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33 Term Structure Models: Overview

We now turn to Chapter 7 of Nielsen, which concerns term structure models.
We will tread fairly lightly; in particular, we will skip all discussion of forward
rates.

If the main point of our work so far has been the pricing of options and
other derivatives, the point of this material is to set up machinery to look
for small arbitrages in the term structure of interest rates. Our models be-
gin with an exogenously-specified process describing risk-free interest rates
r. We will see that the Vasicek Model and Merton model are essentially in-
distinguishable in the short-run dynamics of the risk-free interest rate. Each
of these two models completely determines the whole term structure of in-
terest rates as a function of the current value of r and certain parameters.
In these two models, it is assumed the parameter values are constant; under
this assumption, the parameters can be econometrically estimated. Given
the parameter values, the current value of r completely determines the yield
curve. Empirically, the shape of the yield curve changes over time, and in
particular is not determined solely by r, but also by expectations over future
interest rates and inflation. Thus, these two models do not provide a good
explanation of the term structure of interest rates, nor do they successfully
predict future interest rates.

In the Extended Vasicek Model, the parameters are allowed to be deter-
ministic functions of time. This additional freedom allows one to choose the
parameters to fit essentially any yield curve; one calibrates the parameters
of the model at each future date to give the model’s predicted yield curve
exactly the curvature in the observed yield curve. Thus, the Extended Va-
sicek Model cannot be said to explain the term structure either; since it is
able to replicate any yield curve, it cannot hope to predict what the yield
curve should look like. However, the Extended Vasicek Model is very useful
for finding small arbitrages in the term structure, for example when the yield
on one bond deviates from the predicted relationship to the yields on bonds
of similar maturity.
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Thus, our main goal is to develop the Extended Vasicek Model. We do
the Vasicek and Merton models first, to develop intuition in a simpler setting.
We will see that the analysis of the Extended Vasicek Model follows closely,
with small changes, the analysis of the Vasicek Model.

34 Term Structure Notation

Section 7.1 of Nielsen is primarily devoted to notation. We will tread lightly.
If 0 ≤ s ≤ t, P (s; t) denotes the price (in other words, the martingale

value) at time s of a zero-coupon bond paying off 1 at its maturity date t;
by definition, zero-coupon bonds pay nothing at any time other than the
maturity date. The continuously compounded yield is

R(s; t) =
1

t − s
ln

(
1

P (s; t)

)

= − lnP (s; t)

t − s
R(s; t) > 0 ⇔ P (s; t) < 1

P (s; t) = e−(t−s)R(s;t)

The zero-coupon yield curve or term structure of interest rates is the function

τ → R(s; s + τ )

which maps [0,∞) to R.

35 The Vasicek Model

Let W be a 1-dimensional Wiener Process (so K = 1), and let r0, a > 0, b,
σ > 0 be constants. In the Vasicek Model, the risk-free interest rate r follows
an Ornstein-Uhlenbeck Process

dr = a(b− r) dt + σ dW, r(0) = r0

Recall this says that the interest-rate is mean-reverting to b, but is being
kicked away from b by the changes dW in the Wiener process.
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Remark 35.1 Interest rates do exhibit mean reversion, so it would not be
appropriate to model r or the value M of the money-market account in the
way we have modelled stock prices. However, there are several problems in
taking the Vasicek Model seriously as a model of interest rates:

1. In the Vasicek Model, r will certainly be negative at some times. How-
ever, since individuals always have the option of taking currency and
putting it in a safe deposit box, which yields a zero interest rate, neg-
ative interest rates cannot be sustained in practice.

2. In the Vasicek Model, the mean-reversion target b stays constant; we
know in practice that interest rates stay high or low over long periods,
in particular in response to high or low rates of inflation. It probably
makes more sense to think of the Vasicek Model as a model of real
interest rates.

3. The risk-free interest rate is really a controlled rate. In the United
States, the Federal Reserve’s Open Market Committee effectively sets
r, and so it may be predictable in a way that the future movements of
stock prices are not, if markets are efficient.

4. In the Vasicek Model, the market price of risk λ is assumed to be
a positive constant. We use r and λ to form a state price process,
which we take as a primitive to price the zero coupon bonds. From an
equilibrium perspective, this is unrealistic. Changes in securities prices
and economic conditions affect individuals’ wealths, and wealth effects
alter individuals’ willingness to bear risk.

As noted in the last remark, we assume that λ is a positive constant, and let

Π = Π(0)η[−r,−λ]

We set the time interval to be T = [0, T ]. Since λ is a constant, there is
a probability measure Q with density η[0,−λ](T ) with respect to P . We
will interpret Q as a risk-adjusted measure to price the zero-coupon bonds.
Recall that

W λ(t) = W (t) + λt

is a Wiener Process under Q. If we let

r̄ = b − σλ

a
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so
σλ = a(b− r̄)

we have

dr = a(b− r) dt + σ dW

= a(b− r) dt + σ(dW λ − λdt)

= [a(b − r) − a(b− r̄)] dt + σdW λ

= a(r̄ − r) dt + σ dW λ

r(t) = r̄ + e−a(t−s)(r(s) − r̄) + σ
∫ t

s
e−a(t−u) dW λ

Thus, r is an Ornstein-Uhlenbeck Process under Q, with the same dis-
persion σ and speed of adjustment a as under P , but with a different mean-
reversion target r̄ < b. This seems weird; our intuition is that changing
the probabilities might alter the rate of mean-reversion, but shouldn’t alter
the target. This intuition, which seems to be based on the idea that r has
to get to the mean-reversion target eventually, is incorrect. The Ornstein-
Uhlenbeck Process doesn’t converge to b under P or to r̄ under Q. Since Q
moves probability from the higher paths of W to the lower paths of W , the
mean-reversion target r̄ under Q is necessarily lower than the target b under
P . Another way to see this is to note that W λ has positive drift under P , so
you need to set the mean-reversion level with respect to W λ lower than the
level with respect to W to compensate for the drift.

In addition to zero-coupon bonds, there is a money-market account

M(0) = 1, M(t) = e
∫ t

0
r(u) du

If s ≤ t, set

I(s; t) =
∫ t

s
r(u) du

so

M(t) = M(s)eI(s;t)

M(s)

M(t)
= e−I(s;t)
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Proposition 35.2 Suppose that Y is a contingent claim, Y is Ft-measurable,
and Y

M (t)
∈ L1(Q). The Martingale Value Process of Q is

V (s) = EQ

(
Y M(s)

M(t)

∣∣∣∣∣Fs

)

= EQ

(
Y e−I(s;t)

∣∣∣Fs

)
Proof:

V (Y ; Π)(s)

M(s)
= V

(
Y

M(t)
; Q

)

V (Y ; Π)(s) = M(s)V

(
Y

M(t)
; Q

)

= M(s)EQ

(
Y

M(t)

∣∣∣∣∣Fs

)

= EQ

(
Y M(s)

M(t)

∣∣∣∣∣Fs

)

since M(s) is Fs-measurable.

Corollary 35.3 If 1
M (t)

∈ L1(Q), the Martingale Value of a zero-coupon
bond maturing at time t is

P (s; t) = EQ

(
M(s)

M(t)

∣∣∣∣∣Fs

)

= EQ

(
e−I(s;t)

∣∣∣Fs

)

Proposition 35.4 (Proposition 7.3 in Nielsen) For 0 ≤ s ≤ t,

I(s; t) = (t − s)r̄ +
1

a

(
1 − e−a(t−s)

)
(r(s) − r̄) +

σ

a

∫ t

s

(
1 − e−a(t−v)

)
dW λ(v)

Proof:

I(s; t) =
∫ t

s
r(u) du

=
∫ t

s

(
r̄ + e−a(u−s)(r(s) − r̄) + σ

∫ u

s
e−a(u−v) dW λ(v)

)
du
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= (t− s)r̄ +
e−a(u−s)

−a
(r(s) − r̄)

∣∣∣∣∣
t

s

+ σ
∫ t

s

∫ u

s
e−a(u−v) dW λ(v) du

= (t− s)r̄ +

(
−e−a(t−s)

a
+

1

a

)
(r(s) − r̄) + σ

∫ t

s

∫ t

v
e−a(u−v) du dW λ(v)

= (t− s)r̄ +

(
1 − e−a(t−s)

a

)
(r(s) − r̄) − σ

a

∫ t

s

(
e−a(u−v)

∣∣∣t
v

)
dW λ(v)

= (t− s)r̄ +

(
1 − e−a(t−s)

a

)
(r(s) − r̄) +

σ

a

∫ t

s

(
1 − e−a(t−v)

)
dW λ(v)

Corollary 35.5 Conditional on Fs, I(s; t) is normally distributed under Q,
with conditional mean

EQ (I(s; t)|Fs) = (t − s)r̄ +
1

a

(
1 − e−a(t−s)

)
(r(s) − r̄)

= m(r(s), t − s)

where

m(r, τ ) = τ r̄ +
1

a

(
1 − e−aτ

)
(r − r̄)

and conditional variance

Var (I(s; t)|Fs) = v(t− s)

where

v(τ ) =
σ2

2a3

(
4e−aτ − e−2aτ + 2aτ − 3

)
In particular, v(τ )does not depend on λ or on r(s).

Proof: The statement about the conditional mean is immediate from Propo-
sition 35.4. Now, we turn to the conditional variance:

VarQ (I(s; t)|Fs) =
σ2

a2

∫ t

s

(
1 − e−a(t−v)

)2
dv

=
σ2

a2

∫ t

s

(
1 − 2e−a(t−v) + e−2a(t−v)

)
dv
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=
σ2

a2

⎛
⎝v − 2e−a(t−v)

a
+

e−2a(t−v)

2a

∣∣∣∣∣
t

s

⎞
⎠

=
σ2

a2

(
(t− s) − 2

a

(
1 − e−a(t−s)

)
+

1

2a

(
1 − e−2a(t−s)

))

=
σ2

2a3

(
4e−a(t−s) − e−2a(t−s) + 2a(t − s) − 3

)
= v(t− s)

Proposition 35.6 P (s; t) = P (r(s), t − s), where

P (r, τ ) = e−m(r,τ )+v(τ )/2

Proof: This is an exercise in the expectation of a lognormal random variable,
and is left to the reader.

Remark 35.7 In Nielsen’s notation, symbols following semi-colons denote
maturity dates, as in P (s; t), the price at time s of a zero-coupon bond
maturing at time t. There is no semi-colon in P (r, τ ) because τ is not the
maturity date; it is the length of time (from the present) until the maturity
date.

Remark 35.8 As promised in Section 33, Proposition 35.6 provides a com-
plete specification of the term structure, assuming that the market price of
risk is a constant, and given constant parameters σ, a and b (or r̄) of the
interest rate process r. The fact that the term structure empirically is not
solely determined by r(s) indicates that the model is incorrect, most likely
because the parameters are in fact not constant.

We now turn to the stochastic dynamics of the bond price P (s; t).

Definition 35.9 Let

B(τ ) =
1

a

(
1 − e−aτ

)

A(τ ) = (τ − B(τ ))r̄ − v(τ )

2
so

P (r, τ ) = eA(τ )−B(τ )r

P (r(s), t − s) = e−A(t−s)−B(t−s)r(s)
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Proposition 35.10 With t fixed and s as the time variable, P (s; t) satisfies
the stochastic differential equation

dP (s; t)

P (s; t)
=

dP (r(s), t − s)

P (r(s), t − s)

= r(s) ds −
(

1 − e−a(t−s)

a

)
σdW λ

= r(s) ds − B(t− s)σ dW λ

Proof:

P (s; t) = P (r(s), t − s)

= e−m(r(s),t−s)+v(t−s)/2

= e−τ r̄− 1
a(1−e−aτ)(r−r̄)+v(t−s)/2

∂P

∂r
=

(
e−τ r̄− 1

a(1−e−aτ)(r−r̄)+v(t−s)/2
)(

−1 − e−aτ

a

)

= −P (s; t)
1 − e−aτ

a
dP (s; t)

P (s; t)
= −1 − e−aτ

a
dr

Thus, the relative dispersion of P (s; t) is

∣∣∣∣∣−1 − e−aτ

a
σ

∣∣∣∣∣ = 1 − e−aτ

a
σ

Under the risk-adjusted probability measure Q, the relative drift of the bond
price P must equal the risk-free interest rate r, so

dP (s; t)

P (s; t)
=

dP (r(s), t − s)

P (r(s), t − s)

= r(s) ds −
(

1 − e−a(t−s)

a

)
σ dW λ

= r(s) ds −B(t − s)σdW λ

8



One can estimate the parameters of the model econometrically; Nielsen
reports that Chan, Karolyi, Longstaff and Sanders [3] found a = 0.18, σ =
0.02, and r̄ = 0.07. Using these parameters, Nielsen sketches (Figure 7.2)
two price curves corresponding to r(0) = 0.03 (3% initial interest rate) and
r(0) = 0.11 (11% initial interest rate). The graph of P (r, τ ) is a smooth
function of τ because r denotes a fixed initial interest rate; changing τ changes
the interval to maturity but not the initial interest rate. The price P (s; t)
will follow a jagged path because of the changes in r(s); at any given s, it
will lie on the curve P (r(s), t − s).

Note that the pricing formula exhibits pull-to-par: P (r, t − s) → 1 as
s → t for fixed r, and P (s; t) → 1 with probability 1 as s → t.

Now, we consider the price P (r(s), τ ) of a zero-coupon bond with s vary-
ing, but a fixed interval τ to maturity.

P (r(s), τ ) = e−A(τ )−B(τ )r(s)

d ln P = −B(τ ) dr(s)

= −B(τ )a(r̄ − r(s)) ds − B(τ )σ dW λ

The relative dispersion is

−B(τ )σ = −σ

a

(
1 − e−aτ

)
which is the same as the dispersion of P (s; t), where the maturity date (rather
than the time to maturity) is fixed. However, because P (r(s), τ ) is not a
fixed security (the maturity date is constantly receding into the future as s
advances), there is no reason that the relative drift of P (r(s), τ ) should equal
the risk-free interest rate.

Proposition 35.11 Under Q,

dP (r(s), τ )

P (r(s), τ )
=

(
−B(τ )a(r̄ − r(s)) +

B(τ )2σ2

2

)
ds − B(τ )σ dW λ

while under P ,

dP (r(s), τ )

P (r(s), τ )
=

(
−B(τ )a(b− r(s)) +

B(τ )2σ2

2

)
ds − B(τ )σ dW

In particular, the stochastic differential equation with respect to P , W and b
is the same as the stochastic differential equation with respect to Q, W λ and
r̄.
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Proof: The proof is left as an exercise.

36 Risk-Adjusted Probability as Primitive

In the rest of his treatment of term structure models, Nielsen takes the
risk-adjusted measure Q and a Wiener Process (with respect to Q) Ŵ as
primitives. Ŵ corresponds to W λ, but it is not constructed from λ because
we don’t have λ or for that matter the true probability measure P in the
model. For the Vasicek Model, we have

r(t) = r̄ + e−at(r0 − r̄) + σe−at
∫ t

0
eau dŴ (u)

dr = a(r̄ − r) dt + σ dŴ

dP (r(s), t − s)

P (r(s), t − s)
= r(s) ds − σB(t− s)dŴ (s)

dP (r(s), τ )

P (r(s), τ )
=

(
−B(τ )a(r̄ − r(s)) +

1

2
B(τ )2σ2

)
ds − B(τ )σ dŴ (s)

If we know λ, we can recover the dynamics under the true probabilities. For
example, if λ is a constant, we define P to have Radon-Nikodym derivative

1

η[0,−λ](T )
= η[λ2, λ](T )

with respect to Q and

W (t) = Ŵ−λ(t) = Ŵ (t)− λt

which is a Wiener Process under P . Let

b = r̄ +
σλ

a

Then

dP (r(s), t − s)

P (r(s), t − s)
= (r(s) − a(b − r̄)B(t− s)) ds − σB(t− s) dW (s)

dP (r(s), τ )

P (r(s), τ )
=

(
−B(τ )a(b− r(s)) +

B(τ )2σ2

2

)
ds −B(τ )σ dW (s)
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37 Yields in the Vasicek Model

The continuously compounded rate of return on the zero-coupon bond is

R(s; t) =
1

t − s
ln

(
1

P (r(s), t − s)

)

=
1

t − s
(A(t− s) + B(t− s)r(s))

= R(r(s), t − s)

where

R(r, τ ) =
1

τ
ln

(
1

P (r, τ )

)

=
1

τ

(
m(r, τ )− v(τ )

2

)

=
1

τ
(A(τ ) + B(τ )r)

Notice that R(s; t) is an affine function of r(s); since the (unconditional)
distribution of r(s) is normal, so is the distribution of R(s; t).

Nielsen’s Figure 7.10 shows two yield curves, corresponding to initial in-
terest rates r0 = 0.03 and r0 = 0.11, with the same parameters r̄ = 0.07,
a = 0.18, and σ = 0.02 used in Figure 7.2. If r0 = 0.11, the initial interest
rate is above the mean-reversion target 0.07, so we expect interest rates to
decline; hence, the price of the bond is above the price discounted at 11%
interest, so the yield is below 11%; conversely, the yield for r0 = 0.03 is
above 3%. For long maturities, the current interest rate has very little ef-
fect on the yield, which is empirically false; it may be more reasonable for
inflation-protected securities.

The average interest rate over the period [s, t] is

ra =
1

t − s

∫ t

s
r(u) du

=
1

t − s
I(s; t)

=
1

t − s
ln

(
M(t)

M(s)

)
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so ra is the continuously compounded rate of return on the Money-Market
account over the time interval [s, t].

Proposition 37.1 Conditional on Fs, ra is normal with conditional mean

EQ (ra|Fs) =
1

t − s
m(r(s), t− s)

= R(r(s), t − s) +
v(t− s)

2(t − s)

and conditional variance

VarQ (ra|Fs) =
v(t− s)

t − s

Proof: Immediate.

Remark 37.2 Proposition 37.1 is remarkable, and very disturbing. It says
that the expected yield on the Money-Market Account over the period [s, t]

exceeds the expected yield on the bond by the yield risk premium v(t−s)
2(t−s)

.
One of the best-established facts in Finance is that, on average, the yield
on long bonds exceeds the long-run yield on money-market accounts. In the
Vasicek Model, the zero-coupon long bond is riskless over [s, t], whereas the
return on the money-market account, which is instantaneously riskless, is
risky over the period [s, t]. Thus, the Money-Market Account must pay a
yield risk premium; this would also be true in an equilibrium pricing model,
taking the dynamics of r as a primitive, if the utility payoff of the long bond
were risk-free. The yield risk premium will be even higher if one uses the
true probability P instead of Q, since Q shifts probability toward the lower
branches of W , and hence toward lower short-term interest rates. In practice,
the long bond is not risk-free, because of inflation risk. In an equilibrium
model, pricing of securities is in units of marginal utility, and in these units,
the payoff of the long bond is not risk-free because of inflation. Thus, it
appears again that the Vasicek Model may be a better model for real interest
rates than for nominal interest rates.

Proposition 37.3 (Proposition 7.4 in Nielsen) The yield risk premium
is

v(t− s)

2(t − s)
=

σ2

4a3(t − s)

(
4e−a(t−s) − e−2a(t−s) + 2a(t − s) − 3

)
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v(τ )
2τ

is strictly increasing in τ , and

lim
t→0

v(τ )

2τ
= 0

lim
t→∞

v(τ )

2τ
=

σ2

2a2

Proof: This is left as an exercise.
Read the rest of Section 7.5 on your own.

38 The Merton Model

The Merton Model has no mean-reversion. It specifies

r(t) = r0 + αt + σŴ (t), r0, α, σ constant, σ > 0

In the short-run dynamics of r, the Merton Model is indistinguishable from
the Vasicek Model; simply take α = a(r̄ − r0), and note that r is continu-
ous in the Vasicek Model. However, the long-run dynamics and the pricing
of long bonds is very different in the two models. As Nielsen shows in a
straightforward calculation, in the Merton Model, we have

P (s; t) = e−r(s)(t−s)−α(t−s)2/2+σ2(t−s)3/6

For t−s sufficiently large, the cubic term σ2(t−s)3/6 term will dominate, so
P (s; t) → ∞ as t → ∞; a bond that pays off $1 in 5000 years is worth much
more than $1 today! I still find this puzzling. In class, I suggested that r
can go arbitrarily negative in the future, and the long bond is very valuable
as insurance against that possibility, but I don’t think this is a complete
explanation. Note that by the Long Run Law of the Iterated Logarithm, if
α > 0, then for

Q
({

ω : ∃t0(ω) t > t0(ω) ⇒ r(t, ω) > 0
})

= 1 (1)

Also, conditional on Fs, r(s+τ ) is normally distributed, with mean r(s)+ατ
and variance σ2τ , so

EQ

(
e−r(t)|Fs

)
= e−r(s)−ατ+σ2τ/2 → 0 (2)
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provided α > σ2/2. However,

P (s; t) = EQ

(
e−
∫ t

s
r(u) du

∣∣∣∣Fs

)

and it appears that Jensen’s inequality plays a key role in the long-run be-
havior of P (s; t), despite Equations (1) and (2). If I get any more insight on
this, I will let you know.

Both the Vasicek and Merton Models are best thought of as short-run
models; their ability to explain the yield curve (and in particular, changes in
the shape of the yield curve over time) is very limited. As noted above, in
the short run, we can’t distinguish between them.

39 The Extended Vasicek Model

The Extended Vasicek Model is a generalization of both the Vasicek and
Merton Models. However, the key difference is not the unification of the two
models, but rather the fact that the parameters are allowed to be determin-
istic functions of time. The advantage of this is that it allows the parameters
to be determined by calibration to whatever the observed yield curve hap-
pens to be at any time. The disadvantage is that, since the Extended Vasicek
Model can reproduce essentially any yield curve, it cannot possibly explain
why the yield curve has a given shape at a particular time.

The assumption that the parameters are deterministic functions of time,
rather than random processes, is certainly incorrect, but in a sense that is
beside the point. Deterministic functions of time allow enough freedom to
reproduce essentially any yield curve, so more freedom is not needed in order
to calibrate the model to the observed yield curve. Calibration of the model
allows one to detect small arbitrages, as the relationship among yields of
securities of similar maturities varies.

At the same time, the parameter values α(t), a(t) and σ(t) that one
obtains at time s through calibration should not really be thought of as
predictions of the values those parameters will actually hold when time t rolls
around. For starters, the actual values of those parameters are surely random,
viewed from the perspective of time s, so the calibrated values could at most
be point estimates. But if we try to view them as point estimates, there’s no
reason to think the expectation of the actual value will equal the calibration-
predicted value. The yield curve emerges from the parameters in a nonlinear
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way, and the calibrated parameter values are presumably expectations of
a nonlinear function of the random future values. The calibrated value is
what the parameter value would have to be if in fact it were a deterministic
function of time, which it isn’t.

The key to the calibration will be the curvature of the yield curve at each
future time t.

In the model,

dr = (α − ar) dt + σ dŴ , r(0) = r0

where r0 is constant, and α, a and σ are determintic functions of time,
σ ∈ L2, α, a ∈ L1. The model reduces to the Vasicek Model if we impose the
constraints that α, a and σ are constant and a > 0; we get a mean-reversion
target of r̄ = α/a. The model reduces to the Merton Model if we impose the
constraint that a = 0 and α and σ are constants. In the short-run dynamics
of r, we can’t distinguish the Extended Vasicek Model from the Vasicek and
Merton Models, provided α, a and σ are continuous.

Proposition 39.1 (Proposition 3.7 in Nielsen) Let K(t) =
∫ t
0 a ds. Then

r(t) = e−K(t)
(
r0 +

∫ t

0
eK(s)αds +

∫ t

0
eK(s)σ dŴ (s)

)

= e−K(t)
(
eK(s)r(s) +

∫ t

s
eK(u)αdu +

∫ t

s
eK(u)σ dŴ (u)

)

As in the Vasicek model, we define

I(s; t) =
∫ t

s
r(u) du

B(s; t) =
∫ t

s
e−K(u)+K(s) du

= eK(s)
∫ t

s
e−K(u)du

A(s; t) =
∫ t

s
e−K(u)

∫ u

s
eK(x)α dx du − v(s; t)

2

Proposition 39.2 (Proposition 7.5 in Nielsen) For 0 ≤ s ≤ t,

I(s; t) = B(s; t)r(s) +
∫ t

s
e−K(u)

∫ u

s
eK(x)αdx du +

∫ t

s
σ(x)B(x; t)dŴ(x)
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Define

m(r, s; t) = B(s; t)r +
∫ t

s
e−K(u)

∫ u

s
eK(x)α dx du

v(s; t) =
∫ t

s
σ(x)2B(x; t)2 dx

so that, as in the Vasicek Model, I(s; t), conditional on Fs, is Normal with
mean m(r(s), s; t) and variance v(s; t).

Proposition 39.3 The value at time s of a zero-coupon bond maturing at
time t is

P (s; t) = EQ

(
e−I(s;t)

∣∣∣Fs

)
= e−m(r(s),s;t)+v(s;t)/2

= P (r(s), s; t)

where

P (r, s; t) = e−m(r,s;t)+v(s;t)/2

= e−A(s;t)−B(s;t)r

Proof: Exercise.
Notice that P (r, s; t) is not a function of r and t− s alone; it is a function

of r, s, and t− s (equivalently, r, s and t) because the parameters are time-
varying, and hence P (r, s; t) is not stationary.

Proposition 39.4 (Proposition 7.6 in Nielsen)

m(r(s), s; t) =
∫ t

s
EQ (r(u)|FS) du

v(s; t) =
∫ t

s

∫ t

s
CovQ (r(u), r(y)|Fs) du dy

Consequently,

v(s; t) → 0 as s → t

A(s; t) → 0 as s → t

A(s; t) → 0 as s → t

P (r, s; t) → 1 as s → t (r fixed)

P (r(s), s; t) → 1 as s → t with probability 1

16



Proposition 39.5

dP (s; t)

P (s; t)
= r(s) ds − B(s; t)σ(s) dŴ (s)

In particular, the stochastic differential with respect to Q is not affected by α

Proof:

d ln P (s; t) = d (−B(s; t)r(s)− A(s; t))

= −B(s; t) dr(s) − r(s) dB(s; t) − dA(s; t)

Therefore, the relative dispersion with respect to Ŵ is −B(s; t)σ(s). The
relative drift coefficient of the bond price with respect to the risk-adjusted
probability Q equals the interest rate r(s). Therefore,

dP (s; t)

P (s; t)
= r(s) ds − B(s; t)σ(s) dŴ (s)

Remark 39.6 In the Vasicek Model, the stochastic differential of P (s; t)
with respect to Q doesn’t depend on r̄; in the Extended Vasicek Model, the
stochastic differential doesn’t depend on α. α affects P (r(s), s; t), but condi-
tional on this value, α doesn’t affect the relative drift or relative dispersion of
the bond price. α affects the distribution of interest rates after t, but these
rates are not taken into account in P (s; t) as s increases.

Proposition 39.7 v, B and A are continuously differentiable with respect
to t, in particular

vt(s; t) = 2
∫ t

s
σ(x)2B(x; t)

∂B

∂t
(x; t) dx

Bt(s; t) = e−K(t)+K(s)

At(s; t) =
∫ t

s
Bt(x; t)eK(x)α(x) dx − vt(s; t)

2

Proof: See Nielsen.
We now turn to yields in the Extended Vasicek Model.

17



Proposition 39.8 The continuously compounded yield on the zero-coupon
bond is

R(s; t) =
1

t − s

(
m(r(s), s; t)− v(s; t)

2

)

= R(r(s), s; t)

where

R(r, s; t) =
1

t − s
(A(s; t) + B(s; t)r)

In particular, R(s; t) is an affine function of r(s), so it is normally dis-
tributed; it is not stationary.

EQ (ra|Fs) = R(r, s; t) +
v(s; t)

2(t − s)

Proof: See Nielsen.

Remark 39.9 As in the Vasicek Model, the expectation (with respect to
Q) of the interest rate over the period [s, t] exceeds the rate of return on the

bond by the yield risk premium v(s;t)
2(t−s)

> 0. Measured with respect to the true
probabilities, the yield risk premium will be even greater. Empirically, the
yield risk premium for nominal bonds is negative: the return from long bonds
exceeds the expected return from the money-market. In our discussion of the
Vasicek Model, we suggested the reason for the divergence between theory
and empirics was that the Vasicek Model makes more sense as a model for real
interest rates than as a model for nominal interest rates. With the Extended
Vasicek Model, it is harder to make that argument convincingly. As we shall
see, with the Extended Vasicek Model, we can calibrate the parameters to
reproduce essentially any yield curve, and in particular the empirical yield
curve for nominal bonds. The calibrated values of the parameters then lead
to a prediction of the future interest rate process, but this prediction is
systematically wrong; empirically, the realized rates will be systematically
lower than those predicted from the calibrated parameter values.

40 Calibrating the Extended Vasicek Model

In order to calibrate the Extended Vasicek Model to fit the observed yield
curve at time s, we need to know

18



• r(s), the current Money-Market interest rate

• σ(t), the standard deviation of interest rates at all future times t ≥ s

• R(r(s), s; t), the continuously compounded yield of the zero-coupon
bond maturing at all future times t ≥ s

• B(s;t)σ(s)
t−s

, the instantaneous standard deviation of yields of zero-coupon
bonds maturing at time t, for all future times t ≥ s.

Except for σ(t), all of these are observable at time s for a finite (but relatively
closely spaced) number of future values of t up to approximately thirty years
from s. Since the data are in fact finite, it is necessary to interpolate C2 func-
tions that pass through the observed data points. The observability of σ(t) is
problematic, and Nielsen doesn’t address this issue. The best justification I
can give is that, of the parameters in the model, σ(t) is the one which is most
likely to remain approximately constant over time, and whatever variations
there might be in σ(t) in the future seem virtually impossible to predict, so
it may make sense to do the calibration as if σ(t) were constant and equal to
σ(s), which can be measured.

The calibration proceeds as follows:

1. Compute B(s; t) from B(s;t)σ(s)
t−s

and σ(s).

2. Calculate the derivatives Bt(s; t) and Btt(s; t) and compute

a(t) = −Btt(s; t)

Bt(s; t)

(Proposition 7.8 in Nielsen). Thus, a is determined by the curvature of
B(s; t).

3. Calculate A(s; t) from the formula

A(s; t) = − lnP (s; t) −B(s; t)r(s)

where P (s; t) can be inferred from R(r(s), s; t).

4. Calculate the derivatives At(s; t) and Att(s; t) and compute

α(t) = a(t)At(s; t) + Att(s; t) + e−2K(t)
∫ t

s
σ2(x)e2K(x) dx

(Proposition 7.8 in Nielsen). a is used to match the standard deviations
of the yields, while α is used to match the yields themselves.
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41 Introduction to Lévy Processes

Actual stock market prices show fatter tails than the log normal distribution.
The normal distribution is completed specified by its mean μ and standard
deviation σ; σ can be determined from the probability that the variable
lies in any one interval of the form [μ − α, μ + α]; actual log prices put
less weight near μ and more far from μ than is consistent with normality.
Indeed, since the price of a stock can move by a very large percentage in a
matter of minutes following an important announcement, it seems at least as
reasonable to model stock prices as having discontinuities as it is to model
them as continuous.

Whether or not stock prices exhibit actual discontinuities, the fat tails
of stock prices manifest themselves in the price of options. At any given
time t, the stock price S(t) is known, as are the prices of options trading at
various exercise prices Xj : j = 1, . . . J . If we know the price of the option
with a given exercise price Xj , and we assume that the Black-Scholes Model
is correct, we can infer σj, the volatility the stock must have to justify the
observed price of the option. If the Black-Scholes Model were correct, all of
the σj would be equal; if we plotted implied volatility against the exercise
price, we would see a horizontal line. In fact, the implied volatility is not a
horizontal line; it has the shape of a “smile,” in which the implied volatility
is lowest when X is close to S(t), and rises as X moves away from S(t) in
either direction. This says that the probability that an option that is far out
of the money (S(t) is much lower than X) at time t will end up in the money
at the exercise date T is higher than predicted by Black-Scholes, and hence
the right to purchase the stock at the exercise price at the exercise date T
is more valuable than predicted by Black-Scholes. Similarly, the probability
than an option that is far in the money (S(t) is much higher than X) at time
t will end up out of the money at the exercise date T is higher than predicted
by Black-Scholes, and hence the fact that the option does not obligate the
option-holder to buy the stock is more valuable than predicted by Black-
Scholes.

What properties should our stock price processes have? For mathematical
tractability, we presumably want a one-parameter family of distributions such
that the distribution of S(t)

S(s)
lies in this family for all s, t. Logged prices exhibit
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an additive structure: if r < s < t,

lnS(t) − lnS(r) = ln

(
S(t)

S(r)

)

= ln

(
S(t)

S(s)
× S(s)

S(r)

)

= (lnS(t)− lnS(s)) + (lnS(s) − lnS(r))

Therefore, our family of distributions (or rather their logs) must have the
property than the sum of two independent random variables with distribu-
tions in the family must also have distribution in the family.

Definition 41.1 Suppose we are given a filtration {Ft}. A Lévy Process is
an adapted process X with X0 = 0 which satisfies the following properties:

1. X has independent increments, i.e. Xt−Xs is independent of Fs when-
ever 0 ≤ s < t < ∞;

2. X has stationary increments, i.e. the distribution of Xt − Xs equals
the distribution of Xt−s whenever 0 ≤ s < t < ∞; and

3. Xt is continuous in probability, i.e. for all t, lims→t X(s) = X(t) almost
surely.

Remark 41.2 Note that it follows immediately from the definition that a
Wiener Process is a Lévy Process. But we shall see in a moment that the
Poisson Process, which has discontinuous paths, is also a Lévy Process. The
third condition in the definition requires that the process be continuous at
time t, except for a null set which may depend on t; by moving the null set
around, we can construct a process whose paths are discontinuous with prob-
ability one, but the set of times at which any given path is discontinuous will
be countable. The third condition allows for sudden unanticipated disconti-
nuities, but it does not allow for anticipated discontinuities; if it is known in
advance that an announcement will be made at 2:00pm, and it will have a
big effect on the stock price, the stock price is not continuous in probability,
even if the direction of the effect remains unknown until 2:00pm. Hence,
Lévy Processes are suitable for modelling unanticipated discontinuities in
stock prices, but not anticipated discontinuities.
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Remark 41.3 If a Lévy Process X has continuous paths and finite vari-
ances, then there exists σ sutch that σX is a (standard) Wiener Process.
Thus, continuous Levy Processes other than Wiener Processes have infinite
variances, which creates a variety of mathematical and modelling problems
in using them to describe stock prices. We will not pursue these issues in
these notes, and will focus on Poisson Processes. Theorem 41 on page 31
of Protter [8] says, essentially, the following: If X is a Lévy Process with
bounded jumps, then X(t)−E(X(t)) is the sum of a continuous martingale
Lévy Process and a martingale which is a mixture of compensated Poisson
Processes.1 Theorem 42 on page 32 provides another representation theorem.

42 The Poisson Process

Fix a parameter ρ > 0. We give two formulations of the Poisson Process
with parameter ρ:

• Discrete Formulation: Given n ∈ N, let the time axis be Tn ={
0, 1

n
, 2

n
, . . .

}
, Ω = {0, 1}N. We put a measure Pn on Ω by requiring

Pn(ωj = 1) =
ρ

n
= ρdt, Pn(ωj = 0) = 1 − ρ

n

and we extend to a measure P − n on Ω by requiring that ωj and ωk

be independent if j 
= k; equivalently, we take Pn to be the product
measure induced on Ω by the above distributions on the individual ωj.
We define

Xn(ω, t) =
∑
j≤nt

ωj

Notice that Xn has the following properties:

1. Xn : Ω × [0,∞) → N ∪ {0};
2. Xn is nondecreasing;

3. Xn exhibits stationary, independent increments; the conditional
distribution (Xn(t)−Xn(s)|Xn(s)) is the same as the distribution
of Xn(t− s);

1If X is a Poisson Process, then X(t)−E(X(t)) is called a compensated Poisson Process;
as we shall see, for a Poisson Process with parameter ρ, X(t) − E(X(t)) = X(t) − ρt.
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4. Pn(Xn(t) = 0) =
(
1 − ρ

n

)nt

5. Xn is CADLAG2, i.e. it is right-continuous, and has limits from
the left everywhere; moreover,

Pn

(
lim
s↗t

Xn(s) = Xn(t)
)

= 1 − ρ

n
if t ∈ Tn

Given a CADLAG process X, define

X(ω, t−) = lim
s↗t

X(ω, s) and X−(ω, t) = X(ω, t−)

• Continuous Formulation: There are two continuous formulations of
the Poisson Process. First, in an analogous manner to the construction
of Wiener measure as the limit of measures on the set of continuous
functions induced by random walks, we can view Pn and Xn as generat-
ing a sequence of measures μn on the space of CADLAG integer-valued
processes, then define the Poisson measure as the limit of these mea-
sures as n → ∞, then use this to recover a probability space (Ω, P )
and a Poisson process X.3 The resulting process X has the following
properties:

1. X : Ω × [0,∞) → N ∪ {0};
2. X is nondecreasing;

3. X exhibits stationary, independent increments; the conditional
distribution (X(t)−X(s)|X(s)) equals the distribution of X(t−s)
if s < t.

4.

P (X(t) = 0) = lim
n→∞

(
1 − ρ

n

)nt

ln (P (x(t) = 0)) = lim
n→∞ ln

((
1 − ρ

n

)nt
)

2CADLAG, sometimes written càdlàg, is an acronym for the French “continu à droite
avec limites à gauche.”

3Indeed, we could take Ω to be the set of CADLAG functions, P to be the limit of the
μn, and X to be identity map from Ω to itself.
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= lim
n→∞ nt ln

(
1 − ρ

n

)

= lim
n→∞ nt

(
−ρ

n
+
(

ρ

n

)2

+ · · ·
)

= −ρt

P (X(t) = 0) = e−ρt → 0 as t → ∞

5. X is CADLAG; moreover, for every t,

P
(
lim
s↗t

X(s) = X(t)
)

= 1

Therefore, X is a Lévy Process.

Let

Y1(ω) = min {t : X(ω, t) = 1}
Y2(ω) = min {t : X(ω, t) = 2} − Y1(ω)

...

Yk+1(ω) = min {t : X(ω, t) = k + 1} − Yk(ω)
...

so that Yk+1 is the time between the kth and the k + 1st jumps. Let
f(s) be the probability density of the common distribution of the Yk.

P (X(t) = 0) = e−ρt

=
∫ ∞

t
f(s) ds

−ρe−ρt = −f(t) (Fundamental Theorem of Calculus)

f(t) = ρe−ρt for t ≥ 0

X(ω, t) = max{k : Y1(ω) + · · · + Yk(ω) ≤ t}

The alternative formulation of the Poisson Process is to start with a
family {Yk : k ∈ N} of independent random variables with common
density f(t) = ρe−ρt for t ≥ 0, and define

X(ω, t) = max{k : Y1(ω) + · · · + Yk(ω) ≤ t}
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Proposition 42.1 The augmented filtration FX generated by a Poisson Pro-
cess X is right-continuous, i.e.

FX
s =

⋂
t>s

FX
t

The idea of the proof is that as t ↘ s, the probability of a jump in the interval
(s, t] goes to zero; if A ∈ Ft for every t > s, there must be a set Â ∈ Fs such
that P ((A \ Â)∪ (Â \A)) = 0, but since the filtration is augmented, Â ∈ Fs.

43 Stochastic Integration with Respect to Pois-

son Processes

Because the Poisson Process X is almost surely of bounded variation on
compact time intervals, the stochastic integral with respect to X is simply a
Stieltjes Integral. Let tk(ω) be the time of the kth jump, so

tk(ω) = Y1(ω) + · · · + Yk(ω)

Then

∫ t

0
Δ dX =

X(ω,t)∑
k=1

Δ(ω, tk(ω))(X(ω, tk(ω) − X(ω, tk(ω)−)))

=
X(ω,t)∑
k=1

Δ(ω, tk(ω))

While the definition makes sense for all Δ, we will generally want to assume
that Δ is predictable, a slight strengthening of adapted. If we only require
that Δ be adapted, then Δ(ω, t) can be conditioned on whether X has a
jump at (ω, t); if we think of Δ as a trading strategy, then it as if a trader
could observe the price of a stock has doubled, but still buy it at the old,
pre-doubled price; small changes in Δ result in big changes in

∫
Δ dX. In

the discrete framework, we say that Δ is predictable if Δ
(
ω, k

n

)
is F k−1

n
-

measurable.

Definition 43.1 The predictable σ-algebra is the σ-algebra on Ω × [0,∞)
generated by the adapted left-continuous processes. A stochastic process Δ
is predictable if it is measurable with respect to the predictable σ-algebra.
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44 Silly First Model

In this section, we explore a Poisson-based stock price model. To help us
get going, it is simple. It is silly because it only has upward jumps. Clearly,
stock prices can exhibit jumps in either direction; indeed, casual empiricism
suggests that downward jumps are more frequent and larger than upward
jumps.

Let X be a Poisson Process with parameter ρ. Our securities are a stock
S = eX and a Money-Market Account M(t) = ert, with r > 0 a constant.

We address a series of questions:

1. Is S a stochastic integral with respect to X? The answer is yes.
S jumps exactly when X jumps. If X has a jump at t,

X(t) − X(t−) = 1

eX(t) − eX(t−) = eX(t−)+1 − eX(t−)

= (e − 1)eX(t−)

so we set
Δ(t) = (e − 1)eX(t−) = (e − 1)S(t−)

Notice that Δ is predictable, and

S(t) = 1 +
∫ t

0
Δ dX(s)

2. Is there arbitrage? The answer is no, even if one allows doubling
strategies which generate arbitrage with respect to geometric Wiener
processes. Since r > 0, and for every t, P (X(t) = 0) > 0, there is a
positive probability that borrowing to invest in the stock will end up
losing money over the time interval [0, t].

3. Is there a state price process? We first have to decide what we
mean by a state price process. Since X is not a martingale, stochastic
integrals

∫
Δ dX have drift under any reasonable definition of drift, so

we can’t define zero drift to mean the coefficient of dt in the stochastic
differential is zero.4 So we will say that Π is a state price process if ΠS

4We could probably replace the Poisson Process X with the compensated Poisson
Process X̂(t) = X(t) − ρt, which is a martingale, and define zero drift as meaning the
coefficient of dt is zero in the stochastic differential with respect to dt and dX̂. Since this
is a Silly Model, we will not pursue that.
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and ΠM are martingales. Put aside M for the moment, and focus on
finding Π such that ΠS is a martingale. By analogy with the Itô case,
we expect that after we normalize Π(0) = 1, we will have a 1-parameter
indeterminacy in Π. Here are two state price processes:

(a)

Πj(t) =
1

S(t)
= e−X(t)

Then ΠjS is identically one, so it must be a martingale. Πj is
adapted (but not predictable). Πj is a stochastic integral: if X
jumps at t, then

Πj(t)− Πj(t−) − e−X(t) − e−X(t−)

= e−(X(t−)+1) − e−X(t−)

= e−X(t−)
(

1

e
− 1

)

=
1

S(t−)

(
1

e
− 1

)

= Πj(t−)
(

1

e
− 1

)

so if we set

Δ(t) = Πj(t−)
(

1

e
− 1

)

then Δ is predictable and

dΠj = Δ dX,
dΠj(t)

Πj(t−)
=
(

1

e
− 1

)
dX

(b) There is also a continuous state price process Πc. In the time
interval (t, t + δt], the probability of a jump is ρ dt.5 If a jump
occurs at time s ∈ (t, t + δt],

S(t + δt)− S(t) = eX(t)+1 − eX(t)

= eX(t)(e − 1)

= S(t)(e − 1)

5The probability of two or more jumps, (ρ dt)2+(ρ dt)3+. . ., is of order O(dt2). Exercise
for the reader: fix the following calculation, which pretends that the probability of two or
more jumps is zero.
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Therefore, if ΠcS is a martingale,

Πc(t)e
X(t) = E

(
Πc(t + dt)eX(t+dt)

∣∣∣Ft

)
= Πc(t + dt)

(
ρ dt eX(t)+1 + (1 − ρ dt) eX(t)

)
= Πc(t + dt)eX(t) (1 + ρ(e − 1) dt)

Πc(t) = Πc(t + dt) (1 + ρ(e − 1) dt)

Πc(t + dt) − Πc(t) =
Πc(t)

1 + ρ(e − 1) dt
− Πc(t)

= Πc(t)

(
1 − (1 + ρ(e − 1) dt)

1 + ρ(e − 1) dt

)

= Πc(t)

(
−ρ(e − 1) dt)

1 + ρ(e − 1) dt

)

= −Πc(t)ρ(e − 1) dt
(
1 − ρ(e − 1) dt + (ρ(e − 1) dt)2 + . . .

)
= −Πc(t)ρ(e − 1) dt + O

(
dt2
)

dΠc

Πc
= −ρ(e − 1) dt

Πc(t) = e−ρ(e−1)t

= η[−ρ(e − 1), 0]

Now, let’s put the Money-Market Account M back in and see if
we can find a state price process. Before doing this, we take a
detour to consider Equivalent Martingale Measures.

(c) Is there an Equivalent Martingale Measure? There’s no
equivalent measure Q which makes S into a martingale. Since
S = eX is increasing, for any equivalent measure Q and any t > s,

EQ

(
eX(t)

∣∣∣Fs

)
> eX(s)

But that’s not the point. We want to find an equivalent measure
Q such that e−rtS is a martingale, and this we can do. Let’s return
to the discrete model.

E

(
e−r(k+1)/nS

(
k + 1

n

)
− e−rk/nS

(
k

n

)∣∣∣∣∣S
(

k

n

))
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=
(
e−r/n

((
ρe

n

)
+
(
1 − ρ

n

))
− 1

)
e−rk/nS

(
k

n

)

=

(
e−r/n

(
1 +

ρ(e − 1)

n

)
− 1

)
e−rk/nS

(
k

n

)

=

((
1 − r

n
+ O

(
n−2

))(
1 +

ρ(e − 1)

n

)
− 1

)
e−rk/nS

(
k

n

)

=

(
− r

n
+

ρ(e − 1)

n
+ O

(
n−2

))
e−rk/nS

(
k

n

)

Thus, we could make e−rtS(t) into a martingale if we had

ρ =
r

e − 1
+ O

(
1

n

)

This gives us the recipe for Q. In the continuous case, if we fix a
time interval [0, T ], Q is the measure on the space of nondecreas-
ing, integer-valued paths that generates a Poisson Process with
parameter

ρQ =
r

e − 1

Q is equivalent to P on finite horizons.6

(d) Is There a State Price Process (Revisited) From the discus-
sion of the equivalent martingale measure, we see that there is a
state price process for S and M . Let dQ

dP
be the Radon-Nikodym

derivative of the measure Q which makes X into a Poisson Process
with parameter ρQ = r

e−1
. Then

Π = e−rt dQ

dP

is a state price process for S and M . I believe it is unique (up to
the constant Π(0)), but I can’t swear to this at this point. The
advantage of this representation is tractability. One can readily
compute expectations with respect to Q because these will be
expectations with respect to a Poisson Process.

6This is exactly what is true in the Itô case. In Girsanov’s Theorem, the measure Q is
equivalent to P for each finite time horizon T , but not with an infinite time horizon.
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45 Better Second Model

In our second model, we suppose that

X = X1 − X2, S = eX

where X1 and X2 are independent Poisson Processes with parameter ρ
2
. In

the discrete model, we could take Ω = {−1, 0, 1}N,

Pn(ωj = −1) = Pn(ωj = 1) =
ρ

2n
, Pn(wj = 0) = 1 − ρ

n

Note that in the discrete model, the positive and negative Poisson processes
are not quite independent, but they become independent as n → ∞.

Notice that X is a martingale, so it is reasonable to say that a process
with differential

0dt + a dX

has zero drift.
However, we immediately encounter a problem:

Proposition 45.1 S is not a stochastic integral with respect to X.

Proof: S jumps exactly when X jumps. However, whereas the upward and
downward jumps of X are of the same magnitude (indeed, both jumps are
of size 1), the upward and downward jumps of S are of unequal magnitude.
If X jumps up at t, we have

eX(t) − eX(t−)

X(t) − X(t−)
= (e − 1)eX(t−)

while if X jumps down at t, we have

eX(t) − eX(t−)

X(t) − X(t−)
=
(
1 − 1

e

)
eX(t−) =

(
e − 1

e

)
eX(t−)

and these are not equal. Since it is not known at times s < t the direction in
which X will jump (or, for that matter, whether it will jump at all at time
t), there is no predictable process Δ such that dS = ΔdX.

In particular, this tells us the statement of Itó’s Lemma has to be modified
to extend to this case.
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46 Itô’s Lemma for Discontinuous Processes

The natural class of stochastic processes that can be used as stochastic in-
tegrators is the class of semimartingales. The definition of a semimartingale
is abstract and somewhat cumbersome. Roughly speaking, a semimartin-
gale is the sum of a local martingale (which we don’t define) and a process
of bounded variation. In practice, every stochastic process that you would
want to use as a stochastic integrator is a semimartingale: in particular,
all Lévy Processes (including Wiener Processes and Poisson Processes) are
semimartingales; the sum of two semimartingales is a semimartingale; every
stochastic integral with respect to a semimartingale is a semimartingale; and
every C2 function of a semimartingale is a semimartingale. Semimartingales
can be assumed to be CADLAG. See Protter [8] for details.

Definition 46.1 If Y is a semimartingale, the quadratic variation of Y is

[Y, Y ] = Y 2 − 2
∫

Y− dY

where we recall that Y−(ω, t) = lims↗t Y (ω, s).

Remark 46.2 If W is a Wiener Process, recall from Problem Set 2 that

[W, W ](t) = W 2(t)− 2
∫ t

0
W− dW = W 2 − 2

W 2 − t

2
= t

which is the quadratic variation of the Wiener Process.
For X a Poisson process, or for X = X1 − X2, where X1 and X2 are

Poisson Processes, the quadratic variation clearly ought to be the number of
jumps. The process is constant except at the jump points, and the square of
the jump is always equal to one. We’ll see that the quadratic variation, as
just defined, does indeed equal the number of jumps. If X is the standard
Poisson Process (i.e., the one with only positive jumps), let the jumps in [0, t]
be at t1, t2, . . . , tX(t)

[X, X](t) = X(t)2 − 2
∫ t

0
X−dX

= X(t)2 − 2
X(t)∑
j=1

X(tj−)(X(tj) − X(tj−))
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= (t)X2 − 2 (0 · 1 + 1 · 1 + 2 · 1 + · · · + (X(t) − 1) · 1)

= X(t)2 − 2

[
(X(t) − 1)X(t)

2

]

= X(t)2 − X(t)2 + X(t)

= X(t)

which is exactly the number of jumps. The calculation for the difference of
Poisson Processes X = X1 − X2 is very hard to write down on paper, and
much easier to do on the board, so I hope you got the idea from the lecture.

Definition 46.3 If Y is a semimartingale, then [Y, Y ] is a process of finite
variation on compact intervals, hence each path has at most countably many
jumps. Thus, we can split off all the jumps of [Y, Y ], leaving a continuous
process which is denoted [Y, Y ]c.

Theorem 46.4 (Itô’s Lemma (Theorem 32, page 71 in Protter)) If Y
is a semimartingale and f : R → R is C2, then f(Y ) is a semimartingale
and

f(Y (t)) = f(Y (0)) +
∫ t

0+
f ′(Y (s−)) dY (s) +

1

2

∫ t

0+
f ′′(Y (s−)) d[Y, Y ]c(s)

+
∑

0<s≤t

(f(Y (s)) − f(Y (s−)) − f ′(Y (s−))(Y (s)− Y (s−)))

Remark 46.5 The last sum is over an uncountable index set. However, a
semimartingale can have only countably many jumps, and the summand is
zero except at points where Y jumps. We get a correction term at each
jump because we need to add in the change in f over the jump (f(Y (s)) −
f(Y (s−))) and remove the term f ′(Y (s−))(Y (s) − Y (s−)) that appears in
the first integral. If X = X1 −X2 is the difference of Poisson Processes, Itô’s
Lemma doesn’t tell us anything we didn’t know: It says

f(X(t)) = 1 +
∑

0<s≤t

f ′(X(s−)) (X(s) − X(s−)) + 0

+
∑

0<s≤t

((f(X(s)) − f(X(s−))) − f ′(X(s−)) (X(s) − X(s−)))

=
∑

0<s≤t

(f(X(s)) − f(X(s−)))
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The good news is, that if Y is a continuous semimartingale, Itô’s Lemma goes
through provided we substitute [Y, Y ] for the term (dW )2 = dt in the version
for Wiener Processes. The second bit of good news is that for CADLAG
semimartingales, there is an Itô Calculus, provided one is a little careful
about the jumps. The bad news is that the jump terms that appear in the
statement of Itô’s Lemma do not appear in the capital gains process we
need for Finance, so while we may be able to price options on discontinuous
securities, it appears we are going to have serious trouble replicating them.

47 More on the Second Model

Now that we have finished our detour through Itô’s Lemma, we resume our
discussion of the second model, in which S = eX , where X = X1 − X2 is a
difference of Poisson Processes. In addition to our stock X, we have a Money
Market account M(t) = ert.

1. Is there an Equivalent Martingale Measure? The answer is yes.
We work in the discrete model.

E

(
e−r(k+1)nS

(
k + 1

n

)
− S

(
k

n

)∣∣∣∣∣ S
(

k

n

))

=
(
e−r/n

(
ρ

2n
e +

ρ

2n

1

e
+
(
1 − ρ

n

))
− 1

)
e−rk/nS

(
k

n

)

=
((

1 − r

n
+ O

(
1

n2

))(
1 +

ρ

2n

(
e +

1

e

)
− ρ

n

)
− 1

)
e−rk/nS

(
k

n

)

=
(
− r

n
+

ρ

2n

(
e +

1

e
− 2

)
+ O

(
1

n2

))
e−rk/nS

(
k

n

)

We can make the discrete model a martingale (in the limit as n → ∞)
provided

ρ

2n

(
e +

1

e
− 2

)
=

r

n

ρ =
2r

e + 1
e
− 2
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so if we let Q be the measure which turns X1 and X2 into Poisson
Processes with parameter

ρQ

2
=

r

e + 1
e
− 2

on [0, T ], then Q is an Equivalent Martingale Measure and

Π(t) = e−rt dQ

dP

is a state price process.

2. Is the Equivalent Martingale Measure Unique? The answer is
no. The problem is that the set of probability measures on the three-
point space {−1, 0, 1} is two-dimensional, and we should not expect
to get a single equation (the martingale condition for S) to produce
a unique solution. Instead of adjusting the parameter ρ (which de-
termines the rate at which jumps occur), we can keep ρ constant and
adjust the relative probability of up and down jumps. In the discrete
model, if we set the probabilty of an up jump to (1−α) ρ

n
, the probabil-

ity of a down jump to α ρ
n
, and leave the probability of no jump at 1− ρ

n
,

we will find that in the limit as n → ∞, eX satisfies the martingale
equation provided that

α =
e − 1 − r

ρ

e − 1
e

In order for this to generate a probability measure, we need to know
that α ∈ [0, 1]. Since 1 + r

ρ
> 1 > 1

e
, we automatically have α <

1. We will have α ≥ 0 provided that r
ρ
≤ e − 1. Thus, provided

r
ρ

< e − 1, we get a one-parameter family P of pairs (α, ρ). At each

node, we can make a different choice (α(ω, t), ρ(ω, t)). As long as we do
this in a measurable way, the resulting measure will be an Equivalent
Martingale Measure. Eberlein and Jacod [4] show that for “most”
purely discontinuous processes, the range of values of the option, using
all equivalent martingale measures, is the interval(

max{S(t)− e−r(T−t)X, 0}, S(t)
)

which says the martingale method has essentially no predictive value.
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48 Third Model

The third model has X = X1−X2 a difference of Poisson Processes, and two
stocks, so

S̄ =

⎛
⎜⎝ ert

eμ1t+σ1X

eμ2t+σ2X

⎞
⎟⎠ =

⎛
⎜⎝ M

S1

S2

⎞
⎟⎠

Once again, we look in the discrete model for conditions to make e−rtS̄ into
a martingale. The equation for S1 is

1 = e(μ1−r)n
(
(1 − α)

ρ

n
eσ1 + α

ρ

n
e−σ1 +

(
1 − ρ

n

))

=
(
1 +

μ1 − r

n
+ O

(
1

n2

))(
ρ

n

(
αe−σ1 + (1 − α)eσ1 − 1

)
+ 1

)

= 1 +
μ1 − r

n
+

ρ

n

(
αe−σ1 + (1 − α)eσ1 − 1

)
+ O

(
1

n2

)

so to make both S1 and S2 martingales, we need

ρ1 =
r − μ1

(1 − α)eσ1 + αe−σ1 − 1

ρ2 =
r − μ2

(1 − α)eσ2 + αe−σ2 − 1
ρ1 = ρ2

Proposition 48.1 Generically in σ1, σ2, μ1, and μ2, there is a unique
α(σ1, σ2, μ1, μ2) such that ρ1 = ρ2.

Proof: Let

f(α) =
(1 − α)eσ1 + αe−σ1 − 1

r − μ1
− (1 − α)eσ2 + αe−σ2 − 1

r − μ2

f(α) is linear in α, and generically it is not constant, hence generically there
exists a unique α0 such that f(α0) = 0. If σ1 
= σ2, then at least one of
(1 − α)eσ1 + αe−σ1 − 1 and (1 − α)eσ1 + αe−σ1 − 1 is nonzero for each α, in
particular for α0. Since f(α0) = 0, we must have

(1 − α0)e
σ1 + α0e

−σ1 − 1 
= 0 
= (1 − α0)e
σ2 + α0e

−σ2 − 1
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so
r − μ1

(1 − α)eσ1 + αe−σ1 − 1
=

r − μ2

(1 − α)eσ2 + αe−σ2 − 1

Conjecture 48.2 (Probability 0.95) For a generic set of (σ1, σ2, μ1, μ2),
if S̄ does not admit arbitrage, there is a unique state price process.

Remark 48.3 The proof should go along the following lines. In the discrete
model, generically we have a unique ρ and α that satisfy the equation that
asymptotically makes S̄ into a martingale. There is a little problem with
the O(n−2) term; putting that aside, in the absence of arbitrage, the discrete
version of the Fundamental Theorem of Finance asserts that there is an
equivalent martingale measure, which says ρ > 0 and α ∈ [0, 1]. Then take
limits.

Thus, it appears very likely that we get unique martingale pricing of options
in a generic model with two stocks generated by X, a difference of Poisson
processes.

49 More Complicated Jump Processes

Consider the following model. Let X be a standard (nondecreasing) Poisson
Process with parameter ρ. Fix Z1, Z2, · · · independent, identically distributed
random variables, E(Zn) = 0, where each Zn is independent of the filtration
generated by X. Let

Z(ω, t) =
X(ω,t)∑
j=1

Zj(ω)

Note that our process X1 − X2 is a special case in which the Zn are IID,
taking the value 1 with probabilty 1

2
and −1 with probability 1

2
. If Zn has

a continuous distribution such as the normal, we will need infinitely many
stocks in order to get a unique state price process. However, we conjecture
(P=0.5) that some version of the following statement is true: given any ε > 0,
there exists a finite number N of stocks so that, for any state price process
on these stocks and the money market account, the martingale value of each
option must lie in an interval of length less than ε.
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50 Stochastic Volatility

In Lecture 30, we briefly discusses models with stochastic volatility and pre-
sented a conjecture. There will be an extended discussion of this in Lecture
31.
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