
Economics 204
Lecture 10–Friday, August 7, 2009

Revised 8/8/09, Revisions indicated by ** and
Sticky Notes

Diagonalization of Symmetric Real Matrices (from
Handout):

Definition 1 Let

δij =

⎧⎪⎪⎨
⎪⎪⎩

1 if i = j
0 if i �= j

A basis V = {v1, . . . , vn} of Rn is orthonormal if vi · vj = δij. In
other words, each basis element has unit length, and distinct basis
elements are perpendicular.

Observation: Suppose that x = ∑n
j=1 αjvj where {v1, . . . , vn} is

an orthonormal basis of V . Then for any x ∈ V ,

x · vk =
⎛
⎜⎝ n∑
j=1

αjvj

⎞
⎟⎠ · vk

=
n∑

j=1
αj(vj · vk)

=
n∑

j=1
αjδjk

= αk

so
x =

n∑
j=1

(x · vj)vj

Example: The standard basis of Rn is orthonormal.

Definition 2 A real n × n matrix A is unitary if A� = A−1,
where A� denotes the transpose of A: the (i, j)th entry of A� is
the (j, i)th entry of A.
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Theorem 3 A real n × n matrix A is unitary if and only if
the columns of A are orthonormal.

Proof: Let **vj denote the jth column of A.

A� = A−1 ⇔ A�A = I

⇔ vi · vj = δij

⇔ {v1, . . . , vn} is orthonormal

If A is unitary, let V be the set of columns of A and W be the
standard basis of Rn.
Since A is unitary, it is invertible, so V is a basis of Rn.

A� = A−1 = MtxV,W (id)

Since V is orthonormal, the transformation between bases W
and V preserves all geometry, including lengths and angles.

Theorem 4 Let T ∈ L(Rn,Rn), W the standard basis of
Rn. Suppose that MtxW (T ) is symmetric. Then the eigen-
vectors of T are all real, and there is an orthonormal basis
V = {v1, . . . , vn} of Rn consisting of eigenvectors of T , so
that MtxW (T ) is diagonalizable:

MtxW (T )

= MtxW,V (id) · MtxV (T ) · MtxV,W (id)

where MtxV T is diagonal and the change of basis matrices
MtxV,W (id) and MtxW,V (id) are unitary.

The proof of the theorem requires a lengthy digression into the
linear algebra of complex vector spaces. Here is a very brief out-
line.
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1. Let M = MtxW (T ).

2. The inner product in Cn is defined as follows:

x · y =
n∑

j=1
xj · yj

where c̄ denotes the complex conjugate of any c ∈ C; note
that this implies that x · y = y · x. The usual inner product
in Rn is the restriction of this inner product on Cn to Rn.

3. Given any complex matrix A, define A∗ to be the matrix whose
(i, j)th entry is aji; in other words, A∗ is formed by taking the
complex conjugate of each element of the transpose of A. It
is easy to verify that given x, y ∈ Cn and a complex n × n
matrix A, Ax · y = x · A∗y. Since M is real and symmetric,
M ∗ = M .

4. If **M is real and symmetric, and λ ∈ C is an eigenvalue of
M , with eigenvector x ∈ Cn, then

λ|x|2 = λ(x · x)

= (λx) · x
= (Mx) · x
= x · (M ∗x)

= x · (Mx)

= x · (λx)

= (λx) · x
= λ(x · x)

= λ|x|2
= λ̄|x|2

which proves that λ = λ̄, hence λ ∈ R.
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5. If M is real (not necessarily symmetric) and λ ∈ R is an
eigenvalue, then det(M − λI) = 0 ⇒ ∃v∈Rn(M − λI)v = 0,
so there is at least one real eigenvector. Symmetry implies
that, if λ has multiplicity m, there are m independent real
eigenvectors corresponding to λ, **but unfortunately we don’t
have time to show why. Thus, there is a basis of eigenvectors,
hence M is diagonalizable over R.

6. **If M is real and symmetric, eigenvectors corresponding to
distinct eigenvalues are orthogonal: Suppose that Mx = λx
and My = ρy with ρ �= λ. Then

λ(x · y) = (λx) · y
= (Mx) · y
= (Mx)�y

=
(
x�M�) y

=
(
x�M

)
y

= x�(My)

= x�(ρy)

= x · (ρy)

= ρ(x · y)

so (λ− ρ)(x · y) = 0; since λ− ρ �= 0, we must have x · y = 0.

7. **Using the Gram-Schmidt method, we can get an orthonor-
mal basis of eigenvectors:

• **Let Xλ = {x ∈ Rn : Mx = λx}, the set of all eigen-
vectors corresponding to λ. Notice that if Mx = λx and
My = λy, then

M (αx+βy) = αMx+βMy = αλx+βλy = λ(αx+βy)
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so Xλ is a vector subspace. Thus, given any basis of Xλ, we
wish to find an orthonormal basis of Xλ; all elements of this
orthonormal basis will be eigenvectors corresponding to λ.

• **Suppose Xλ is m-dimensional and we are given indepen-
dent vectors x1, . . . , xm ∈ Xλ. The Gram-Schmidt method
finds an orthonormal basis {v1, . . . , vm} for Xλ.

• Let v1 = x1
|x1|. Note that |v1| = 1.

• Suppose we have found an orthonormal set {v1, . . . , vk}
such that span {v1, . . . , vk} = span {x1, . . . , xk}, with k <
m. Let

yk+1 = xk+1 −
k∑

j=1
(xk+1 · vj)vj, vk+1 =

yk+1

|yk+1|
•

span {v1, . . . , vk+1} = span {v1, . . . , vk, vk+1}
= span {v1, . . . , vk, yk+1}
= span {v1, . . . , vk, xk+1}
= span {x1, . . . , xk, xk+1}

• For i = 1, . . . , k,

yk+1 · vi =
⎛
⎜⎝xk+1 −

k∑
j=1

(xk+1 · vj)vj

⎞
⎟⎠ · vi

= xk+1 · vi −
K∑

j=1
(xk+1 · vj)(vj · vi)

= xk+1 · vi −
K∑

j=1
(xk+1 · vj)δij

= xk+1 · vi − xk+1 · vi

= 0

vk+1 · vi =
yk+1 · vi

|yk+1|
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=
0

|yk+1|
= 0

|vk+1| =
|yk+1|
|yk+1|

= 1

Application to Quadratic Forms
Consider a quadratic form

f (x1, . . . , xn) =
n∑

i=1
αiix

2
i +

∑
i<j

βijxixj (1)

Let

αij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

βij

2
if i < j

βji

2 if i > j

Let
A = (αij) so f (x) = x�Ax

Example: Let
f (x) = αx2

1 + βx1x2 + γx2
2

Let

A =

⎛
⎜⎜⎝ α β/2
β/2 γ

⎞
⎟⎟⎠

so A is symmetric and

(x1, x2)

⎛
⎜⎜⎝ α β/2
β/2 γ

⎞
⎟⎟⎠
⎛
⎜⎜⎝ x1

x2

⎞
⎟⎟⎠

= (x1, x2)

⎛
⎜⎜⎝ αx1 + (β/2)x2

(β/2)x1 + γx2

⎞
⎟⎟⎠

= αx2
1 + βx1x2 + γx2

2

= f (x)
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Return to general quadratic form in Equation (1)
A is symmetric, so let V = {v1, . . . , vn} be an orthonormal basis
of eigenvectors of A with corresponding eigenvalues λ1, . . . , λn.

A = U�DU

D =

⎛
⎜⎜⎜⎜⎜⎜⎝

λ1 0 . . . 0

0 . . . 0 λn

⎞
⎟⎟⎟⎟⎟⎟⎠

U = MtxV,W (id) is unitary

The columns of U� (the rows of U) are the coordinates of v1, . . . , vn,
expressed in terms of the standard basis W .Given x ∈ Rn, recall

x =
n∑

i=1
γivi where γi = x · vi

f (x) = f (
∑

γivi)

= (
∑

γivi)
� A (

∑
γivi)

= (
∑

γivi)
� U�DU (

∑
γivi)

= (U
∑

γivi)
� D (U

∑
γivi)

= (
∑

γiUvi)
� D (

∑
γiUvi)

= (γ1, . . . , γn)D

⎛
⎜⎜⎜⎜⎜⎜⎝

γ1
...

γn

⎞
⎟⎟⎟⎟⎟⎟⎠

=
∑

λiγ
2
i

The equation for the level sets of f is
n∑

i=1
λiγ

2
i = C

• If λi ≥ 0 for all i, the level set is an ellipsoid, with principal
axes in the directions v1, . . . , vn. The length of the principal
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axis along vi is
√
C/λi if C ≥ 0 (if λi = 0, the level set is

a degenerate ellipsoid with principal axis of infinite length in
that direction). The level set is empty if C < 0.

• If λi ≤ 0 for all i, the level is an ellipsoid, with principal axes in
the directions v1, . . . , vn. The length of the principal axis along
vi is

√
C/λi if C ≤ 0 (if λi = 0, the level set is a degenerate

ellipsoid with principal axis of infinite length in that direction).
The level set is empty if C > 0.

• If λi > 0 for some i and λj < 0 for some j, the level set is a
hyperboloid. For example, suppose n = 2, λ1 > 0, λ2 < 0.
The equation is

C = λ1γ
2
1 + λ2γ

2
2

=
(√

λ1γ1 +
√
|λ2|γ2

) (√
λ1γ1 −

√
|λ2|γ2

)

This is a hyperbola with asymptotes

0 =
√

λ1γ1 +
√
|λ2|γ2

⇒ γ1 = −
√√√√√√√
|λ2|
λ1

γ2

0 =
(√

λ1γ1 −
√
|λ2|γ2

)

⇒ γ1 =

√√√√√√√
|λ2|
λ1

γ2

This proves the following corollary of Theorem 4.

Corollary 5 Consider the quadratic form (1).

1. f has a global minimum at 0 if and only if λi ≥ 0 for all i;
the level sets of f are ellipsoids with principal axes aligned
with the orthonormal eigenvectors v1, . . . , vn.
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2. f has a global maximum at 0 if and only if λi ≤ 0 for all i;
the level sets of f are ellipsoids with principal axes aligned
with the orthonormal eigenvectors v1, . . . , vn.

3. If λi < 0 for some i and λj > 0 for some j, then f has a
saddle point at 0; the level sets of f are hyperboloids with
principal axes aligned with the orthonormal eigenvectors
v1, . . . , vn.

Section 3.4: Linear Maps between Normed Spaces

Definition 6 Suppose X, Y are normed spaces, T ∈ L(X, Y ).
We say T is bounded if

∃β∈R∀x∈X ‖T (x)‖Y ≤ β‖x‖X

Note this implies that T is Lipschitz with constant β.

Theorem 7 (4.1, 4.3) Let X, Y be normed vector spaces, T ∈
L(X, Y ). Then

T is continuous at some point x0 ∈ X

⇔ T is continuous at every x ∈ X

⇔ T is uniformly continuous on X

⇔ T is Lipschitz

⇔ T is bounded

Proof: Suppose T is continuous at x0. Fix ε > 0. Then there
exists δ > 0 such that

‖z − x0‖ < δ ⇒ ‖T (z) − T (x0)‖ < ε

Now suppose x is any element of X . If ‖y − x‖ < δ, let z =
y − x + x0, so ‖z − x0‖ = ‖y − x‖ < δ.

‖T (y) − T (x)‖
9



= ‖T (y − x)‖
= ‖T (y − x + x0 − x0))‖
= ‖T (z) − T (x0)‖
< ε

which proves that T is continuous at every x, and uniformly con-
tinuous.

We claim that T is bounded if and only if T is continuous at 0.
Suppose T is not bounded. Then

∃{xn} ‖T (xn)‖ > n‖xn‖
Note that xn �= 0. Let ε = 1. Fix δ > 0 and choose n such that
1
n

< δ. Let

x′
n =

xn

n‖xn‖
‖x′

n‖ =
‖xn‖
n‖xn‖

=
1

n
< δ

‖T (x′
n) − T (0)‖ = ‖T (x′

n)‖
=

1

n‖xn‖‖T (xn)‖

>
n‖xn‖
n‖xn‖

= 1

= ε

Since this is true for every δ, T is not continuous at 0. Therefore, T
continuous at 0 implies T is bounded. Now, suppose T is bounded,
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so find M such that ‖T (x)‖ ≤ M‖x‖ for every x ∈ X . Given
ε > 0, let δ = ε/M . Then

‖x − 0‖ < δ ⇒ ‖x‖ < δ

⇒ ‖T (x) − T (0)‖ = ‖T (x)‖ < Mδ

⇒ ‖T (x) − T (0)‖ < ε

so T is continuous at 0.
Thus, we have shown that continuity at some point x0 implies

uniform continuity, which implies continuity at every point, which
implies T is continuous at 0, which implies that T is bounded,
which implies that T is continuous at 0, which implies that T is
continuous at some x0, so all of the statements except possibly the
Lipschitz statement are equivalent.

Suppose T is bounded, with constant M . Then

‖T (x) − T (y)‖ = ‖T (x − y)‖
≤ M‖x − y‖

so T is Lipschitz with constant M ; conversely, if T is Lipschitz
with constant M , then T is bounded with constant M . So all the
statements are equivalent.

Theorem 8 (4.5) Let X, Y be normed vector spaces, T ∈
L(X, Y ), dim X < ∞. Then T is bounded.

Proof: See de la Fuente.
Given normed vector spaces X, Y , a topological isomorphism
between X and Y is a linear transformation T ∈ L(X, Y ) which
is invertible (one-to-one, onto), continuous, and has a continuous
inverse. Two normed vector spaces X and Y are topologically
isomorphic if there is a topological isomorphism T : X → Y .
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Suppose X,Y are normed vector spaces. We define

B(X, Y ) = {T ∈ L(X, Y ) : T is bounded}
‖T‖B(X,Y ) = sup

⎧⎪⎪⎨
⎪⎪⎩
‖T (x)‖Y

‖x‖X
, x ∈ X,x �= 0

⎫⎪⎪⎬
⎪⎪⎭

= sup{‖T (x)‖Y : ‖x‖X = 1}
Theorem 9 (4.8) Let X, Y be normed vector spaces. Then

(
B(X, Y ), ‖ · ‖B(X,Y )

)

is a normed vector space.

Proof: See de la Fuente.

Theorem 10 (4.9) Let T ∈ L(Rn,Rm) (= B(Rn,Rm))) with
matrix A = (aij) with respect to the standard bases. Let

M = max{|aij| : 1 ≤ i ≤ m, 1 ≤ j ≤ n}
Then

M ≤ ‖T‖ ≤ M
√

mn

.

Proof: See de la Fuente.

Theorem 11 (4.10) Let R ∈ L(Rm,Rn) and S ∈ L(Rn,Rp).
Then

‖S ◦ R‖ ≤ ‖S‖‖R‖
Proof: See de la Fuente.
Define

Ω(Rn) = {T ∈ L(Rn,Rn) : T is invertible}
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Theorem 12 (4.11’) Suppose T ∈ L(Rn,Rn), E the stan-
dard basis of Rn. Then

T is invertible

⇔ kerT = {0}
⇔ det (MtxE(T )) �= 0

⇔ det (MtxV,V (T )) �= 0 for every basis V

⇔ det (MtxV,W (T )) �= 0 for every pair of bases V,W

Theorem 13 (4.12) If S, T ∈ Ω(Rn), then S ◦ T ∈ Ω(Rn)
and

(S ◦ T )−1 = T−1 ◦ S−1

Theorem 14 (4.14) Let S, T ∈ L(Rn,Rn). If T is invertible
and

‖T − S‖ <
1

‖T−1‖
then S is invertible. In particular, Ω(Rn) is open in L(Rn,Rn) =
B(Rn,Rn).

Proof: See de la Fuente.

Theorem 15 (4.15) The function (·)−1 : Ω(Rn) → Ω(Rn)
that assigns T−1 to each T ∈ Ω(Rn) is continuous.

Proof: See de la Fuente.
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