
Economics 201b
Spring 2010
Solutions to Problem Set 3
John Zhu

1. Note in the 2010 version of Professor Anderson’s Lecture 4 Notes, the characteri-
zation of the firm in a Robinson Crusoe economy is that it maximizes profit over
feasible sets. This is incorrect, and the appropriate correction has been made. The
correct description should coincide with our understanding of firms and agents
from previous exchange economies and more general Arrow-Debreu economies -
that is, they do not take into account the size of the social endowment when
making their decisions. For this problem set we will make an exception for those
students who wrote their solutions for this exercise with the incorrect assumption
in mind. However, in the future we will be operating under the correct assumption.

Let w and p be the prices of the first and second good.

The Agent’s Utility Maximizing Decision

w
p
< 1

β
⇒ use all wealth for good 1 consumption

(x1, x2) = {(L+
Π

w
, 0)}

w
p

= 1
β
⇒ indifferent between any consumption bundle on budget frontier

(x1, x2) = {(x1,
w(L− x1) + Π

p
)|x1 ∈ [0, L+

Π

w
]}

w
p
> 1

β
⇒ use all wealth for good 2 consumption

(x1, x2) = {(0, wL+ Π

p
)}

The Firm’s Profit Maximizing Decision

w
p
< α ⇒ profit can be arbitrarily large, will want arbitrarily large amount good 1 (i.e.

demand is empty). Alternatively, under the incorrect assumption, the firm can maximize
profit demanding the social endowment of good 1

(z, q) = (L, αL) and Π = pαL− wL

w
p

= α⇒ firm makes zero profits, indifferent between any point on production possibility
frontier

(z, q) = {(z, αz)|z ≥ 0} and Π = 0

1



w
p
> α ⇒ good 1 (the input good) is too expensive, the firm chooses not to produce

anything, zero profits
(z, q) = (0, 0) and Π = 0

Thus this exercise reduces to mixing and matching the quantities w
p
, 1
β
, α so that what the agent

wants to do fits with what the firm wants to do.
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Figure 1: Cases 1 - 3

Case 1: 1
β
> α

We can rule out w
p
> 1

β
> α and 1

β
> α > w

p
. However, for any price ratio w

p
such that

1
β
≥ w

p
≥ α there is a unique equilibrium where the firm produces nothing, and the agent

consumes his endowment:

{(x1(p
∗, w∗), x2(p

∗, w∗)) = (L, 0), (z(p∗, w∗), q(p∗, w∗)) = (0, 0),Π(p∗, w∗) = 0}

Case 2: 1
β

= α
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One can show that a necessary condition for equilibrium is 1
β

= w
p

= α, in which case the
set of equilibria is

{(x1(p
∗, w∗), x2(p

∗, w∗)) = (x1,
w∗(L− x1)

p∗
), (z(p∗, w∗), q(p∗, w∗)) = (L− x1, α(L− x1)),

Π(p∗, w∗) = 0 | x1 ∈ [0, L]}

Case 3: 1
β
< α

One can show it must be the case w
p

= α, in which case the unique equilibria is

{(x1(p
∗, w∗), x2(p

∗, w∗)) = (0,
wL

p
), (z(p∗, w∗), q(p∗, w∗)) = (L, αL),Π(p∗, w∗) = 0}

Under the incorrect assumptions, we can let the relative price become lower. So long as
1
β
≤ w

p
≤ α, we still have equilibrium because the firm will never demand more than L

{(x1(p
∗, w∗), x2(p

∗, w∗)) = (0,
w∗L+ p∗αL− w∗L

p∗
), (z(p∗, w∗), q(p∗, w∗)) = (L, αL),

Π(p∗, w∗) = p∗αL− w∗L}

2. Strong monotonicity implies p� 0 and budget constraints are binding:

p · xi = p · ωi +
J∑
j=1

θijp · yj + Ti for all i ⇒

I∑
i=1

p · xi =
I∑
i=1

p · ωi +
I∑
i=1

J∑
j=1

θijp · yj +
I∑
i=1

Ti ⇒

I∑
i=1

L∑
l=1

plxli =
I∑
i=1

L∑
l=1

plωli +
I∑
i=1

J∑
j=1

(
θij

L∑
l=1

plylj
)
⇒

L∑
l=1

(
pl

I∑
i=1

xli
)

=
L∑
l=1

(
pl

I∑
i=1

ωli
)

+
L∑
l=1

(
pl

J∑
j=1

I∑
i=1

θijylj
)
⇒

L∑
l=1

(
pl

I∑
i=1

xli
)

=
L∑
l=1

plω̄l +
L∑
l=1

(
pl

J∑
j=1

ylj
)

(1)

For l ≤ L− 1, the market clears, so

I∑
i=1

xli = ω̄l +
J∑
j=1

ylj for l = 1, 2, . . . L− 1
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or equivalently

pl

I∑
i=1

xli = plω̄l + pl

J∑
j=1

ylj for l = 1, 2, . . . L− 1

Summing over l = 1, . . . , L− 1

L−1∑
l=1

(
pl

I∑
i=1

xli

)
=

L−1∑
l=1

plω̄l +
L−1∑
l=1

(
pl

J∑
j=1

ylj

)
(2)

subtracting (2) from (1) we get

pL

I∑
i=1

xLi = pLω̄L + pL

J∑
j=1

yLj

Since pL > 0, we may divide by pL and deduce the market clearing condition for good L:

I∑
i=1

xLi = ω̄L +
J∑
j=1

yLj

3(a). Fix an arbitrary price vector p = (p1, p2). The firm’s profit maximization problem is

argmax
y1

p2e log(1− y1) + p1y1

Taking the derivative, we have the first order condition

−p2e

1− y1

+ p1 = 0⇒

y1 = min{1− ep2

p1

, 0}

We need the min because when p2
p1
≤ 1

e
, we have a boundary solution of y = 0. However we

will see that this is a non-binding condition because if p2
p1
≤ 1

e
, then the markets will not clear.

Now the first agent’s utility maximization problem is

argmax
x11,x21

log(x11)

e
+ x21 −

1

e
s.t. p1x11 + p2x21 ≤ p1e+ θ1Π ⇒

argmax
x11

log(x11)

e
+
p1e+ θ1Π− p1x11

p2

Taking the derivative, we have the first order condition

1

ex11

=
p1

p2

⇒ x11 =
1

e

p2

p1

Similarly, we can find agent 2’s x12:

x12 =
p2

p1
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Thus market clearing condition for good 1 dictates

x11 + x12 =
p2

p1

(1 +
1

e
) = e2 + e+ 1− ep2

p1

= ω̄1 + y1 ⇒

1

e

p2

p1

(e2 + e+ 1) = e2 + e+ 1 ⇒ p2

p1

= e

Indeed, if p2
p1
≤ 1

e
, we would have x11 +x12 ≤ 1

e2
+ 1

e
< e2 + e = ω̄1 + y1. From here, we can then

find y2, Π, x21 and x22:

y1 = 1− e2 ⇒ y2 = 2e and Π = p22e+ p1(1− e2) = p2(2e−
e2 − 1

e
) = p2(e+

1

e
)

x21 =
p1e+ θ1Π− p1x11

p2

= 1− 1

e
+ θ1(e+

1

e
)

x22 =
p1e

2 + θ2Π− p1x12

p2

= e− 1 + θ2(e+
1

e
)

Now because of exercise 2 we know that the second good must automatically clear as well,
which means we have found the equilibrium:(

p∗2
p∗1

= e, x∗ =

{(
1, 1− 1

e
+ θ1(e+

1

e
)
)
,
(
e, e− 1 + θ2(e+

1

e
)
)}
, y∗ = (1− e2, 2e)

)
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(b). The phrase - “no access to firm’s technology” - literally means that they cannot use the tech-
nology of the firm, which means there is no second good, and the agents then simply consume
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their endowment. In particular “no access to firm’s technology” does not have anything to do
with whether the agents get a share of the firm’s profits. Some of you asked for clarification at
office hours. In general this is a good idea if you are ever unsure. However, if you misunderstood
the meaning to be zero shares but did the analysis correctly otherwise, I will give you full credit.

One can easily show that the reservations utilities U i are both 0. So it reduces to maximizing
the following expression with respect to θ1:

argmax
θ1

U1

(
1, 1− 1

e
+ θ1(e+

1

e
)

)
U2

(
e, e− 1 + (1− θ1)(e+

1

e
)

)
⇒

argmax
θ1

(
1− 2

e
+ θ1(e+

1

e
)

)(
1 + e− 1 + (1− θ1)(e+

1

e
)− 2

)
Taking the derivative, we get the first order condition for θ1

(e+
1

e
)

(
e− 2 + (1− θ1)(e+

1

e
)

)
− (e+

1

e
)

(
1− 2

e
+ θ1(e+

1

e
)

)
= 0 ⇒

e− 2 + e+
1

e
− 1 +

2

e
= θ12(e+

1

e
)⇒

2e2 − 3e+ 3 = θ12(e2 + 1) ⇒ θ1 =
2e2 − 3e+ 3

2(e2 + 1)
and θ2 =

3e− 1

2(e2 + 1)

If you interpreted the problem to mean zero shares, then a similar analysis can be performed
and the answer is (θ1, θ2) = (1

2
, 1

2
).

4(a). Regardless of γ, the exact allocations {(1, 0), (0, γ)} and {(0, γ), (1, 0)} are always Pareto Op-
timal - whoever gets (1, 0) achieves maximal utility given the social endowment, so if there
is a Pareto improvement, it must improve the utility of the agent with (0, γ). But this can
only be done if either he receives more of good 2, which is impossible, or receives strictly more
than γ of good 1, which is either also impossible or would leave the other agent strictly worse off.

Case 1: γ < 1
2

Consider an arbitrary exact allocation {(a, b), (c, d)}.

a ≤ γ: then consider the following sequence of changes:

{(a, b), (c, d)} → {(a, b+ d), (c, 0)} → {(0, b+ d), (c+ a, 0)} = {(0, γ), (1, 0)}

∗ since c ≥ 1− γ > γ ≥ d the first change is weakly Pareto improving

∗ since b+ d = γ ≥ a the second change is weakly Pareto improving

∗ if d > 0 then the first change is strictly Pareto improving

∗ if a > 0 then the second change is strictly Pareto improving

∗ Thus the only exact Pareto Optimal allocations when a ≤ γ is {(0, γ), (1, 0)}.
c ≤ γ (equivalently, a ≥ 1 − γ): by symmetry the only exact Pareto Optimal allocation
when c ≤ γ is {(1, 0), (0, γ)}.
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a ∈ (γ, 1−γ) (equivalently, c ∈ (γ, 1−γ)): Any exact allocation is Pareto Optimal because
both agents derive their utility from their allocation of the first good. Even if a particular
agent had all of good 2 transferred to himself, it is less than what he’s consuming in good
1, so it does not constitute a strict Pareto improvement.

– So the set of all exact Pareto Optimal allocations is

{(1, 0), (0, γ)} ∪ {(0, γ), (1, 0)} ∪ {(x11, x21), (1−x11, γ−x21) | x11 ∈ (γ, 1−γ) x21 ∈ [0, γ]}

Case 2: 1
2
≤ γ ≤ 1 There are only two possibilities: either a ≤ γ or c ≤ γ. We can

use the exact same argument to get to the only two exact Pareto Optimal allocations
{(1, 0), (0, γ)} and {(0, γ), (1, 0)}.
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Now I claim that by symmetry we have already basically solved the cases where γ ≥ 1 as well.
First convince yourself that the analysis of cases where the social endowments only differ by a
constant factor are essentially the same. Furthermore, because of the symmetry of the utility
function, convince yourself that the analysis of cases where the social endowment for each good
is reversed is also essentially the same.

Thus for γ ≥ 1, the (1, γ) case is basically the same as the ( 1
γ
, 1) case which is basically

the same as the (1, 1
γ
) case, which we have already considered since 1

γ
≤ 1.
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So for 1 ≤ γ ≤ 2, the only exact Pareto Optimal allocations are {(1, 0), (0, γ)} and {(0, γ), (1, 0)}
just like Case 2. And for γ > 2, the set of exact Pareto Optimal allocations is

{(1, 0), (0, γ)} ∪ {(0, γ), (1, 0)} ∪ {(x11, x21), (1− x11, γ − x21) | x11 ∈ [0, 1] x21 ∈ [1, γ − 1]}

which is similar to Case 1.

4(b). The Pareto Optimal allocations {(1, 0), (0, γ)} and {(0, γ), (1, 0)} can both be supported by
the price vector (p1, p2) where p1 = p2 = q. We will now show that no other Pareto Optimal
allocation can be supported as an equilibrium with transfers. So let’s consider one of the non
corner Pareto Optimal allocations in, say, Case 1:

{(x11, x21), (1− x11, γ − x21)}

where x11 is some number in (γ, 1− γ) and x21 is some number in [0, γ].

The total wealth of the of exchange economy is p1 + p2γ. If there is a good that is strictly
cheaper (say good i), both agents would use all their wealth to purchase that good. So the
total demand for good i is p1+p2γ

pi
> 1 + γ > max{1, γ} ≥ social endowment of good i. Thus

p1 = p2 = q. In this case, each agent would still choose one good and use their entire wealth
to purchase this good. Since x11 > γ, for the consumption bundle (x11, x21) to be even feasible
for agent 1, it must be the case that his wealth w1 ≥ qx11 > qγ1, which means for there to
be an equilibrium he must choose to only buy good 1 (if he chose instead to buy only good 2,
there wouldn’t be enough). Similarly, agent 2 is too wealthy to only buy good 2, which means
he must also choose to only buy good 1 but then the total demand for good 1 is too great and
the total demand for good 2 is to small.

Thus the Second Welfare Theorem fails for γ ∈ (0, 1
2
) ∪ (2,∞).
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