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CHAPTER 1  

 THE THEORY OF ECONOMETRIC CHOICE MODELS

 AND ESTIMATION OF PARAMETERS

Introduction

A major responsibility of transportation planners is to forecast those
changes in travel demand induced by alternative transportation policies.  In
recent years, the range of analyzed policy alternatives and the range of
considered policy questions have greatly expanded.  Emphasis has shifted from
long-run planning of highway networks to short-run planning and to
management of integrated multi-modal transportation systems.  These shifts have
placed considerable strain on conventional forecasting tools, which were
originally developed to address problems of highway network design.

Flexible demand forecasting methods have consequently been sought,
particularly those capable of incorporating the behavioral forces linking
individual transportation decisions and the relationships between individual
travel choices and aggregate flows.  The resulting behavioral disaggregate
methods expand the policy sensitivity of forecasts.  Tests and practical
experience with these methods indicate that they are comparable or superior to
conventional forecasting techniques in terms of data gathering and
computational requirements and forecast accuracy. They provide, in short, a
useful way of tackling the expanded list of contemporary planning questions.

We start with the observation that urban travel demand is the result of
aggregation over the urban population, each member of which is making
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individual travel decisions based on his personal needs and environment.  These
individual decisions are complex, involving trip purpose, frequency, timing,
destination, and mode of travel.  Further, these choices should be analyzed in the
context of simultaneous choice of automobile ownership, housing location, and
end-of-trip activities

Define a homogeneous market segment to be a sub-set of the population
with identical observed socioeconomic characteristics and observed
transportation environments.  The foundation of the behavioral approach to
travel demand forecasting is to postulate that the distribution of travel behaviors
of a homogeneous market segment will be independent of the date or location of
observation, and will reflect underlying, stable patterns of human conduct.
Behavioral travel demand forecasting will then model the behavior of
homogeneous market segments, and aggregate the predicted demands of
homogeneous market segments to obtain forecasts of aggregate transportation
demand.

Consider, for example, a mode-split for work trips from an origin zone to
a destination zone.  The aggregate share of a mode is by definition the sum (over
market segments) of the share of the mode in each market segment, weighted by
the proportion of the total origin-zone population contained in this market
segment.  Suppose the segmentation is complete, with each observed
combination of level-of-service variables and socioeconomic variables defining a
market segment.  Then,

(1)

Aggregate
Share of
a Mode

�

Share of mode
in first market

segment
×

Proportion of first
market segment in

population

�

Share of mode
in second

market segment
×

Proportion of second
market segment in

population

�...�
Share of mode
in last market

segment
×

Proportion of last
market segment in

population
.



1In more general demand settings than mode-split, a generalization of equation  (1)  gives aggregate demand
for a specified class of trips:

Q � �
J

i�1
�
N

n�1
δ(i)P(i | LOSn,SEn)p(LOSn,SEn) ,

where  δ(i)  equals the number of trips contributed to the specified class by choice  i .  For example, if  i 
indexes joint destination and mode choice, and the specified class is trips to a specific destination by any
mode, then  δ(i)  will be one for alternatives yielding a trip to the specific destination, and zero otherwise.
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This relation can be expressed, alternately, in mathematical symbols. 
Index the modes,  i = 1,2,...,J .  Index the market segments,  n = 1,2,...,N .  Let 
LOSn denote the observed level-of-service variables in market segment  n , and 
SEn denote the observed socioeconomic variables in this segment.  Let  p(LOSn,
SEn ) denote the proportion of the origin-zone population contained in market
segment  n .  Let  P(i | LOSn , SEn )  denote the share of mode  i  for market
segment  n .  Then  P(i | LOSn ,SEn )  is the choice probability that individuals
with socioeconomic characteristics  SEn  will choose mode  i  when faced with
level-of-service attributes  LOSn .  Let  Q(i)  denote the aggregate share of mode 
i  in travel between the given origin and destination zones.  Then, formula (1)
can be written

(1a)      Q(i) � �
N

n�1
P(i | LOSn,SEn)p(LOSn,SEn) .

In statistical terminology,  Q(i)  is the expectation of the choice probability        
P(i | LOS,SE) with respect to the distribution of the observed explanatory
variables  LOS  and  SE .1

In this chapter, we first consider the structure of individual choice
behavior, and then the role of observed and unobserved variables in defining
homogeneous market segments and their distributions of behavior.  Next,
concrete choice models derived from this theory are introduced.  Finally,
methods for estimation and evaluation of the models are discussed.
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Individual Choice Behavior

An axiom of classical economic choice theory is that the individual is the
basic decision-making unit, and that the individual can rank possible alternatives
in order of preference and will always choose from available alternatives the
option that he considers most desirable.  Modified to take account of the
psychological phenomena of learning and perception errors, economic choice
theory has been used successfully in analyzing and forecasting in a wide variety
of applications.

In the model of consumer behavior that follows, this theory is elaborated
to focus on the relationship between consumer behavior and transportation.  The
consumer is assumed to have a utility function defined on both consumption and
transportation attributes.  The set of alternatives available to the individual is
determined not only by the usual budget constraint, but also by the "household"
technology for carrying out work and consumption activities in various
locations, and the attributes of transport modes to these locations.  Because
transport often appears as a "fixed charge" concomitant of consumption activities
and involves discrete choices, the set of available alternatives will not be a
simple "budget set" of the type ordinarily encountered in consumer theory. 
Consequently, we will not obtain the usual consumer theory implications drawn
from marginal analysis.

Our initial model will consider consumer choice in the abstract, without
specific reference to transport.  The reader may, however, find it useful to keep
in mind the range of transport-related decisions made by the consumer:

(1) The locations of residence and job;

(2) Sales of labor and purchases of commodities, including vehicles;

(3) Frequency of work, shopping, recreation, and other trips;

(4) Destination of trips;

(5) Time of day of travel;

(6) Mode of travel.

To encompass these decisions, which involve short- and long-run choice and the
dynamics of consumption activities, it is in general necessary to consider a fully
intertemporal theory of behavior.



1In the most general case, each choice of a consumption activity will determine a lottery over levels of
satisfaction whose outcome is determined by chance.  It will be unnecessary to consider behavior under
uncertainty explicitly in our analysis.
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We formulate our description of the economic consumer within the
framework of the Court-Griliches-Becker-Lancaster consumption-activity
household-production model.  This theory assumes that the individual has a
series of basic wants, or drives, as for example "hunger," "thirst," and "rest," and
the consumer is assumed to have a "utility" function defined for levels of
satisfaction of these wants which "summarizes" his sense of well-being.

Over his lifetime, the individual has available a set  A  of mutually
exclusive alternative choices, with each choice representing a lifetime program
of activities, or acts.  Each choice of a lifetime consumption activity determines
the levels of satisfaction of wants the individual will experience.1  On the other
hand, each lifetime consumption activity determines a vector of attributes
describing market commodities purchased, trips taken, work performed, etc.  The
individual chooses an activity from  A  that maximizes the derived utility; the
corresponding vector of attributes defines his observed demands.  In particular,
this vector of attributes will specify transport demand behavior along the
dimensions listed above.

The model above can be stated formally, although we will not make
direct use of this formalism in the future.  Assume the individual to have a
lifetime extending over a finite sequence of short periods, indexed  v = 1,2,...,H . 
Let  wv  denote a finite vector of levels of satisfaction of wants in period  v , and
let  w = (w1,...,wH)  denote the lifetime vector of want satisfaction levels. 
Individual utility is a function  r = W(w,s) , where  s  is a vector of individual
social and demographic characteristics influencing tastes.  A consumption
activity is assumed to be a finite vector  a  contained in a universe  Ω . 
Associated with each  a � Ω  is a vector of want satisfaction levels  w = Ma , and
a finite vector of attributes  x = Na , where  M  and  N  are taken to be linear
transformations.  Given a set  A � Ω of available actions, the consumer solves
the problem

(2) Max
a�A

W(Ma,s) ,
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with observed demands satisfying  x* = Na*  for the maximand  a* .  Of
particular interest is the case in which each attribute vector  x  is identified with a
unique activity vector  a ; i.e.,  N  is a square non-singular matrix.  Then, the set
of available alternatives can be expressed directly in terms of observed attributes,

(3) B = {Na | a � A}   ,

and utility can be written

(4) u = U(x,s) � W(MN-1x,s)   ,

so that (2) becomes

(5) Max
x�B

U(x,s) .

To push the analysis beyond this very general statement of the
mechanism for determining behavior, it is necessary to give more structure to the
form of utility and of the budget constraints that determine the set of available
alternatives.  McFadden (1974) describes a dynamic model for individual choice
that treats satisfaction levels as "states" that satisfy a first-order difference
equation, with activity levels in each period influencing the evolution of the
states.  This framework allows the consideration of long-run choices such as
residential and work location, and automobile ownership, as state variables
against which short-run mode and destination decisions are made.   In principle,
evolution of budget possibilities over time, formulation of attitudes as state
variables that evolve over time, and "switching" behavior under apparently static
conditions can be treated within this framework.

It is usually possible, with little loss of generality, to express
intertemporal utility as a discounted sum of "static" felicity functions of
contemporary activity levels and a broadly defined list of state variables.  Then,
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the consumer's decision problem is separable into "static" problems of
maximizing felicity in each period, taking into account state variables, including
the state of budget constraints that extend through time.  For the analysis of
"steady state" behavior, such as "usual mode to work," it is then sufficient to
consider maximization of static felicity.  The empirical work in this volume
follows this approach, with the further assumption that auto ownership,
residential and work location, and attitudes are the state variables that convey the
effects of intertemporal decision-making on short-run mode and destination
choices.  This short list of state variables substantially restricts the generality of
the behavioral model, although it is still more general than most models that have
been or can be analyzed empirically.  A specification of state variables imposes
an implicit intertemporally separable structure on the consumer's decision
problem.  The assumption of intertemporal separability is widely used in
empirical consumer demand analysis, but has not been extensively tested.  In the
application to travel behavior, introspection suggests that auto ownership,
residential and work location, and attitudes do indeed capture the primary
influences of the long-run environment on behavior, although additional
variables such as wealth, habit, and physical condition may matter.  In the
empirical models in this study, additional state variables are absorbed into the
long list of unobserved variables influencing behavior.  To the extent that such
variables are important, the explanatory power of the model will fall.  However,
forecasts will be unbiased unless the values of unobserved state variables shift
between the calibration and forecast periods.

We now consider one-period utility, or felicity, with state variables
included in the lists of observed and unobserved variables for the problem.  The
list of alternatives will be those available to the consumer in a particular period.

An alternative�s attributes include the transportation level-of-service
variables associated with its pattern of travel.  The individual�s utility of an
alternative is a function of level-of-service variables for the alternative.  Utility
also depends on the individual's tastes and background--or socioeconomic
characteristics.  The individual chooses from the available alternatives the one
which maximizes utility.

Some socioeconomic characteristics and level-of-service variables are
observed by the transportation planner.  Others are unobserved.  For example,
income and on-vehicle travel time are usually observed, while attitudes toward
privacy and vehicle noise-level are usually not observed.



1Utility scales are usually ordinal, with only the sign of utility differences, and not their magnitude, having
significance.  The operation of taking means requires a normalization of utilities which itself has no
behavioral interpretation.  Hence, mean utility in the sense used here should be treated as a computational
device rather than a behavioral concept, with the normalization chosen to yield a convenient characterization
of the distribution of unobserved components.
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Behavior of a Homogeneous Market Segment

A disaggregate choice model is defined by specifying a probability
distribution for the unobserved variables affecting utility, given the values of
observed variables in a homogeneous market segment.  This probability
distribution then determines the choice probabilities--the proportions of the
group with maximum utility for each alternative.

The mean utility of a homogeneous market segment is defined to be the
average of the utilities of all individuals in the segment.1  Mean utility depends
on determinants of the distribution of unobserved variables.  It does not depend
on values of unobserved variables, which are averaged out.

The utility of an individual can be written as a sum of mean utility and a
deviation due to unobserved idiosyncracies in the individual�s tastes and
alternatives, as in equation (6) below.  The choice probabilities are then
determined by the distribution in the market segment of the individual deviations
from mean utility.

The determination of choice probabilities for homogeneous market
segments can also be described symbolically.  Suppose there are  J  alternatives,
indexed  i = l,...,J . The utility of alternative  i  can be written as a function of
both observed and unobserved level-of-service attributes and socioeconomic
characteristics,

(6) ui  =  U(LOSi, ULOSi, SE, USE)   ,

where LOSi = vector of observed level-of-service variables;

ULOSi = vector of unobserved level-of-service variables;

SE =  vector of observed socioeconomic characteristics;

USE = vector of unobserved socioeconomic characteristics.
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The choice probability for alternative  i  equals the probability of occurrence of
unobserved variables such that the utility of  i  exceeds the utility of any other
alternative:

(7) P(i | LOS,SE)  =  Prob {(ULOS1 ,...,ULOSJ,USE) | U(LOSi, ULOSi, SE, USE)

                > U(LOSj, ULOSj, SE, USE)    for   j = l,..., J  and  j � i }   ,

where  LOS  =  (LOS1, LOS2,..., LOSJ)  and "Prob" denotes the probability
distribution of the unobserved variables.

The utility function in equation (6) can always be written in the form

(8) U(LOSi , ULOSi , SE, USE)  =  V(LOSi , SE)  + �(ULOSi , USE; LOSi , SE)   ,

where  V  is the mean value of utility in the homogeneous market segment with
observations  (LOS,SE)  , and  �i = � (ULOSi,USE;LOSi,SE)  is a deviation from
the average having a probability distribution induced by the distribution of the
unobserved variables  ULOSi  and  USE .  Equation (7) can then be written

(9) P(i | LOS, SE)  =  Prob {vi + �i  > vj + �j  for  j = 1, . . . , J  and  j � 1}   ,

where  vi = V(LOSi,SE)   .



1Two random deviations are statistically independent if they are uncorrelated and the probability that the first
has values exceeding some level does not depend on the value of the second.  A random deviation  Y  is
extreme value distributed if Prob [ Y  <  y ] = exp (-exp (-y)) .  The extreme value distribution is bell-shaped
like the familiar Normal distribution in statistics, but is skewed, with a right tail that is thicker than the left
tail.  The mean of the extreme value distribution is .57722 .  Its mode, median, and standard deviation are
zero,  -log (log 2) , and   , respectively.  Further discussion of this distribution and a demonstration thatπ 6
it leads to the MNL form is given in McFadden (1973) and Domencich and McFadden (1975), Ch. 4.
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The Multinomial Logit Model of Choice Probabilities

Assuming a concrete probability distribution for the unobserved
components of utility leads to a concrete formula for the choice probabilities.
Unfortunately, most distributions of unobserved components yield
computationally forbidding choice probability formulae, making them difficult to
use in practical calibration and forecasting.  One exception is the multinomial
logit (MNL) model, which has choice probabilities of the form

(10) P(i | LOS,SE) � (exp V(LOS i,SE)) /�
J

j�1
exp V(LOS j,SE) ,

where  i  =  l,...,J  indexes alternatives; 

LOSj  = observed level-of-service variables for alternative  j ; 

SE  = observed socioeconomic variables; 

LOS  = (LOS1,...,LOSJ ) ; 

V (LOSj,SE)  = the mean utility of alternative  j ; 

P (i | LOS,SE)  = the choice probability for alternative  i .

The MNL model can be derived from the theory of individual choice
behavior by assuming that individual utility deviations from mean utility in a
homogeneous market segment are statistically independent for different
alternatives, and have a probability distribution called the extreme value
distribution.1

The MNL model, viewed as a functional form for mode shares, but not
necessarily a behavioral relationship, has been widely used in transportation
planning.  The two-alternative case yields the logistic curve graphed in Figure 1,
which is widely used in aggregate mode-split modeling.
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Consider a conventional singly-constrained aggregate gravity model for
distribution,

(11) Nkj � OkAj / T h
kj ,

where Nkj = number of trips from zone  k  to zone  j ;

Aj = attraction of zone  j ;

Tkj = impedance between  k  and  j  ;

Ok = scale factor to equate trips distributed from zone  k  to trips
originating in zone  k  .
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Then, the share of trips from zone   k   to zone   i   satisfies

(12) P(i | Tk1,...,Tkj,Aj) �

Ai / T h
ki

�
J

j�1
Aj / T h

kj

.

This is the multinomial logit function form in equation (10) with mean utility 
V(LOSi ,SE) = log Ai - h log Tki .  Thus, the multinomial logit model is a share
model of the form familiar to transportation planners who use aggregate share
models to describe trip generation and distribution.  The primary differences
between these traditional models and the formulation of the MNL model in a
behavioral disaggregate context are:

1. The structure of the mean utility function  V(LOSi,SE)  in equation
(10) is based on economic and psychological regularities in
individual behavior, and will have a similar form in models of
different aspects of transportation choice such as generation,
scheduling, distribution, and mode-split.

2. The calibration and utilization of the model are carried through at the
disaggregate level for homogeneous market segments, rather than
applied to aggregate data.

Because of its simplicity and computational practicality, the multinomial
logit (MNL) model has formed the basis for almost all the empirical disaggregate
travel demand models studied to date, and has been the basic model used in the
studies in this volume.  Properties and limitations of the MNL model are
discussed in Part IV, Chapter 1, and empirical tests for its validity are developed.
Alternatives to the MNL model are discussed in Part IV, Chapter 2.
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The Structure of Utility

The mean utility appearing in the multinomial logit formula for choice
probabilities is usually assumed to have the form

(13)

Mean utility of
an alternative �

Variable
1 × Coefficient

1

�...� Variable
K × Coefficient

K ,

where each variable is some transformation of observed socioeconomic and
level-of-service data for the alternative.  The coefficients are interpreted as
weights giving the importance of each variable in determining an alternative's
utility. Level-of-service attributes such as on-vehicle time and walk time are often
entered directly as variables in the mean utility function.  Travel cost divided by
the wage rate of the traveler (or, in some applications, his income) is often
introduced as a variable in utility.

Socioeconomic variables that influence the mean utility of every
alternative in the same way have no influence on choice probabilities, as they
change both the numerator and the denominator of the multinomial logit formula
in equation (10) by a common factor that cancels out.  Hence, there is interest only
in those socioeconomic variables that interact with level-of-service variables to
affect the mean utility of different alternatives differently.  Travel cost divided by
wage is one example of interaction.  A second example is a variable that takes the
value one for an alternative if this alternative requires driving a vehicle and the
individual is able to drive, and is zero otherwise.  (The variable in this example
may be viewed as the product, or interaction, of a socioeconomic variable that is
one if the individual can drive, and zero otherwise, and a level-of-service variable
that is one if an alternative requires driving, and zero otherwise.)

An alternative-specific dummy variable is one for a particular alternative
and zero for all other alternatives.  Mean utility may include alternative-specific
dummy variables, both alone and in interaction with other variables.  The
coefficient of an alternative-specific dummy variable in the mean utility function
can be interpreted as reflecting those impacts of an alternative�s unmeasured
level-of-service attributes that are not captured in the remaining variables.
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Any variable that is the result of interaction between an
alternative-specific dummy variable and a level-of-service or socioeconomic
variable is termed an alternative-specific dummy.  An example of an
alternative-specific variable is one that gives the value of on-vehicle travel time
for a transit alternative, and which has the value zero for all other alternatives. 
The coefficient of this variable, compared with the values of coefficients of other
alternative-specific travel times, reflects the impact of specific attributes of transit
on the onerousness of transit travel time.

A generic or homogeneous-effect variable is one that does not incorporate
interactions with alternative-specific dummy variables.  An example is a variable
that gives on-vehicle travel time for each alternative without identifying the type
of vehicle.

Individual utility, written as a function of observed and unobserved
variables, should depend only on generic variables.  The reason for this is
behavioral--individual utility depends on the constellation of physical experiences
associated with an alternative, and cannot depend on labels--such as "auto" or
"transit"--attached to alternatives by the planner.  Mean utility, on the other hand,
may depend on alternative-specific variables that mimic the influence of
unobserved generic variables.  For example, suppose individual utility depends on
generic on-vehicle travel time weighted by a generic index of comfort.  Suppose
the comfort index is unobserved, but varies between alternatives.  Then, mean
utility for an alternative will have a coefficient of on-vehicle time that reflects the
average comfort index on this alternative.  It will then appear to the planner that
mean utility depends on alternative-specific travel times.

Alternative-specific variables in a multinomial logit model are evidence of
failure to observe generic variables that are influencing behavior.  A long-run
objective of behavioral demand analysis is to improve model specification and
data collection to the point where alternative-specific variables are not needed. 
Models based solely on generic variables are also desirable from the point of view
of forecasting.  Coefficients of alternative-specific variables do not isolate the
behavioral sources of variation across alternatives, or establish that
alternative-specific effects will be stable or extendable to new situations when
forecasting.  In the current state-of-the-art of disaggregate demand analysis,
alternative-specific effects may capture the impacts of variables not observed in
standard transportation data sets; their omission could bias the importance weights
associated with other variables.  Consequently, alternative-specific effects appear
in most contemporary disaggregate models.
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The usual disaggregate assumption that mean utility is linear-in-
parameters is not very restrictive, because any smooth utility function can be
approximated by a function that is linear-in-parameters (McFadden, 1975b). 
However, an assumption that level-of-service variables enter the mean utility
function directly (or in some particular transformation) requires a behavioral
justification.

One method of deriving a concrete form for the mean utility function will
now be described.  Suppose each individual has a utility function that depends on
consumption of goods, leisure, and the amenities offered at various travel
destinations, with hours spent at leisure evaluated differently from hours spent
traveling.  Suppose the alternatives describe possible trip patterns, including
destination and mode choice.  Assume that one of the alternatives is the no-travel
option.  Then, choice of an alternative will simultaneously determine generation,
distribution, and mode choice for the individual.

Each individual is constrained by a budget: expenditure on goods plus
travel cost cannot exceed income earned from labor plus other income.  Time
must be allocated between leisure, labor, and travel.  Taking his budget into
account, the individual will choose the travel alternative and the allocation of time
between leisure and labor that maximize his utility.  One can think of carrying out
this maximization in two phases.  First, choose the best labor-leisure mix for each
possible alternative, and calculate the resulting utility levels.  Second, choose the
alternative that achieves a maximum among these utility levels.

Consider the first phase, in which the labor-leisure mix is determined for
each alternative.  The individual will weigh the loss in utility from an hour of
leisure foregone against the gain in utility from the goods purchased with the
wage from an added hour of work.  The mix of labor and leisure will be adjusted
until the net gain in utility from further adjustment is zero.  Define the marginal
utility of a variable to be the net increase in utility resulting from an added unit of
this variable.  For example, the marginal utility of leisure is the increase in utility
from an added unit of leisure.  At the utility-maximizing mix of labor and leisure,
the marginal utility of goods, multiplied by the wage rate, will equal the marginal
utility of leisure.

Utility comparisons are unchanged if the utilities of all alternatives are
shifted up or down by equal amounts.  Therefore, one can assume that all utility
levels are shifted so that the utility of the no-travel option equals zero.  The
variable measuring the amenities offered at various destinations can also be scaled



1In the mathematical restatement of these arguments at the end of the section, this conclusion is stated more
precisely and is shown to follow from the mean value theorem of calculus.
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so that the amenity level associated with the no-travel option is zero.

Now consider the i-th travel alternative.  In comparison with the no-travel
option, this alternative will produce changes in the amounts of goods and leisure
consumed, in travel time, in amenities, and in unobserved level-of-service
variables.  The utility of this alternative, compared with the no-travel option, can
be written as a sum of the changes listed above, each weighted by the marginal
utility of the corresponding variable.1  From the individual's budget, one
concludes that the net increase in goods consumption equals the net increase in
labor hours worked, times the wage rate, less the cost of travel.  The net increase
in labor hours worked equals the net decrease in leisure less the time spent
traveling.  In short,

(14)
Net increase

in goods
consumption

�
wage
rate × net decrease

in leisure �
travel
time �

travel
cost .

The utility of the i-th alternative can then be written 

Utility
of i�th

alternative
�

Net increase
in goods

consumption
×

Marginal
utility

of goods

(15)
�

Net increase
in leisure × Marginal utility

of leisure

�
Travel
time ×

Marginal
utility of

travel time
� Amenities ×

Marginal
utility of
amenities

�
Unobserved

attributes ×
Marginal utility
of unobserved

attributes
.



1Equation (16) is only an approximation when travel times and costs are large.
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Substitute equation (14) and the relationship1

(16) Marginal utility
of goods �

Marginal utility
of leisure � Wage

into equation (15).  After simplifications, one obtains

(17)

Utility
of i�th

alternative
� �

Travel
time �

Travel cost
Wage

×
Marginal

utility
of leisure

�
Travel
time ×

Marginal
utility of

travel time
� Amenities ×

Marginal
utility of
amenities

�
Unobserved

attributes × Marginal utility of
unobserved attributes .

If the terms in equation  (17)  involving unobserved attributes can be assumed to
have appropriate probability distributions, then this utility function will lead to a
multinomial logit model for the choice probabilities in a homogeneous market
segment (see equation (10)).  The mean utilities in this model satisfy

(18)

Mean utility
of the i�th
alternative

� �bT × Travel time � bC × Travel cost
Wage

� bA × Amenities ,

where  bT , bC ,  and  bA  are parameters.
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The preceding argument provides a justification--from the economic
theory of utility maximizing behavior--for the entry of travel time and travel cost
divided by wage as linear variables in the mean utility function.  Generalizations
of this model are possible in several directions.

Time, cost, and other attributes of alternatives may have sub-components.
Time, for example, can be partitioned into on-vehicle time under congested or
non-congested conditions, walk time, and wait time.  Costs can be divided into
overhead, indirectly charged per-trip costs such as fuel and maintenance, and daily
out-of-pocket costs such as tolls.  These components can be given separate
coefficients in equation (18); the relative weights of components can then be
determined as part of the calibration of the model, which is preferable to assigning
traditional weights.

The coefficients  bT , bC ,  and  bA  may depend on observed socioeconomic
variables.  For example, the weight  bT  associated with the walk time component
of travel time may be a function of an individual's age and health status, or of
those neighborhood characteristics correlated with safety.  If this association is
expressed in a linear-in-parameters form, then the mean utility function (18) is
linear in these parameters, and the calibrated model will describe both the
importance weight attached to walk time and the variation of this weight with
socioeconomic factors.

The formulation of behavioral disaggregate models has been described for
joint frequency, destination, and mode decisions.  In practice, limited policy
objectives, data, and budgets often make it desirable to analyze only some aspects
of travel behavior, such as mode choice, while averaging-out or holding constant
other aspects.  This can be done sensibly, provided the contributions to utility
from different aspects of demand can be disentangled and studied separately.  The
concept of a separable utility function is important in economic demand theory; it
allows study of a particular aspect of demand in some markets in isolation from
others.  The concept has received extensive theoretical and empirical study.  In
terms of travel demand, separability requires that the relative weighting of
attributes of one aspect of demand, such as mode choice, not depend on or vary
with the attributes associated with other aspects of demand.  Given such
independence, it is possible to calibrate a model of mode choice separately from
the analysis of other aspects of behavior.  It is also possible to summarize the
impact of the mode-choice decision in an "inclusive cost" measure, simplifying
the analysis of other aspects of travel behavior.  The concept of separability and
its use in the construction of behavioral demand models is discussed in depth in
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Domencich and McFadden (1975), Ben-Akiva (1973), McFadden (1975b), and
McFadden (1976e) .

The argument from the theory of economic behavior that level-of-service
variables may enter mean utility in a specific linear way can be restated in
mathematical symbols.  The individual's utility function is

(19) ui  =  U (G, L, Ti , Ai , ULOSi, SE, USE )   ,

where G = goods ;

L = leisure ;

Ti = travel time in alternative  i ;

Ai = amenities offered in alternative  i ;

ULOSi = unobserved level of service variables for alternative  i ;

USE = unobserved socioeconomic characteristics ;

SE = observed socioeconomic characteristics ;

and  i  indexes trip patterns including destination and mode choice, with  i = 1 
corresponding to the no-travel option.  Assume  T1 , A1 , and  ULOS1  equal to
zero.  Then, choice of  i  will simultaneously determine generation, distribution,
and mode choice for the individual.

The individual�s budget, requiring that the total purchase of goods not
exceed non-wage income plus wage income, less travel cost, is

(20) G  =  I  + w (L* - L - Ti ) - Ci   ,

where  I  is non-wage income;  w  is the wage rate; and  Ci  is travel cost for  i .  (I,
w,  and  Ci  are measured in "real" terms; i.e., in units of goods.)  L*  is the
individual�s total endowment of time, and  L* - L - Ti  is the number of hours
devoted to work.  For any  i , the quantity of leisure is adjusted to maximize
utility, the income constraint being considered during the adjustment,
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Max
L

U(I � w(L �
�L�Ti) � Ci,L,Ti,SE,USE,ULOS i) .

The calculus condition for this maximum is

(21) � w �U
�G

�
�U
�L

� 0 .

Applying the mean value theorem of calculus to the difference of utilities for
alternatives  i  and  1 ,

ui �
�U
�G

(Gi � G1) �
�U
�L

(Li � L1) �
�U
�T

(Ti � 0)

�
�U
�A

(Ai � 0) �
�U

�ULOS
(ULOS i

� 0)

(22)

�
�U
�L

1
w

[�wLi�wTi�Ci�wL1] � Li�L1 �
�U
�T

Ti �
�U
�A

Ai

�
�U

�ULOS
ULOS i

� higher order terms

� � bC(Ti �
Ci

w
) � (bT � bC)Ti � bAAi � bUULOS i

� higher order terms ,

where  bC = �U/�L , bC + bT = -�U/�T , bA = �U/�A , and  bU = �U/�ULOSi , all
evaluated at arguments between alternative  i  and alternative  1  and the higher
order terms are approximately zero when travel times and costs represent
relatively small fractions of the total time and income budgets of the consumer. 
Thus, utility can be expressed in the final form
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(23) ui � bTTi � bC

Ci

w
� bAAi � �i ,

where  εi  summarizes the effects of unobserved socioeconomic and level-
of-service variables.  If the terms  εi  are assumed to have independent, identical
extreme value distributions, as in the previous argument leading to the
multinomial logit model, then a concrete model of joint generation, distribution,
and mode choice results,

(24) Pi � e
�bTTi � bC

Ci

w
� bAAi

/ �
J

j�1
e
�bTTj � bC

Ci

w
� bAAj

.



1In general, the number of alternatives vary from case to case, depending upon availability.  However, to
avoid complex notation, assume the same number of alternatives for each case.
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Statistical Calibration of the MNL Model

The unknown parameters of a concrete behavioral disaggregate model can
be estimated using transportation survey data on individual travel decisions or on
the behavior of homogeneous market segments.  Let  n = l ,..., N  index
individuals or homogeneous market segments, and  j = l ,..., J  index alternatives.1 
Let  Sin   denote the number of choices of alternative  i  by individuals in a
homogeneous market segment  n ; and let  Rn  denote the total number of
individuals in segment  n .  For a single individual,  Sin  is one for the chosen
alternative and zero for all other alternatives, and  Rn  is one.  A concrete
disaggregate model defines a choice probability for alternative  i  and market
segment  n ,  Pin =  P (i | LOSn ,SEn ,b) , expressed as a function of level-of-service
variables,  LOSn  ; socioeconomic variables, SEn ; and a vector of unknown
parameters,  b .

A statistical method known as maximum likelihood estimation is used in
this study to calibrate the unknown parameter vector  b .  A computer program
applying the maximum likelihood estimation method to the multinomial logit
mode, QUAIL, was developed for this study, and is available in versions suitable
for CDC and IBM machines.

A family of estimation methods that includes the maximum likelihood
estimator can be defined by considering the system of equations

(25) �
N

n�1
�

J

i�1
Win (Sin � RnPin)

�Pin

�bk

� 0 ,

where  k  =  l ,..., K  indexes the components of  b , and  Win  is a nonnegative
weight that may depend on the choice probabilities.  Consider solutions of this
system of non-linear equations for the unknown parameters  b1,...,bK ; an iterative
computer algorithm is normally required to obtain a solution.  One can show
under very general conditions that solutions of this system are "consistent"
estimates of the true values of the unknown parameters in the statistical sense that
as the sample size grows, the probability that the estimates are more than a small
distance away from the true parameters approaches zero.



1The weights  Win  =  l/Rn   yield a second useful method, non-linear least squares, for which the solution to
(25) minimizes 

�
N

n�1
�

J

i�1
(Sin�RnPin)

2 /Rn .

This method is not as efficient as maximum likelihood estimation in the sense of precision in large samples,
but is more robust in the sense that errors in data or specification have less impact on the estimates.

An alternative approach to calibrating disaggregate multinomial logit models, available when splits
among alternatives are observed for homogeneous market segments, or where independent variables can be
grouped to yield relatively homogeneous market segments, is to estimate by ordinary least squares the
equation

log
Sin

S1n

� β1 (zin1 � z1nl) � ... � βK(zink � z1nk) � ε .

This formula is derived from equation (10) by approximating the left-hand side of the formula 

log
Pin

P1n

� β1 (zin1 � z1n1) � ... � βK(zinK � z1nK) ,

where β1,...,βK  are unknown parameters and  zinl,...,zinK  are mathematical functions of the observed variables 
LOSi  and  SE .  This procedure, called the Berkson-Theil method, has considerable computational
advantages over maximum likelihood or non-linear least squares, and seems to yield equally satisfactory
estimates.  Thus, its use is recommended when share data on homogeneous market segments is available.
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If the weights in  (25)  are  Win  =  l/Pin  , then the parameter vector  b ,
which solves  (25),  also maximizes the function

(26) � � �
N

n�1
�

J

i�1
Sin log Pin .

This is the log likelihood function for the sample, and solution of  (25) 
with the weights  Win  =  l/Pin  is the maximum likelihood estimation method. 
This method of disaggregate calibration yields the most precise estimates
obtainable for the parameter vector  b  in very large samples.1

Statistical properties of maximum likelihood estimates of the MNL model
are discussed in greater detail in McFadden (1973) and Manski and McFadden 
(1977) .
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Model Evaluation and Validation

The transportation analyst usually has a number of alternative model
specifications he considers a priori plausible, and wishes to determine empirically
which alternative best fits the data.  This calls for statistics that measure
goodness-of-fit, and procedures that allow tests of hypothesized specifications.

General goodness-of-fit measures for discrete choice models that are now
widely used are the log likelihood function, the likelihood ratio index, a multiple
correlation coefficient, and a prediction success index.

An overall criterion for goodness-of-fit, one appropriate for models
estimated by the maximum likelihood method, is the log likelihood function
evaluated at the estimated parameters; in symbols,

(27) L � �
N

n�1
�

J

i�1
Sin log P(i | LOS n,SE n, �b) ,

where    denotes the estimated parameters.  This function can be used in�b
statistical "likelihood ratio" tests of the importance of particular sets of variables
or parameter restrictions.  Let  L  denote the log likelihood of a choice model
estimated without restraints, and  L0  denote the log likelihood of this model
estimated subject to  M  linear restrictions.  Then, under the null hypothesis that
the true parameters satisfy the linear restrictions,  2(L - L0)  is in asymptotically
large samples distributed chi-square with  M  degrees of freedom.  This statistic
can then be used to carry out large sample tests of hypothesis.

The likelihood ratio index is defined by the formula

(28) ρ2
� 1 � L / L0 ,

where

(29) L � �
N

n�1
�

J

i�1
Sin log P(i | zn,θ)



1While the  R2  index is a more familiar concept to planners who are experienced in ordinary regression
analysis, it is not as well-behaved a statistic as the  ρ2  measure for maximum likelihood estimates.  Those
unfamiliar with the  ρ2  index should be forewarned that its values tend to be considerably lower than those of
the  R2  index and should not be judged by the standards for a "good fit" in ordinary regression analysis.  For
example, values of  .2  to  .4  for  ρ2  represent an excellent fit. 
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is the log likelihood function, with the  Sin  equal to one if   i   is chosen, zero
otherwise;

(30) L0 � �
N

n�1
�

J

i�1
Sin log Q ,

and  Qi  equals the sample aggregate share of alternative   i  .

When the disaggregate model parameters are estimated by non-linear least
squares, an appropriate goodness-of-fit measure is the sum of squared residuals,

(31) SS � �
N

n�1
�

J

i�1
(S � RnPin(�θ))2 /Rn .

A transformation of this statistic yields a multiple correlation coefficient of the
form familiar from regression analysis,

(32) R 2
� 1 �

SS
SS0

,

where

(33) SS0 � �
N

n�1
�

J

i�1
(Sin � RnQi)

2 ,

with   Qi   the sample aggregate share of mode   i   as before.1

A third method of assessing the fit of a calibrated model is to examine the
proportion of successful predictions, by alternative and overall.  A success table
can be defined as illustrated in Table 1, with the entry  Nij   in row   i   and
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TABLE 1    A Prediction Success Table

Predicted Choice Observe
d Count

Observed
Share

1 2          ...           J

1 N11 N12 N1 J N1 . N1 . /N. .

Observed
Choice

2

�

N21 N22 N2 J N2 . N2 . /N. .

J NJ 1 NJ 2 NJ J NJ . NJ . /N. .

Predicted
Count

N. 1 N. 2 N. J N.. 1

Predicted
Share

1
N.1

N..

N.2

N..

N.J

N..

Proportion
Successfully

Predicted

N11

N.1

N22

N.2

NJJ

N.J

N11 � ... � NJJ

N..

Success Index
N11

N.1

�

N.1

N..

N22

N.2

�

N.2

N..

NJJ

N.J

�

N.J

N..
�

J

i�1

Nii

N..

�

N.i

N..

2

Proportional
Error in

Predicted
Share

N.1�N1.

N..

N.2�N2.

N..

N.J�NJ.

N..



1The formula for  Nij  is

Nij � �
N

n�1
SinPjn .

This corresponds to a randomized strategy for classifying individuals, by drawing from the multinomial
distribution with the estimated choice probabilities, and gives the expected success table for this strategy. An
alternative prediction method is to forecast that the alternative with the highest probability will be chosen.

2In a model with alternative-specific dummies and the calibration data set, estimation of parameters imposes
the condition Ni. = N.i .  If one predicted the choice probabilities for each individual to equal aggregate
shares, then Ni. = N..  would be the proportion successfully predicted to choose i .  This represents a �chance�
prediction rate for a model in which no variables other than alternative-specific dummies enter.  Thus,  σi 
measures the net contribution to prediction success of variables other than the alternative-specific dummies.
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column   j   giving the number of individuals who are predicted to choose   i  and
observed to choose   j .1  Column sums give predicted shares for the sample; row
sums give observed shares.  The proportion of alternatives successfully predicted, 
Ni i / N. i , indicates that fraction of individuals expected to choose an alternative
who do in fact choose that alternative.  An overall proportion successfully
predicted,  (Nl l + ... + NJJ) / N.. , can also be calculated.

Because the proportion successfully predicted for an alternative varies
with the aggregate share of that alternative, a better measure of goodness of fit is
the prediction success index,

(34) σi �
Nii

N.i

�

N.i

N..

,

where   N. i / N..  is the proportion that would be successfully predicted if the
choice probabilities for each sampled individual were assumed to equal the
predicted aggregate shares.2  This index will usually be nonnegative, with a
maximum value of  1 - N. i / N.. .  If an index normally lying between zero and one
is desired,  (34)  can be normalized by 1 - N. i / N.. . 

An overall prediction success index is

(35) σ � �
J

i�1
[Nii � N 2

.i / N..] / N.. � �
J

i�1

Nii

N..

�

N.i

N..

2

.
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Again, this index will usually be nonnegative, with a maximum value of 

  and can be normalized to have a maximum value of one if1 � �
J

i�1

N.i

N..

2

,

 desired.

The use of measures of goodness-of-fit to assess model precision and
validity will be discussed further in the context of specific applications.


