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la. Suppose there is a portfolio z such that Rz > 0 and Rz # 0. Then ¢q- 2z = p- Rz > 0. If]
however, we only have p > 0, then it is possible that the nonzero coordinates of u and the
nonzero coordinates of Rz don’t overlap, in which case ¢-2z =pu- Rz = 0.

b. We know that every arbitrage free price ¢ can be represented as ¢ = u - R for some vector
of state multipliers 1 > 0 (in the previous part, we showed the converse is not true). So
suppose there are two arbitrage free prices gy, ¢; with corresponding vectors of state multipliers
o, i1, and a portfolio z such that Rz > 0 and Rz # 0. Then for any a € [0, 1], the price
do = (1 — a)qo + aq; can be represented as

0o = ((1 =)o + ) R
Then ¢, -2 = (1 —a)po + apy) - Rz = (1 — a)po - Rz + apy - Rz > 0.

c. Define ¢ = (q1,q2,q3)7 = (4,5,¢3) to be an arbitrage free price. Let u = (uy, i2, u3)? be the
corresponding vector of state multipliers. Then
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Thus if we assume the above two equations then
>0 <= €[0,1]

Now if p; € (0,1) then > 0 and the price is arbitrage free by part (a). Thus it suffices to
consider the two prices corresponding to u; € {0,1}.

When 1 = 0 we have

¢"=[01 1] =[4 5 3]

W =
QTR
RO — W

Let 2T = (21, 2, 23) be a portfolio such that ¢ - z = 0. Then
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Notice that the portfolio 27 = (—=2,1,1) is way to arbitrage:

-2 1 2 3 -2 3
q-z:[4 D 3] 1 =0 and Rz=|1 11 1 =10
1 3 4 2 1 0
Now consider when p; = 1:
1 2 3
¢=[130]|111|=[45 6]
3 4 2
Let 27 = (21, 2, 23) be a portfolio such that q -z = 0. Then
21 21 —Z21 — 232
22 = 29 = Rz = —2zlgz2
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Notice that the portfolio 27 = (—1,2, —1) is way to arbitrage:
-1 1 2 3 -1 0
q-z:[4 5 6] 2 | =0 and Rz=1]111 2 | =10
-1 3 4 2 -1 3

Thus for ¢ to be arbitrage free, we must have g3 € (3, 6).

We know from problem set 1 that in the second time period, with agent utilities of the form
U(z,y) = zy and a social endowment of (a,b) > 0, the set of equilibrium allocations comprise
the diagonal line from O; to O, in the Edgeworth box, and the equilibrium price must be

(a%b, -45). Thus the unique (in A° x A°) Radner equilibrium spot price is p* = (pj,p3) =

((pi1, P31), (P31, P32)) = (5, 5), (5. 9))-

. The return vector for Sy is (2, 3)” and the return vector for S, is (4, 2)7. So the return matrix
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It is clear that the matrix has full rank except when h = 6. Thus when h = 6, p* is a Hart
point. If A = 0, then we have
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Clearly (qf,q5) > 0. So fix a price (¢,rq) for the two securities where ¢, r > 0. Let wg be
the worth (measured in the equilibrium price p%) of agent i’s endowment in state s. Agent i’s
maximization problem can be written as follows
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Now we can simplify some of the conditions to make this a tractable maximization problem.
All of the budgetary conditions are binding. So

R
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Thus the wealth vector is
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Let us find the allocation zy; as a function of a;. From part (a) we know
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Similarly,

Toy = ($12i>$22i) = (biabi)

Now since a; and b; are functions of z;; we can express the maximization problem purely in

terms of zy;:
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taking the derivative and setting equal to zero
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Now in equilibrium it must be that
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d. The endowments imply
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Plugging in r = % we get
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We can also calculate a; and b; for each i:

And finally, we can get the equilibrium allocations
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