g(Gn | b, Q).
The Metropolis-Hasting (M-H) algorithm is used to take draws from this
distribution. (See Chib and Greenberg, 1995, for a general explanation of
the M-H algorithm.) The previous draw is labeled 3° and the new one is
BL. The new draw is obtained as follows.

1. Calculate d = oLn, where 7 is a draw of a K-dimensional vector of
iid standard normal deviates, L is the Choleski factor of €2, and o is a scalar
that the researcher sets in a way to be described below.

2. Create a ”trial” value of 3 as 51 = 89 + d.

3. Evaluate the posterior at this trial value and compare it with the
posterior at the previous draw. That is, calculate the ratio

o L | BL)9(33 1 6,9)
Llyn | B)9(3 | 0.0

4. Take a draw from a standard uniform and label the draw u.

5. If p < R, accept the trial draw. Otherwise, reject the trial draw and
use the previous draw as the current draw. That is, set 3! = 5711 if u <R
and set 3. = 3% otherwise.

A sequence of draws taken by the M-H algorithm converges to draws from
the target distribution, in this case the conditional posterior. One draw of
By within the M-H algorithm for each person is taken in each iteration of
the Gibbs sampling over b, €2, and 3,Vn. Movement to convergence in the
M-H algorithm for each person and in the overall Gibbs sampling is thereby
attained simultaneously. In our application we used 30,000 iterations for



“burn-in” (i.e., movement toward convergence) followed by 20,000 iterations,
of which the draws in every 10-th iteration were retained. (Run-times were
only 1.5 hours, even with this large number of iterations.) The 2000 retained
draws are used to conduct inference. For example, the average of these draws
is the simulated mean of the posterior, which, from a classical perspective, is
the estimate of the parameters. The standard deviation of the draws is the
simulated standard deviation of the posterior and the classicists’ standard
errors of the estimates.

The value of o in step (1) affects the acceptance rate in the M-H al-
gorithm. For smaller values of o, the acceptance rate is generally higher
but the jumps between draws is smaller so that more draws are needed for
the algorithm to reach convergence and, once at convergence, to traverse
the conditional posterior. Gelman et al. (1995) found that the optimal ac-
ceptance rate is .4 for K = 1 and decreases to .23 for higher dimensions.
They recommend an adaptive acceptance rate to achieve optimality. This
adaptation is implemented by changing ¢ in each iteration of the Gibbs
sampling based on the acceptance rate among the N trial draws of 3,Vn in
the previous iteration. Following Sawtooth Software (1999), we lower o if
the acceptance rate is below .3 and raise it if the rate is above .3.

3 Transformation of normals

Denote the partworths of person n as ¢,, which is a vector with the same
length as (3,. The partworths are defined by ¢, = T(5,), where T is a
transformation that depends only on 3 and is weakly monotonic (such that
ock /0B > 0 for each element k of ¢, and (3,). The distribution of ¢, is
determined by the transformation.

Little is changed in the estimation procedure by this transformation.
Normally distributed 3,’s are drawn as before but then transformed to ¢,’s
when they enter utility. Utility is specified as

Unjt = T(/Bn)/xnjt + Enjt-
The probability of the person’s choice sequence given (3, is

eT(/Bn)/x”yntt

L(yn n) = = T3V, .. -°
(y | ﬁ ) 1:[ E] eT(Bn) Tnjt



This probability is used in step 3 of the M-H algorithm instead of the prob-
ability based on untransformed f3,,. The rest of the procedure is same.

In this set-up, (8, can be considered a latent value that determines the
person’s partworths. This latent value is normally distributed, with mean b
and covariance 2. The conditional posteriors for b and €2 are the same as
before, and the conditional posterior of 3, changes only by the transforma-
tion that occurs in utility in the logit formula. The advantages of normal
distributions within a Bayesian procedure are maintained while allowing the
partworths to take other distributions. For any given value of (,,, the part-
worths ¢, are calculated, and the distribution of 3,, induces a distribution
of ¢,.

4 Application

A survey including stated choice experiments was designed to elicit cus-
tomers’ response to the new gas-electric hybrid and all-electric vehicles
that would be offered in California. Respondents were contacted through
random-digit dialing throughout the state of California. Respondents in-
tending to purchase a new vehicle within the next three years were asked to
participate in the study. Those who were willing to participate in the study
were sent a packet of materials, including information sheets that described
the new vehicles and the choice experiments. The respondents were later
called to go over the information, obtain their choices in the experiments,
and ask demographic and other questions. A total of 500 respondents were
obtained.

4.1 Choice experiments

Each choice experiment consisted of three vehicles. For each vehicle, the
following information was listed:

e Body type, such as midsize car
e Engine type: gasoline, electric, or hybrid
e Purchase price

e Operating cost in dollars per month



e Performance
e Range: miles between refueling /recharging.

The respondent was asked to consider the attributes of all three vehicles
and state which one he/she would buy if making the purchase today. Each
respondent was presented with 15 choice experiments, with each experiment
containing different vehicles with different attributes.

The choice experiments were designed to provide as wide variation in
each attribute, and as little covariance among attributes, as possible while
maintaining plausibility. Ten body types were considered in the experiments:
mini car, small car, midsize car, large car, small SUV, midsize SUV, large
SUV, compact pick-up, large pick-up, mini-van. Respondents were given
examples of vehicles with that body type.

Each vehicle in each experiment was listed as being gasoline, electric, or
hybrid. In any one experiment, the respondent might face a choice among
two electric and one hybrid vehicle, among three gasoline vehicles, or any
other combination.

The purchase price and operating cost of each vehicle were chosen ran-
domly from a range of possible prices and operating costs.

The performance of each vehicle was described in terms of top speed
and the number of seconds required to go from zero to 60 mph. These
two performance measures were not varied independently, since respondents
know that they are linked. Rather, three performance levels were specified,
and each vehicle was randomly assigned one of the three performance levels.
The three levels were: (1) Top speed of 120 mph, and 8 seconds to reach
60 mph. This level is called “high” performance in the discussions below;
however, the respondent did not see the word “high”. The respondent saw
the numbers for top speed and seconds to 60. (2) Top speed of 100 mph,
and 12 seconds to reach 60 mph. This level is called “mid” in the discussions
below. (3) Top speed of 80 mph, and 16 seconds to reach 60 mph. This
level is called “low.” The performance for gas and hybrid vehicles was
randomly chosen from all three levels. The performance for electric vehicles
was randomly chosen from the mid and low levels.

For the miles between refueling/recharging, a range of miles was given
for each vehicle. The miles between refueling was given as “300-500” miles
for gas vehicles and “400-700” miles for hybrid vehicles in all the experi-
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ments. A constant level was used for these vehicles because the study did
not intend to estimate the value of increasing the range of vehicles that are
refueled conventionally. The goal was to estimate the value to customers
of increasing the range of electric vehicles. The range for gas and hybrid
vehicles was stated so that the experiments would not place undue emphasis
on the electric vehicle range in the eyes of the respondent. (If the range of
electric vehicles was stated in the experiment but not the range of gas or hy-
brid vehicles, then respondents might be induced to place more importance
on this aspect of electric vehicles than they otherwise would.) For electric
vehicles, the possible ranges included every 10 mile increment starting with
60-70 and going up to 190-200. The range for each electric vehicles in the
choice experiments was chosen randomly from these levels.

4.2 Models

Price, operating cost, and range are linearized, such that their partworths
represent the value of a one-unit increment. The negative of price and
operating cost are entered, such that their partworths are expected to be
positive (so that log-normal distributions, which have positive support, can
be used.) For performance, the low level is taken as the base and the medium
and high levels are represented in increments. That is, two variables are
entered for performance: a dummy indicating that the vehicle has either
medium or high performance, and a dummy indicating that the vehicle has
high performance. For engine types, gas is taken as the base, such that the
partworths of the electric and hybrid vehicles are the value of these engine
types relative to that of a gas engine. Similarly, the large car is taken as
the base body type, with the partworths for the others representing value
relative to the large car.

We start with a model in which all the partworths are distributed jointly
normal N (b, Q). As stated above, 2000 draws of b, 2 and /3,, Vn are obtained
from their posterior distribution. The means of the 2000 draws of b and of
the diagonal elements of Q are given in Table 1. (The partworths for body
types are omitted from this and subsequent tables to save space and be-
cause they contain relatively less interpretable content.) From a classical
perspective, these figures represent the estimated mean and variance of the
0Br’s in the population. And since the §,’s are untransformed, the figures
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also represent the mean and variance of partworths in the population. The
standard deviations of the draws of b and the diagonal elements of €2 are
given in parentheses. From a classical perspective, these are the standard
errors of the estimated mean and variance of 3,,’s in the population. For ex-
ample, for our first model, the partworth associated with range is normally
distributed in the population with an estimated mean of 1.213 and estimated
variance of 4.050. These estimates imply that 73 percent of the population
have positive partworth for range while the other 27 percent have a negative
partworth. (These negative partworths for range are of course implausible
and the basis for our exploration of other distributions below.) The stan-
dard error on the estimated mean is .2442, which gives a t-statistic of 4.97,
implying that the mean is significantly different from zero. Similarly, the
standard error on the estimated variance is .7190, for a t-statistic of 5.63,
implying that the variance is also significant (that is, the hypothesis of no
variance can be rejected.) The classical log-likelihood of the model is given
at the bottom of the Table. This value is the log-likelihood of the observed
choices calculated at the estimated values of b and € (that is, at the mean
of the draws of b and (2.)

The mean partworth associated with moving from low to medium or high
performance (0.8056) is greater than that for moving from medium to high
performance (0.3092), which is consistent with decreasing marginal utility
of performance. The estimates for the other partworths are self-explanatory.

The model is implausible in several regards. The estimates imply that
22 percent of the population prefer higher prices. The existence of price co-
efficients with the wrong sign renders the model un-useable for calculation
of willingness to pay and other welfare measures. The estimates also imply
that 37 percent of people prefer higher operating costs, 27 percent prefer
electric vehicles with shorter ranges over those that can be driven further
between recharging, 24 percent prefer low performance over medium or high
performance, and 40 percent prefer medium performance over high perfor-
mance. Also, for any arbitrarily large value in either direction, the model
implies that some people have a partworth in excess of this value. The model
therefore implies that some people would buy a vehicle that is worse in all
features than any other currently-offered vehicle. These implications are the
result of using normal distributions for partworths when actual partworths
have known signs and limited magnitudes.
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Table 2 gives the correlation among the partworths implied by the esti-
mate of Q. The largest correlation (in magnitude) is between the partworths
for range and electric vehicle: the correlation of -.64 implies that people who
are concerned about the range of an electric vehicle tend not to like elec-
tric vehicles at any range. This result is questionable. It is probably true
that people who are concerned about range tend not to like electric vehicles,
since electric vehicles generally have short ranges. However, the range of the
electric vehicle is explicitly included in the experiments and the model. The
negative correlation in partworths therefore implies that people who care
about range tend to not like electric vehicles for reasons beyond range. It is
not clear what these reasons might be or why they relate to concern about
range.

We estimate two models under other distributional assumptions that are
easy to accommodate within our estimation procedure. For the first of these
two models, the two performance variables are given normal distributions
that are censored from below at zero. With this distribution, a share of the
population is completely unconcerned about performance (i.e., have a part-
worth of zero) while the other share of the population places a positive value
of higher performance with this value varying over people. The coefficients
of price, operating cost, and range are given log-normal distributions (with
the negative of price and operating cost entering the model.)

The mean and standard deviation of b and the diagonal elements of (2
are given in Table 3. Note that the log-likelihood of this model is consid-
erably higher than that for the model with all normals: -6171.5 compared
to -6835.5. As stated above, b and Q are the mean and variance of the (3,
in the population, which are transformed to obtain the partworths. The
distribution of partworths is obtained through simulation on the estimated
values of b and 2. In particular, draws of 3,, are taken from a normal distri-
bution with mean equal to the estimated value of b and variance equal to the
estimated value of €). Each draw of (3, is then transformed to obtain a draw
of partworths.® The mean and variance of these partworths are given in the
latter columns of Table 3. The specification of the distributions assures that

SAn alternative procedure, which is more consistent with Bayesian concepts and less
consistent with classical concepts, is to retain the draw of the partworths (i.e., the trans-
formation of the draw of 3,) for each person in each iteration of the MCMC procedure
after convergence and calculate statistics such as means and variances over these draws.
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no one in the population dislikes (i.e., has a strictly negative partworth for)
price reductions, operating cost reductions, range improvements, or either
of the two performance improvements.” The mean partworths are smaller in
this model than in the model with all normal distribution.® This difference
is evidence of how the use of normal distribution can distort the estimated
mean partworths. In particular: For a desirable attribute, the normal dis-
tribution gives an implausible negative sign for some share of customers; in
estimation, the distribution is moved “up” to avoid the poor fit that these
implausible values imply. With distributions that do not contain implau-
sible values, the estimation procedure is not distorted to avoid implausible
values.

The estimates imply that 51 percent of the population do not care about
an improvement from low to mid-level performance, and 69 percent of the
population do not care about an improvement from mid-level to high perfor-
mance. These shares seem larger than expected (at least what we expected.)
However, this result might simply indicate that the other attributes that
were included in the choice experiments are more important to a large share
of respondents, such that the partworth for performance appears to be zero
for these respondents. If attributes that were considered less important than
performance had been included in the experiments, with variation only over
performance and these less important attributes, then a positive partworth
for performance might have been evidenced.

Table 4 gives the correlation among partworths implied by the estimated
model. The implications are generally more reasonable that for the model
with all normal distributions. People who are concerned about price are also
concerned about operating cost. People who like electric vehicles also tend to
like hybrid vehicles. This result suggests that customers have a willingness
or unwillingness to consider new technologies that transcends the particular
technology. The questionable correlation between the partworths of range

"The mean B, is negative for many of these attributes, even though the partworths
themselves are positive. For log-normal distributions, 3, is exponentiated such that the
partworth is positive even if 3,, is negative. In this case, a negative mean for 3, implies
that the median partworth is between zero and one. Similarly, if the partworth is a normal
censored at zero, a negative mean for [, implies than more than half of the population
does not care about the attribute.

8Even though the means drop, the ratios of means move in both directions relative to
those with all normal distributions.
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and electric vehicles that arose in the model with all normal distributions is
not evidenced in the model with transformations of normals.

As specified, the partworths for price, operating cost and range have log-
normal distributions, which allow unboundedly large partworths and have
fairly thick tails. It might be more appropriate to give these partworths a
Sp distribution. To investigate this question, and to illustrate how various
distributions can be tested, we estimated a model that is the same as the
one just described except that the partworths for these three variables are
specified as Sp with a lower bound of zero and a high upper bound for
each. The upper bounds are 1.0 for price and operating cost, and 2.0 for
range, which are high enough to accommodate nearly all of the cumulative
distribution under the respective log-normals and yet allow a different shape
of the distribution within the relevant range. The log-likelihood for this
model is higher than for the previous one: -6159.7 compared to -6171.5. For
price and operating cost, the mean and variance of the partworths are about
the same with the Sp distribution as the log-normal; however, the shape
differed, with the tail of the Sp distribution being considerably smaller even
within the support of the Sp. Figure 1 illustrates the difference for the
price coefficient, with the solid line representing the Sp distribution and the
dashed line representing the log-normal.

For the partworths associated with range, using the Sp distribution
instead of the log-normal had a substantial effect. Figure 2 shows the
estimated densities under the Sp distribution (solid line) and log-normal
(dashed line). The Sp distribution provides a plateau shape that cannot
be accommodated with a log-normal. The question arises of whether this
shape is the result of placing a maximum of 2.0 on the Sp distribution when
the estimated log-normal distribution gives a non-negligible share above 2.
We re-estimated the model with the maximum of the range coefficient set
at 5.0 instead of 2.0. The estimated Sp density with this maximum takes a
shape that is similar to the log-normal. However, the log-likelihood dropped
considerably, from —6159.7 with the maximum set at 2.0 to —6163.1 with
the maximum set at 5.0. Apparently the improvement in fit that arises
from using Sp distribution instead of the log-normal is due to the plateau
shape that the Sp distribution takes when its maximum is set at 2.0 for this
partworth.

The bounds of the Sp distribution can be estimated as parameters,
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rather than specified by the researcher. Doing so requires an extra layer
of Gibbs sampling, with the bounds drawn from their posterior distribu-
tion conditional on 3, Vn. The conditional posterior is proportional to the
logit likelihood for the entire sample, [],, L(y, | Bn), times the prior on the
bounds, where the utility that is used to calculate the logit formulas in L(-)
depends on the bounds of the Sp distributions. A M-H algorithm is used
to take draws from this conditional posterior, similar to that used by Train
(2001) for fixed coefficients.

We estimated a model with the upper bound of the Sg distribution for
the range coefficient treated as a parameter. Using a flat prior, the estimated
value was 2.86 with a standard error of 0.42. The log-likelihood of the model
dropped slightly from —6159.7 with the upper bound set at 2.0 to —6160.56
with the estimated bound. Run time approximately doubled, since the M-H
algorithm for the bounds of the Sp distribution requires about the same
amount of calculation as the M-H algorithm for 3, Vn. As noted above,
run times are fairly short with the procedure such that doubling them is
not a burden. However, identification becomes an issue when the bounds
are treated as parameters, since the difference between the upper and lower
bounds, u — ¢, is closely related to the variance w of the latent normal term.
An important area for further work is whether the Sp distributions can be
re-parameterized in a way that improves identification of each parameter
when the researcher does not specify the bounds.
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Table 1: Model of vehicle choice with all normal distributions

0Br’s and partworths for: Mean  Variance Share>0

Price (negative): .1900 0632 .78
(.0127)  (.0048)

Operating cost (negative): 0716 0467 .63
(.0127)  (.0032)

Range: 1.213 4.050 .73
(.2442)  (.7190)

Electric vehicle: -3.554 16.95 19
(.4120)  (3.096)

Hybrid vehicle: 1.498 6.483 .72
(.1584)  (.9729)

High performance: .3092 1.425 .60
(.1004)  (.2545)

Mid and high performance: .8056 1.298 .76
(.1030)  (..2384)

Log-likehood -6835.5.

Table 2: Correlations among partworths with all normal distributions

Price 1 011 -10 0.05 -18 -.07 -.01
Operating cost 1 -.05 0.15 0.01 0.01 -.01
Range 1 -64 036 -01 0.15
Electric vehicle 1 012 0.02 -.19
Hybrid vehicle 1 0.19 0.06
High performance 1 0.17
Med and high performance 1
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Table 3: Model of vehicle choice with transformations of normals

On Partworths
Mean  Variance | Mean  Variance
Price (negative): -2.531 09012 | 0.1204  0.0170

(.0614)  (.1045)
Operating cost (negative):  -3.572 1.015 0.0455  0.0031
(.1100)  (.1600)

Range: -1.222 1.370 0.5658  0.8965
(.2761)  (.3368)

Electric vehicle: -1.940 2.651 -1.9006  2.6735
(.1916)  (.4965)

Hybrid vehicle: 0.9994 2.870 1.0003  2.8803
(.1267)  (.4174)

High performance: -.7400 2.358 0.3111 0.3877

(.2953)  (.7324)
Mid and high performance: -.0263 1.859 0.5089 0.5849

(.1538)  (.3781)
Log-likehood -6171.5

Table 4: Correlations among partworths with transformations of normals

Price 1 025 0.14 0.00 035 0.12 0.05
Operating cost 1 008 -10 0.17 0.02 -.04
Range 1 -05 0.27 0.03 0.02
Electric vehicle 1 038 0.04 -11
Hybrid vehicle 1 0.22 0.09
High performance 1 0.14
Med and high performance 1
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