
Economics 201b
Spring 2010
Problem Set 2 Solutions

1. Competitive Equilibrium(-a) When Preferences Are Kinked. Recently
there have been a surge in decision theory models that are non-differentiable
in nature. For example, popular models incorporating loss aversion in prospect
theory, or ambiguity aversion as illustrated by Ellsberg Paradox, have kinked
indifference curves.

In this exercise we are going to take a reduced form of these preferences and
examine the implications of “kinkiness” on equilibrium prices and allocations
in our simplest 2 × 2 exchange economy, where agents’ utility functions are
∀i ∈ {1, 2},

Ui(x1i, x2i) =
√
x1i +

1

2

√
x2i if x1i ≤ x2i

1

2

√
x1i +

√
x2i if x1i > x2i.

(1)

Solution. As a normalization, in all of the following questions, we set p1 = 1,
and solve for relative price p = p2

p1
.

Before solving for each specific question, it helps to first derive individual de-
mands for each consumer. Since the utility functions of the two consumers are
the same, we calculate for just one. For a consumer i with the utility described
above and endowments (ω1i, ω2i), we want so solve the following optimization
problem:

max
x1i,x2i

Ui(x1i, x2i)

s.t. x1i + p · x2i ≤ ω1i + p · ω2i

x1i ≥ 0, x2i ≥ 0

Notice that U(x1i, x2i) is not differentiable and we should be careful when try-
ing to apply Kuhn-Tucker conditions. The mechanical (but safe) way to solve
the question is to split the budget set into two subsets by adding constraints
xi1 ≤ xi2 and xi1 ≥ xi2, and within each sub-budget set U(x1i, x2i) is differen-
tiable. We can solve the two sub-questions, and the solutions to the original
question can be obtained by comparing the utility levels of the solutions to the
two sub-questions.

A more intuitive way to solve the problem is to practice with the economic
concept of marginal rate of substitution (MRS). Notice that at any interior

solution (0 < x1i, 0 < x2i, and x1i 6= x2i) MRSi = ∂Ui\∂x1i

∂Ui\∂x2i
= p1

p2
= 1

p
. Also notice

that ∂Ui

∂x1i
|x1i=0+ = ∂Ui

∂x2i
|x2i=0+ = +∞, so consumer i will never demand zero
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amount of any commodity. Since preferences are strongly monotone, Walras
Law applies and the budget constraint is binding at optimal solutions : x1i +
p · x2i = ω1i + p · ω2i.

• When x1i > x2i > 0, Ui = 1
2

√
x1i +

√
x2i, we have MRSi = ∂Ui\∂x1i

∂Ui\∂x2i
=

1
2

√
x2i

x1i
< 1

2
. Notice if some x1i > x2i > 0 is the Walrasian demand, then it

is an interior solution, and this happens if and only if MRSi = 1
2

√
x2i

x1i
=

1
p
(< 1

2
), that is, when p > 2. Intuitively, consumer i will want to consumer

strictly more amount of commodity 1, only when commodity 2 is more than
twice as expensive as commodity 1. Together with x1i+p·x2i = ω1i+p·ω2i,
we can solve for

Di(p) =

(
p · ω1i + p2 · ω2i

4 + p
,
4ω1i + 4p · ω2i

4p + p2

)
• When 0 < x1i < x2i, Ui(x1i, x2i) =

√
x1i + 1

2

√
x2i, we have MRSi =

∂Ui\∂x1i

∂Ui\∂x2i
= 2

√
x2i

x1i
> 2. Notice if some 0 < x1i < x2i is the Walrasian

demand, then it is an interior solution, and this happens if and only if

MRSi = 2
√

x2i

x1i
, that is, when p < 1

2
. Intuitively, consumer i will want to

consumer strictly more amount of commodity 2, only when commodity 1 is
more than twice as expensive as commodity 1. Together with x1i+p ·x2i =
ω1i + p · ω2i, we can solve for

Di(p) =

(
4p · ω1i + 4p2 · ω2i

4p + 1
,
ω1i + p · ω2i

4p2 + p

)
• For p ∈ [1

2
, 2], the only possible demand is at xi1 = xi2, as we’ve ruled out

the other cases. It’s also easy to verify that consumer i does demand at
where x1i = x2i hits the budget constraint x1i + p · x2i = ω1i + p · ω2i. At
x1i = x2i, when consumer i is considering whether she should increase x1i

by a small amount, she calculates MRS using Ui(x1i, x2i) = 1
2

√
x1i +

√
x2i,

so the MRS=2. So she is not willing to sacrifice more than 1
2

unit of
consumption of commodity 2 to increase consumption of commodity 1 by
1 unit, and given the exchange price at p ≥ 1

2
, she will not want to increase

x1i. Similarly she will not want to increase x2i, since at this time she is
using Ui =

√
x1i + 1

2

√
x2i, and the MRS = 1

2
. Solving for the interception

of 45 degree line and budget constraint, we have

Di(p) =

(
ω1i + pω2i

1 + p
,
ω1i + pω2i

1 + p

)
.

2
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To sum up, we’ve verified that a consumer i with this kind of “kinky” prefer-
ences, and some general initial endowment (ω1i, ω2i) will demand as

Di(p) =
(p · ω1i + p2 · ω2i

4 + p
,
4ω1i + 4p · ω2i

4p + p2

)
, for p > 2;(ω1i + p · ω2i

1 + p
,
ω1i + p · ω2i

1 + p

)
, for p ∈

[
1

2
, 2

]
;(4p · ω1i + 4p2 · ω2i

4p + 1
,
ω1i + p · ω2i

4p2 + p

)
, for p <

1

2
.

(2)

And her individual excess demand function is:

Ei(p) =
(p2 · ω2i − 4ω1i

4 + p
,
4ω1i − p2 · ω2i

4p + p2

)
, for p > 2;(p · ω2i − p · ω1i

1 + p
,
ω1i − ω2i

1 + p

)
, for p ∈ [

1

2
, 2];(4p2 · ω2i − ω1i

4p + 1
,
ω1i − 4p2 · ω2i

4p2 + p

)
, for p <

1

2
;

(3)

(a) Suppose the initial endowments are ωi = (4, 4), ∀i ∈ {1, 2}. Draw the
Edgeworth box for this economy. Find the Pareto optimal allocations.
Verify that the initial endowment is an equilibrium allocation. Find the
supporting equilibrium price(s).

Solution. When ωi = (ω1i, ω2i) = (4, 4),∀i ∈ {1, 2}, from demand func-
tion (2) we can see for any price in [1

2
, 2], both consumers will demand at

endowments (4,4), and obviously individual excess demand is 0 for each
consumer, the market clears. For a graphic illustration of the equilibrium
solution see figure 1(a).

As to the set of all Pareto optimal allocation, we find it by solving the
problem (P) for all Ū ∈ [U(0), U(ω̄)]:

max
x1

U(x1)

s.t. U(x2) ≥ Ū ,
x1 ≥ 0, x2 ≥ 0,
x1 + x2 ≤ ω̄.

where xi is a consumption vector of agent i. Note again, that with non-
differentiable utility function the application of Kuhn-Tacker maximization
technique is complicated. However, given the symmetry of the problem, we
can solve it quite easily by inspection. For that, fix some utility level of the
agent 2, Ū ∈ [U(0), U(ω̄)]. Now, notice that convexity and symmetry of
agents’ indifference curves implies that the highest utility of the agent 1 is

3
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achieved when both indifference curves meet on the diagonal of Edgeworth
box and x1i = x2i, ∀i ∈ {1, 2}. In other words, the set of all Pareto optimal
allocations is {

{w1 = (s, s), w2 = (8− s, 8− s)}|s ∈ [0, 8]
}
.

(b) Now suppose the endowments are instead ω′1 = (5, 3), ω′2 = (3, 5). Find
the individual and market excess demand functions (notice that the utility
function is not differentiable). Find the competitive equilibrium prices and
allocations. Is there a unique equilibrium?

Solution. Substitute ω′1 = (5, 3), ω′2 = (3, 5) into (3) and set the excess
demand to zero E11(p) + E12(p) = 0 (notice that by Walras’ Law, we only
need to check clearing of one market). We have:

• ∀p > 2, E11(p) + E12(p) = 8p2−32
4+p

> 0, markets will not clear,

• ∀p ∈ [1
2
, 2], E(p) = (0, 0), markets clear.

• ∀p < 1
2
, E11(p) + E12(p) = 32p2−8

4p+1
< 0, markets will not clear.

So in this case, every price in [1
2
, 2] is an equilibrium price. At every equilib-

rium price p∗ ∈ [1
2
, 2], the equilibrium allocation is x∗1 = (5+3p∗

1+p∗
, 5+3p∗

1+p∗
), x∗b =

(3+5p∗

1+p∗
, 3+5p∗

1+p∗
). For a graphic illustration of the equilibrium solution see fig-

ure 1(b). The equilibrium is not unique.

Remark: in both (a) and (b), we have a continuum of (thus uncount-
ably many) equilibrium prices. This is called “price indeterminacy” in the
literature. Notice that this result is mainly driven by the “kink” in the in-
difference curve, the nondifferentiability at the kink makes the MRS when
approximating from the left and the right differ, thus there exist a range
of price at which we can observe demand “bundling” at the kink. For a
long time the literature associates the kinky preference with price indeter-
minacy, but actually it is not always true. The next exercise illustrates
this point.

(c) Now suppose the endowments are instead ω′′1 = (8, 2), ω′′2 = (3, 5). Repeat
the calculations that you have done in (b). (Note that the Edgeworth box
is different in this case). Comment on how the kinkiness of preferences
affect the size of competitive equilibria.

Solution. Again we substitute into (3) and sum up E11(p) + E12(p) to
calculate market excess demand:

• ∀p > 2, E11(p)+E12(p) = 7p2−44
4+p

. Market clearing E11(p)+E12(p) = 0

occurs when p∗ =
√

44
7

, and the equilibrium allocation is

(x∗11, x
∗
21) =

(
8p∗ + 2(p∗)2

4 + p∗
,

8p∗ + 32

4p∗ + (p∗)2

)
,

(x∗12, x
∗
22) =

(
3p∗ + 5(p∗)2

4 + p∗
,

20p∗ + 12

4p∗ + (p∗)2

)
4
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• ∀p ∈ [1
2
, 2], E11(p) + E12(p) = −3p

1+p
, markets will not clear.

• ∀p < 1
2
, E11(p) + E12(p) = 28p2−11

4p+1
< 0, markets will not clear.

For a graphic illustration of the equilibrium solution see figure 1(c). In
this case, we are back to the case we only have a unique equilibrium. So
even with “kinky” preference, price indeterminacy is the equilibrium price
could be uniquely determined.

(d) Does the First Welfare Theorem holds in this economy? What about the
Second Welfare Theorem?

Solution. Yes, both theorems hold as their hypotheses are satisfied.

2. More Fun with Offer Curves! Consider simple two-person, two-good econ-
omy in which agents’ utility functions are given by

U1(x11, x21) = min{x11, x21}, and U2(x12, x22) = min{4x12, x22}. (4)

and endowments are ω′1 = (30, 0), ω′2 = (0, 20).

(a) If neither agents can have negative consumption of either good, what is
Walrasian equilibrium?

Solution. With Leontiev preferences, the indifference curves of both
agents are right-angles. For agent 1 their vertices lie on the line x11 = x21,
whereas, for agent 2, they lie on the line x22 = 4x12. These lines are
respective offer curves of both agents when both prices are strictly positive.
For the case when one of the prices is zero, we have following offer curves:

OC1(p1, p2) =

{
(x11, ω21) : x11 ≥ ω21 if (p1, p2) ∈ {0} × R++

(ω11, x21) : x21 ≥ ω11 if (p1, p2) ∈ R++ × {0}

OC2(p1, p2) =

{
(x11, ω21) : x11 ≥ 1

4
ω21 if (p1, p2) ∈ {0} × R++

(ω11, x21) : x21 ≥ 4ω11 if (p1, p2) ∈ R++ × {0}

For ω′1 = (30, 0), ω′2 = (0, 20) it is easy to see that the line x11 = x21 starting
at agent 1’s origin, OC1, does not intersect the line x22 = 4x12 with respect
to agent 2’s origin, OC2. Thus, there cannot be an equilibrium with both
goods having non-zero price (equivalently, with both agents consuming
non-zero amounts of both goods).

So, consider first the case p1 = 0, p2 > 0. The offer curves are: OC1(0, p2) =
{(x11, 0) : x11 ≥ 0} and OC2(0, p2) = {(x12, 5) : x12 ≥ 20}. Their points of
intersection are given by the set{(

(x∗11, x
∗
21), (x

∗
12, x

∗
22)
)

=
(
(30− s, 0), (s, 20)

)
: s ∈ [5, 30]

}
.

Any such point is a competitive equilibrium.
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For the case p1 > 0, p2 = 0, the offer curves are: OC1(p1, 0) = {(30, x21) :
x21 ≥ 30} and OC2(p1, 0) = {(0, x22) : x22 ≥ 0}. Since agent 1’s demand
for good 2 cannot be satisfied by the social endowment, we cannot have
an equilibrium for p1 > 0, p2 = 0.

(b) Now suppose the first agent starts only with 10 units of good 1 instead of
30 and none of the second. What is Walrasian equilibrium in this case?
Explain briefly your results. Hint: be sure to find all Walrasian equilibria.

Solution. In this case, line x11 = x21 starting at agent 1’s origin, OC1,
intersect the line x22 = 4x12 with respect to agent 2’s origin, OC2, at E.
This corresponds to the allocation

(x∗11, x
∗
21) =

(
20

3
,
20

3

)
, and (x∗12, x

∗
22) =

(
10

3
,
40

3

)
.

It can be supported as a competitive equilibrium for any strictly positive
price vector, (p1, p2) ∈ R2

++.

When p1 = 0, p2 > 0, the offer curves are similar to those described above.
They intersect at any point in the set{(

(x∗11, x
∗
21), (x

∗
12, x

∗
22)
)

=
(
(10− s, 0), (s, 20)

)
: s ∈ [5, 10]

}
.

Again, any such point is a competitive equilibrium.

For the case p1 > 0, p2 = 0, the offer curves are: OC1(p1, 0) = {(10, x21) :
x21 ≥ 10} and OC2(p1, 0) = {(0, x22) : x22 ≥ 0}. They intersect at any
point in the set{(

(x∗11, x
∗
21), (x

∗
12, x

∗
22)
)

=
(
(10, s), (0, 20− s)

)
: s ∈ [10, 20]

}
.

Any such point is also a competitive equilibrium.

Notice that when the social endowment of good 1 decreases from 30 to 10,
we obtain equilibria where the price of good 1 is no longer zero. Intuitively,
good 1 can now be scarce enough, relative to good 2, to have a positive
price and, therefore, to allow agent 1 positive consumption of both goods.
The price of good 2 can now even be driven down to zero, in which case
agent 1 essentially consumes the entire social endowment of both goods,
the situation that was previously not possible.

(c) Suppose that an agent decides to throw away part of her endowment to
change the equilibrium prices in the economy. Can agent be better off
in the new equilibrium than in the equilibrium with the original endow-
ment? Provide an example and explain. (The example does not have to
be analytic, however, it must be described clearly and coherently).

Solution. Note that is exactly what we have just observed in (b). How-
ever, this observation applies not only when one of the prices is zero, but
also much more generally, as income effects can lead to quite “surprising”
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changes in the welfare properties of competitive equilibria. Finally, it is im-
portant to mention that agent 1 should throw away part of her endowment
before Walrasian “auctioneer” starts quoting up prices, otherwise argent 1
won’t be acting as a price-taker.

3. Equilibrium with “Bads.” Consider an exchange economy that contains two
consumers with utility function of the form ∀i ∈ {1, 2}:

Ui(x1i, x2i) = x1i(4− x2i) (5)

defined over consumption set [0, 5] × [0, 3] ⊂ R2
+. Notice that the second com-

modity is “bad.” Endowments are given by ω1 = (1, 3) and ω2 = (3, 1).

(a) Show that feasible allocation x is Pareto optimal if and only if x11+x21 = 4.

Solution. To find set of all feasible allocations we solve the program
(P ), which is both a sufficient and necessary condition for an allocation to
be Pareto optimal

max
x11,x21

x11(4− x21)

s.t. (4− x11)x21 ≥ Ū ,
x1 ≥ 0, x2 ≥ 0.

where x1, x2 are the consumption vectors of agents. The first order con-
ditions yield (4− x21)(4− x11) = x21 x11, which directly implies the result
we need to demonstrate.

(b) Compute excess demand functions and find the Walrasian equilibrium.
Illustrate it with Edgeworth box diagram.

Solution. As a normalization, in all of the following questions, we set
p1 = 1, and solve for relative price p = p2

p1
. Solving consumer’s utility

maximization problem

max
x1i,x2i

x11(4− x21)

s.t. x1i + p · x2i ≤ ω1i + p · ω2i

x1i ≥ 0, x2i ≥ 0

we obtain following excess demand functions

EDi =

(
ω1i + p · ω2i − 4p

2
− ω1i,

ω1i + p · ω2i + 4p

2p
− ω2i

)
Setting market excess demand to zero, E11 + E12 = 0, we obtain p∗ =
−1 and equilibrium allocation that is economy’s endowment (x∗1, x

∗
2) =(

(1, 3), (3, 1)
)
.

(c) What happens to the Walrasian equilibrium if the first consumer has the
right to dump all of her endowment of the second commodity onto the
second consumer?

7
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Solution. Consumer 1 deciding to dump all “bad” onto the second
consumer creates new endowment (ω1, ω2)

′ =
(
(1, 0), (3, 4)

)
. Again, setting

market excess demand to zero, E11 + E12 = 0, we obtain −2p = 2. Thus,
the equilibrium price has not changed, p∗ = −1, but we obtained new
equilibrium allocation with (x∗11, x

∗
21) =

(
5
2
, 3
2

)
and (x∗12, x

∗
22) =

(
3
2
, 5
2

)
.

(d) What happens to the Walrasian equilibrium if there is an ad valorem tax
t on any sale of good 2 paid by the seller, which is then shared equally
between two agents?

Solution. Notice that the imposition of the tax on net trade in sec-
ond commodity creates kinks in the budget set of the consumers at the
endowment points.

Bi(p,Ri) =
{
xi ∈ [0, 5]× [0, 3] ⊂ R2

+ :

x1i − ω1i + p · (x2i − ω2i) + t · p ·max {x2i − ω2i, 0} ≤ Ri

}
where Ri are the rebated tax receipts. For instance, in our 2× 2 exchange
economy, budget line will generally have two kinks. Consequently, relative
prices can change as a result of ad valorem tax. Solving for a new equi-
librium would be entirely non-trivial because we would have to consider
carefully different cases.

However, our results in (a) and (b) suggest that the only competitive
equilibrium in the economy is the original endowment point, i.e. we do
not observe any net trades taking place. Thus, the ad valorem tax on the
“bad” is irrelevant here, and we retain old equilibrium with (p∗, (x∗1, x

∗
2)).

4. Importance of Assumptions. Give examples of the following, and illustrate
them using an Edgeworth box. Please be clear and precise.

(a) A Pareto optimal allocation that can’t be sustained as a Walrasian equi-
librium with transfers.

Solution. Consider two-person, two-good economy with agent’s utility
function Ui(x1i, x2i) = x2

1i + x2
2i and endowment vector ωi = (1, 1) ∀i ∈

{1, 2}. It is easy to show that non-convexity of preferences generates a
situation where none of the Pareto optimal allocations, except for (2, 0)
and (0, 2), can be supported as a Walrasian equilibrium with transfers (see
figure 4(a)).

(b) A Walrasian equilibrium that is not Pareto optimal (Please do not use
externalities).

Solution. See question 2(b) on the problem set 1, where the existence of
a satiation point for second consumer generates a Walrasian equilibrium
that is not Pareto optimal.

5. Computing the Transfers. Consider again the exchange economy from the
question 1 of the problem set 1: a two-person, two-good exchange economy

8
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where the agents’ utility functions are U1(x11, x21) = x11x21 and U2(x12, x22) =
x12x22, and the initial endowments are ω1 = (1, 3) and ω2 = (3, 1). Show
directly that every interior Pareto optimal allocation in this economy is a price
equilibrium with transfers by finding the associated prices and transfers.

Solution. Recall from the solution of the previous problem set that given two
prices p1 > 0, p2 > 0 we had following demand schedules:

Di(p1, p2, ωi) =

(
p · ωi

2p1
,
p · ωi

2p2

)
thus, with transfers T1 +T2 = 0 and endowments ω1 = (1, 3) and ω2 = (3, 1) we
have:

D1(p1, p2, ω1) =

(
p1 + 3p2 + T

2p1
,
p1 + 3p2 + T

2p2

)
and

D2(p1, p2, ω2) =

(
3p1 + p2 − T

2p1
,
3p1 + p2 − T

2p2

)
.

where T = T1 is the only transfer in the economy from agent 2 to agent 1.
Now, notice that the price will always be equal for both goods and in equilibrium
we will have the following allocations:

(x∗11, x
∗
21) =

(
2 +

T

2p∗
, 2 +

T

2p∗

)
and (x∗12, x

∗
22) =

(
2− T

2p∗
, 2− T

2p∗

)
.

Thus, for the Pareto optimal allocation

{(s, s) for agent 1, and (4− s, 4− s) for agent 2}

the transfer is T = 2p∗(s− 2) from agent 2 to agent 1.
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