Economics 201 A—Fall 2005—Second Half
The Second Welfare Theorem with Nonconvex Preferences

This handout is based on Anderson, “The Second Welfare Theorem with
Nonconvex Preferences,” Econometrica 56(1988), 361-382. As the diagram
on page 2 shows, the second welfare theorem may fail if preferences are
nonconvex. Specifically, it gives an economy with two goods and two agents,
and a Pareto optimum x* so that so that the utility levels of x* cannot be
approximated by an Walrasian equilibrium with transfers; moreover, if p*
is the price which locally supports z*, and T is the income transfer which
makes x affordable with respect to the prices p*, there is a unique Walrasian
equilibrium with transfers (y*,¢*,T); y* is much more favorable to agent I
and much less favorable to agent II than z* is.

Theorem 3.3 of the paper shows that this is, in a sense, the worst that
can happen under standard assumptions on preferences.! Specifically, given
a Pareto optimum x*, there is a Walrasian quasiequilibrium with transfers
(y*, p*,T) such that all but L people are indifferent between z* and y*, where
L is the number of goods. Those L people are treated quite harshly (they get
zero consumption). One could be less harsh and give these L people carefully
chosen consumption bundles in the convex hull of their quasidemand sets, but
one would then have to forbid them from trading, a prohibition that would
in practice be difficult to enforce.

ISee the paper for the precise assumptions needed on preferences.
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FIGURE 1.

there were an approximate Walrasian allocation g, it would have the property
that f(a) #* ,g(a) for all a (observe that f(a) is in the budget set). However, as
in the convex case, allowing the government to dictate f as the initial allocation
destroys the interpretation of the Second Welfare Theorem as a story of de-
centralized allocation.

In Theorem 3.3, we show that the government can achieve the utility levels
desired for all but k agents, where k is the dimension of the commodity space. In
other words, the pathology illustrated in Figure 1 disappears (at least for most
agents) provided that the number of agents is large relative to the number of
commodities. The proof is elementary, relying primarily on the Shapley-Folkman
Theorem. We focus on a particular choice of decentralizing price p; this price is
used by Mas-Colell in the proof of his theorem, and is closely related to the
so-called gap-minimizing price studied in Anderson (1987); essentially, p is the
price which minimizes the measure by which support fails in Mas-Colell’s
Theorem. Given any Pareto optimum f, there is an income transfer ¢ and a
quasiequilibrium f with respect to ¢ such that all but k agents are indifferent
between f and f. If preferences are monotone and a mild assumption on the
distribution of goods at f is satisfied, then we may show that p is strictly
positive, and hence f is a Walrasian equilibrium with respect to z. As an
alternative, we can achieve an approximate equilibrium (i.e., total excess demand
is bounded, independent of the number of agents) f such that all agents are
indifferent between f and f It is worth emphasizing that Theorem 3.3 is a
universal theorem, applying to all exchange economics, rather than a generic
theorem. However, there is no guarantee that f(a) is close to f(a) for any a. A





