Economics 204

Lecture 10—Friday, August 7, 2009

Diagonalization of Symmetric Real Matrices (from Handout):

Definition 1 Let

1 if i=j
(Sij =
0 if i#£j
A basis V = {v1,...,v,} of R™ is orthonormal if v; - v; = 6;;. In other words, each basis element has unit

length, and distinct basis elements are perpendicular.

Observation: Suppose that x = 377, ajv; where {v1,...,v,} is an orthonormal basis of V. Then for any

eV,

SO

T = f:(ﬂf'vj)vj

J=1

Example: The standard basis of R" is orthonormal.

Definition 2 A real n x n matrix A is unitary if AT = A~!, where AT denotes the transpose of A: the

(i, 7)™ entry of AT is the (j,1)" entry of A.

Theorem 3 A real n X n matriz A is unitary if and only if the columns of A are orthonormal.



Proof: Let a; denote the 5 column of A.

AT=A"1 & ATA=1
= ai~aj:5ij

< {aq,...,a,} is orthonormal

|
If A is unitary, let V' be the set of columns of A and W be the standard basis of R".

Since A is unitary, it is invertible, so V' is a basis of R".
AT = A_l = Mtl'vyv(ld)

Since V' is orthonormal, the transformation between bases W and V' preserves all geometry, including

lengths and angles.

Theorem 4 LetT € L(R™ R"™), W the standard basis of R™. Suppose that Mtxw (T') is symmetric. Then
the eigenvectors of T  are all real, and there is an orthonormal basis V = {v1,...,v,} of R" consisting of

eigenvectors of T, so that Mtxw (T') is diagonalizable:

where MtxyT is diagonal and the change of basis matrices Mty w(id) and Mtxwy (id) are unitary.

The proof of the theorem requires a lengthy digression into the linear algebra of complex vector spaces.

Here is a very brief outline.

1. Let M = Mtaxw(T).



2. The inner product in C" is defined as follows:

roy=> ;-7
j=1

where ¢ denotes the complex conjugate of any ¢ € C; note that this implies that x -y = y-z. The

usual inner product in R" is the restriction of this inner product on C" to R".

3. Given any complex matrix A, define A* to be the matrix whose (7, )" entry is @j;; in other words,
A* is formed by taking the complex conjugate of each element of the transpose of A. It is easy to
verify that given z,y € C" and a complex n x n matrix A, Az -y = z - A*y. Since M is real and

symmetric, M* = M.
4. If A € C is an eigenvalue of M, with eigenvector x € C", then

Mz2 = Az-2)
— ()
= (Mz)-z
= o (M'z)
= 2 (Mz)

= x-(\x)

which proves that A = ), hence A € R.

5. If M is real (not necessarily symmetric) and A € R is an eigenvalue, then det(M — A\[) = 0 =

Jpern (M — M )v = 0, so there is at least one real eigenvector.



Symmetry implies that, if A has multiplicity m, there are m independent real eigenvectors corre-

sponding to A. Thus, there is a basis of eigenvectors, hence M is diagonalizable over R.

6. Eigenvectors corresponding to distinct eigenvalues are orthogonal: Suppose that Mx = Az and

My = py with p # A. Then

Mz-y) = (M\x)-y

= (Mz)-y

= plr-y)
so (A —p)(z-y) = 0; since A — p # 0, we must have x -y = 0.

7. Using the Gram-Schmidt method, we can make the eigenvectors corresponding to a single eigenvalue

orthonormal, so we get an orthonormal basis of eigenvectors:
e Suppose we are given independent vectors xy,...,z, € R". Let X = span{xy,...,2,}. The
Gram-Schmidt method finds an orthonormal basis {vy, ..., v,} for X.
o Let v, = é—h Note that |vi| = 1.

e Suppose we have found an orthonormal set {vy, ..., v} such that span {v, ..., vx} = span{zy, ..., zx},

with &k < m.



Let

k
Yk
Ye+1 = Tk4+1 — Z(Jfk+1 'Uj)vj, Vk+1 = 1
j=1 ’yk-i—l’
[ J
span {vy,...,Vk+1} = span{vi, ..., Uk, Ugs1}
= span{vi,..., Uk Yk+1}
= Spal {/017 e Uk, xk-i—l}
= Span {33'1, <oy Ty xk-f—l}
e Fori=1,... k,
k
Yk+1 " Vi = | Tk41 — Z(xkﬂ )V | v
j=1
K
= Tk41 Ui — Z(l“kﬂ ~v;)(vj - ;)
j=1
K
= Tgy1 "V — Z(xk—i—l . /Uj)(sij
j=1
= Tp41 Vi — Thk+1 V4
= 0
Yk+1 ° U;
Vg41 -V =
’yk—i—l’
B 0
’yk—i—l’
= 0
’Uk-f—l’ _ ’yk-i-l’
’yk—i—l’
=1

Application to Quadratic Forms

Consider a quadratic form

f(l'l,...,

n
Z’n) = Z 04”33'? + Z Bijxixj
=1

1<j



Let
ifi <y
2Lqf g > g
Let

A= (aij) so f(x) =a" Ax
Ezample: Let

f(z) = om:f + Brixo + ”yx%

Let
a ()2
A =
B2 v
so A is symmetric and
a (/2 T
(1, 22)
B2 v T2
azy + (8/2)x:
= (71,22)

(B/2)x1 + ya2

= ax® + Baywy + s
= f(=)

Return to general quadratic form in Equation (1)

A is symmetric, so let V' = {v1,...,v,} be an orthonormal basis of eigenvectors of A with corresponding
eigenvalues A1, ..., \,.
A = U'DU
A0 0
D =
0 ... 0 M\

U = Mtxywl(id) is unitary
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The columns of U (the rows of U) are the coordinates of vy, ..., v,, expressed in terms of the standard
basis W.Given x € R", recall

n
T = Z%Ui where v; = x - v;
i=1

f (i)
() A (i)

= (X)) UTDU ()
(U i) D (U w,)
(

W) D (Y Uw,)

sl
= (7, ) D
Tn
= Z)\z‘%?
The equation for the level sets of f is
Z )\z‘%? =C
i=1
e If \; > 0 for all 7, the level set is an ellipsoid, with principal axes in the directions vy, ...,v,. The

length of the principal axis along v; is +/C/\; if C > 0 (if \; = 0, the level set is a degenerate ellipsoid

with principal axis of infinite length in that direction). The level set is empty if C' < 0.

o If \; <0 for all 7, the level is an ellipsoid, with principal axes in the directions vy, ..., v,. The length
of the principal axis along v; is \/C/A; if C' <0 (if \; = 0, the level set is a degenerate ellipsoid with

principal axis of infinite length in that direction). The level set is empty if C' > 0.






o If \; > 0 for some 7 and \; < 0 for some j, the level set is a hyperboloid. For example, suppose

n =2, A\ >0, A2 <0. The equation is

C = M2+

- (o ) (o - )

This is a hyperbola with asymptotes

0 = \/;1”)/14- ’)\2’”72

- A2
=M = — )\—172
0 = (\/771 Az 72)
A
="M = )\—172

This proves the following corollary of Theorem 4.

Corollary 5 Consider the quadratic form (1).

1. f has a global minimum at 0 if and only if \; > 0 for all i; the level sets of f are ellipsoids with

principal axes aligned with the orthonormal eigenvectors vy, ..., v,.

2. f has a global maximum at 0 if and only if \; < 0 for all i; the level sets of f are ellipsoids with

principal axes aligned with the orthonormal eigenvectors vy, ..., v,.

3. If \i <0 for some i and \; > 0 for some j, then f has a saddle point at 0; the level sets of f are

hyperboloids with principal axes aligned with the orthonormal eigenvectors vy, ..., v,.






Section 3.4: Linear Maps between Normed Spaces

Definition 6 Suppose X,Y are normed spaces, T' € L(X,Y). We say T is bounded if

FperVaex [T(2)[ly < Bllzllx

Note this implies that T is Lipschitz with constant (.

Theorem 7 (4.1, 4.3) Let X,Y be normed vector spaces, T € L(X,Y"). Then

T is continuous at some point xo € X
& T s continuous at every x € X
< T 1s uniformly continuous on X
& T s Lipschitz

< T 15 bounded

Proof: Suppose T' is continuous at xg. Fix € > 0. Then there exists ¢ > 0 such that

Iz = woll <0 = T (2) = T(xo)[| <€

Now suppose z is any element of X. If ||y — x| < 9, let 2 =y — x + x¢, s0 ||z — x| = ||y — z| < 0.
1T (y) = T()|
= [Ty =)l

= [Ty =2 + @0 — o))l

= [[T(z) = T(zo)l

which proves that 7' is continuous at every z, and uniformly continuous.



We claim that T is bounded if and only if T" is continuous at 0. Suppose 7" is not bounded. Then
Fany 1T (@)l > nfla

Note that x,, # 0. Let ¢ = 1. Fix 6 > 0 and choose n such that % < 0. Let

1T () =TO) = T

Since this is true for every ¢, T is not continuous at 0. Therefore, T" continuous at 0 implies 7" is bounded.
Now, suppose T' is bounded, so find M such that ||T'(z)|| < M| x| for every z € X. Given € > 0, let

d =¢/M. Then

lz =0l <0 = ] <o
= |T(@) =TO)| = [T(=)[l < Mo

= |[T(x) =TO) <e

so 1" is continuous at 0.
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Thus, we have shown that continuity at some point zy implies uniform continuity, which implies con-
tinuity at every point, which implies 7" is continuous at 0, which implies that 7" is bounded, which implies
that T is continuous at 0, which implies that T is continuous at some zq, so all of the statements except
possibly the Lipschitz statement are equivalent.

Suppose T' is bounded, with constant M. Then

IT(z) =TIl = T =yl

< Mz -y

so T is Lipschitz with constant M; conversely, if T" is Lipschitz with constant M, then T is bounded with

constant M. So all the statements are equivalent.m
Theorem 8 (4.5) Let X,Y be normed vector spaces, T € L(X,Y), dim X < oo. Then T is bounded.

Proof: See de la Fuente.m

Given normed vector spaces X, Y, a topological isomorphism between X and Y is a linear transformation
T € L(X,Y) which is invertible (one-to-one, onto), continuous, and has a continuous inverse. Two normed
vector spaces X and Y are topologically isomorphic if there is a topological isomorphism 7" : X — Y.

Suppose X,Y are normed vector spaces. We define

B(X,Y) = {T € L(X,Y):T is bounded}

T
|T||px,yy = sup {M,x e X,x # 0}
2l x

= sup{[|T(@)]ly : [|=[lx = 1}

Theorem 9 (4.8) Let X,Y be normed vector spaces. Then

(BXY). | sxy))

15 a normed vector space.
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Proof: See de la Fuente.m

Theorem 10 (4.9) Let T € L(R",R™) (= B(R",R™))) with matriz A = (a;;) with respect to the stan-
dard bases. Let

M =max{|a;;| : 1 <i<m,1<j<n}

Then

M <||T|| < My/mn

Proof: See de la Fuente.m

Theorem 11 (4.10) Let R € L(R™,R") and S € L(R",R?). Then
150 B < IS &]

Proof: See de la Fuente.m
Define

QR™) ={T € L(R",R") : T is invertible}
Theorem 12 (4.11°) Suppose T € L(R",R"), E the standard basis of R"™. Then
T s invertible
& kerT = {0}
& det (Mtaxg(T)) #0

& det (Mtayy(T)) # 0 for every basis V

& det (Mtaxyw(T)) # 0 for every pair of bases V, W
Theorem 13 (4.12) If S, T € Q(R"), then SoT € Q(R"™) and

(S o T)_l =T 10871
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Theorem 14 (4.14) Let S,T € L(R™,R"™). If T is invertible and

1
1T = S < 7==
171
then S is invertible. In particular, Q(R™) is open in L(R",R") = B(R",R").

Proof: See de la Fuente.m

Theorem 15 (4.15) The function (1)~ : Q(R") — Q(R™) that assigns T~ to each T € Q(R") is

continuous.

Proof: See de la Fuente.m
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