
Economics 204

Lecture 11–Monday, August 10, 2009

Sections 4.1-4.3, Unified Treatment

Definition 1 Let f : I → R, where I ⊆ R is an open interval. f is differentiable at x ∈ I if

lim
h→0

f(x + h) − f(x)

h
= a

for some a ∈ R.

This is equivalent to

lim
h→0

f(x + h) − (f(x) + ah)

h
= 0

⇔ ∀ε>0 ∃δ>0 0 < |h| < δ ⇒
∣∣∣∣∣
f(x + h) − (f(x) + ah)

h

∣∣∣∣∣ < ε

⇔ ∀ε>0 ∃δ>0 0 < |h| < δ ⇒ |f(x + h) − (f(x) + ah)|
|h| < ε

⇔ lim
h→0

|f(x + h) − (f(x) + ah)|
|h| = 0

Recall that the limit considers h near zero, but not h = 0.

Definition 2 If X ⊆ Rn is open, f : X → Rm is differentiable at x ∈ X if

∃Tx∈L(Rn,Rm) lim
h→0,h∈Rn

|f(x + h) − (f(x) + Tx(h))|
|h| = 0

(Recall | · | denotes the Euclidean distance.) f is differentiable if it is differentiable at all x ∈ X.
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h is a small, nonzero element of Rn; h → 0 from any direction, along a spiral, etc. One linear operator Tx

works no matter how h approaches zero.

f(x) + Tx(h) is the best linear

approximation to f(x + h) for small h

Notation:

y = O(|h|n) as h → 0

means ∃K,δ>0 |h| < δ ⇒ |y| ≤ K|h|n

read y is big-Oh of |h|n

y = o(|h|n) as h → 0

means lim
h→0

|y|
|h|n = 0

read y is little-oh of |h|n

Note that the statement y = O(|h|n+1) as h → 0 implies y = o(|h|n) as h → 0. Note that

f is differentiable at x ⇔ ∃Tx∈L(Rn,Rm)

f(x + h) = f(x) + Tx(h) + o(h) as h → 0

Notation:

dfx is the linear transformation Tx

Df(x) is the matrix of dfx with respect to the

standard basis; called the Jacobian

or Jacobian matrix of f at x

Ef (h) = f(x + h) − (f(x) + dfx(h)) (Error Term)

f is differentiable at x

⇔ Ef (h) = o(h) as h → 0
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Let’s compute Df(x) = (aij). Let {e1, . . . , en} be the standard basis of Rn. Look in direction ej;

|γej| = |γ|.

o(γ)

= f(x + γej) − (f(x) + Tx(γej))

= f(x + γej) −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f(x) +

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11 · · · a1j · · · a1n

...
...

...
...

...

am1 · · · amj
... amn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

...

0

γ

0

...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= f(x + γej) −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

f(x) +

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

γa1j

...

γamj

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

For i = 1, . . . , m, let f i denote the ith component of the function f :

f i(x + γej) −
(
f i(x) + γaij

)
= o(γ)

so aij =
∂f i

∂xj

Theorem 3 (3.3) Suppose X ⊆ Rn is open and f : X → Rm is differentiable at x ∈ X. Then ∂f i

∂xj
exists

for 1 ≤ i ≤ m, 1 ≤ j ≤ n, and

(Df)(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂f1

∂x1
· · · ∂f1

∂xn

...
...

...

∂fm

∂x1
· · · ∂fm

∂xn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

i.e. the Jacobian is the matrix of partial derivatives.
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Remark: If f is differentiable at x, then all first-order partial derivatives ∂f i

∂xj
exist at x. However, existence

of all the first-order partial derivatives does not imply that f is differentiable.

Theorem 4 (3.4) If all the first-order partial derivatives ∂f i

∂xj
(1 ≤ i ≤ m, 1 ≤ j ≤ n) exist and are

continuous at x, then f is differentiable at x.

Directional Derivatives: Suppose X ⊆ Rn open, f : X → Rm differentiable at x, |u| = 1.

f(x + γu)− (f(x) + Tx(γu)) = o(γ) as γ → 0

⇒ f(x + γu)− (f(x) + γTx(u)) = o(γ) as γ → 0

⇒ lim
γ→0

f(x + γu) − f(x)

γ
= Tx(u) = Df(x)u

i.e. the directional derivative in the direction u (with |u| = 1) is

Df(x)m×nun×1 ∈ Rm

Theorem 5 (3.5, Chain Rule) Let X ⊆ Rn, Y ⊆ Rm be open, f : X → Y , g : Y → Rp. Let x0 ∈ X,

F = g ◦ f . If f is differentiable at x0 and g is differentiable at f(x0), then F = g ◦ f is differentiable at x0

and

dFx0 = dgf(x0) ◦ dfx0

(composition of linear transformations)

DF (x0) = Dg(f(x0))Df(x0)

(matrix multiplication)

Remark: The statement is exactly the same as in the univariate case, except we replace the univariate

derivative by a linear transformation. The proof is more or less the same, with a bit of linear algebra

added.
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Theorem 6 (1.7, Mean Value Theorem, Univariate Case) Suppose f : [a, b] → R is continuous on

[a, b] and differentiable on (a, b). Then there exists c ∈ (a, b) such that

f(b) − f(a)

b− a
= f ′(c)

In other words,

f(b) − f(a) = f ′(c)(b − a)

Remark: The Mean Value Theorem is useful for estimating bounds on functions and error terms in ap-

proximation of functions.

Proof: Consider the function

g(x) = f(x) − f(a) − f(b) − f(a)

b − a
(x − a)

Then g(a) = 0 = g(b). Note that for x ∈ (a, b),

g′(x) = f ′(x) − f(b) − f(a)

b − a

so it suffices to find c ∈ (a, b) such that g′(c) = 0.

Case I: If g(x) = 0 for all x ∈ [a, b], choose an arbitrary c ∈ (a, b), and note that g′(c) = 0, so we are

done.

Case II: Suppose g(x) > 0 for some x ∈ [a, b]. Since g is continuous on [a, b], it attains its maximum at

some point c ∈ (a, b). Since g is differentiable at c and c is an interior point of the domain of g, we have

g′(c) = 0, and we are done.

Case III: If g(x) < 0 for some x ∈ [a, b], the argument is similar to that in Case II.

Notation:

L(x, y) = {αx + (1 − α)y : α ∈ [0, 1]}

is the line segment from x to y.
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Theorem 7 (Mean Value Theorem) Suppose f : Rn → R is differentiable on an open set X ⊆ Rn,

x, y ∈ X, L(x, y) ⊆ X. Then there exists z ∈ L(x, y) such that

f(y) − f(x) = Df(z)(y − x)

Remark: This statement is different from Theorem 3.7 in de la Fuente. Notice that the statement is exactly

the same as in the univariate case. For f : Rn → Rm, we can apply the Mean Value Theorem to each

component, to obtain z1, . . . , zm ∈ L(x, y) such that

f i(y) − f i(x) = Df i(zi)(y − x)

However, we cannot find a single z which works for every component.

The following result plays the same role in estimating function values and error terms for functions taking

values in Rm as the Mean Value Theorem plays for functions from R to R.

Theorem 8 Suppose X ⊂ Rn is open, f : X → Rm is differentiable. If x, y ∈ X and L(x, y) ⊆ X, then

there exists z ∈ L(x, y) such that

|f(y) − f(x)| ≤ |dfz(y − x)|

≤ ‖dfz‖|y − x|

Remark: To understand why we don’t get equality, consider f : [0, 1] → R2 defined by

f(t) = (cos 2πt, sin2πt)

f maps [0, 1] to the unit circle in R2. Note that f(0) = f(1) = (1, 0), so |f(1) − f(0)| = 0. However, for

any z ∈ [0, 1],

|dfz(1 − 0)| = |2π(− sin 2πt, cos 2πt)|

= 2π
√

sin2 2πt + cos2 2πt

= 2π
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Section 4.4, Taylor’s Theorem

Theorem 9 (1.9, Taylor’s Theorem in R1) Let f : I → R be n-times differentiable, where I ⊆ R is

an open interval. If x, x + h ∈ I, then

f(x + h) = f(x) +
n−1∑
k=1

f (k)(x)hk

k!
+ En

where

f (k) is the kth derivative of f

En =
f (n)(x + λh)hn

n!
for some λ ∈ (0, 1)

Motivation: Let

Tn(h) = f(x) +
n∑

k=1

f (k)(x)hk

k!

= f(x) + f ′(x)h +
f ′′(x)h2

2
+ · · · + f (n)(x)hn

n!

Tn(0) = f(x)

T ′
n(h) = f ′(x) + f ′′(x)h + · · · + f (n)(x)hn−1

(n − 1)!

T ′
n(0) = f ′(x)

T ′′
n (h) = f ′′(x) + · · · + f (n)(x)hn−2

(n − 2)!

T ′′
n (0) = f ′′(x)

...

T (n)
n (0) = f (n)(x)
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so Tn(h) is the unique nth degree polynomial such that

Tn(0) = f(x)

T ′
n(0) = f ′(x)

...

T (n)
n (0) = f (n)(x)

The proof of the formula for the remainder En is essentially the Mean Value Theorem; the problem in

applying it is that the point x + λh is not known in advance.

Theorem 10 (Alternate Taylor’s Theorem in R1) Let f : I → R be n times differentiable, where

I ⊆ R is an open interval and x ∈ I. Then

f(x + h) = f(x) +
n∑

k=1

f (k)(x)hk

k!
+ o (hn) as h → 0

If f is (n + 1) times continuously differentiable (i.e. all derivatives up to order n + 1 exist and are

continuous), then

f(x + h) = f(x) +
n∑

k=1

f (k)(x)hk

k!
+ O

(
hn+1

)
as h → 0

Remark: The first equation in the statement of the theorem is essentially a restatement of the definition of

the nth derivative. The second statement is proven from Theorem 1.9, and the continuity of the derivative,

hence the boundedness of the derivative on a neighborhood of x.

Definition 11 X ⊆ Rn, X open, f : X → Rm. f is continuously differentiable on X if

• f is differentiable on X and
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• dfx is a continuous function of x from X to L(Rn,Rm), with operator norm ‖dfx‖

f is Ck if all partial derivatives of order ≤ k exist and are continuous in X.

Theorem 12 (4.3) Suppose X ⊆ Rn, X open, f : X → Rm. Then f is continuously differentiable on X

if and only if f is C1.

Notational Problem in Taylor’s Theorem: If f : Rn → Rm, the quadratic terms are OK for m = 1; for

m > 1, handle each component separately. For cubic and higher order terms, notation is a mess.

Linear Terms:

Theorem 13 Suppose X ⊆ Rn, X is open, x ∈ X. If f : X → Rm is differentiable, then

f(x + h) = f(x) + Df(x)h + o(h) as h → 0

The previous theorem is essentially a restatement of the definition of differentiability.

Theorem 14 (Corollary of 4.4) Suppose X ⊆ Rn, X is open, x ∈ X. If f : X → Rm is C2, then

f(x + h) = f(x) + Df(x)h + O
(
|h|2

)
as h → 0

Quadratic Terms:

Treat each component of the function separately, so consider f : X → R, X ⊆ Rn an open set.
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Let

D2f(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂2f
∂x2

1

∂2f
∂x2∂x1

· · · ∂2f
∂xn∂x1

∂2f
∂x1∂x2

∂2f
∂x2

2
· · · ∂2f

∂xn∂x2

...
...

...
...

∂2f
∂x1∂xn

· · · · · · ∂2f
∂x2

n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

f ∈ C2 ⇒ ∂2f

∂xi∂xj
=

∂2f

∂xj∂xi

⇒ D2f(x) is symmetric

⇒ D2f(x) has an orthonormal basis of eigenvectors

and thus can be diagonalized

Theorem 15 (Stronger Version of 4.4) Let X ⊆ Rn be open, f : X → R, f ∈ C2(X), x ∈ X. Then

f(x + h) = f(x) + Df(x)h

+
1

2
h�(D2f(x))h + o

(
|h|2

)
as h → 0

If f ∈ C3,

f(x + h) = f(x) + Df(x)h

+
1

2
h�(D2f(x))h + O

(
|h|3

)
as h → 0

Remark: De la Fuente assumes X is convex which he has not yet defined. X is said to be convex if, for

every x, y ∈ X and α ∈ [0, 1], αx + (1 − α)y ∈ X. We don’t need this. Since X is open,

x ∈ X ⇒ ∃δ>0Bδ(x) ⊆ X

and Bδ(x) is convex.

Definition 16 We say f has a saddle at x if Df(x) = 0 but x has neither a local maximum nor a local

minimum at x.
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Corollary 17 Suppose X ⊆ Rn, X is open, x ∈ X. If f : X → R is C2, there is an orthonormal basis

{v1, . . . , vn} and corresponding eigenvalues λ1, . . . , λn ∈ R such that

f(x + h)

= f(x + γ1v1 + · · · + γnvn)

= f(x) +
n∑

i=1

(Df(x)vi) γi

+
1

2

n∑
i=1

λiγ
2
i + o

(
|γ|2

)

where γi = h · vi.

• If f ∈ C3, we may strengthen o (|γ|2) to O (|γ|3).

• If f has a local maximum or local minimum at x, then

Df(x) = 0

• If Df(x) = 0, then

λ1, . . . , λn > 0

⇒ f has a local minimum at x

λ1, . . . , λn < 0

⇒ f has a local maximum at x

λi < 0 for some i, λj > 0 for some j

⇒ f has a saddle at x

λ1, . . . , λn ≥ 0, λi > 0 for some i

⇒ f has a local minimum

or a saddle at x
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λ1, . . . , λn ≤ 0, λi < 0 for some i

⇒ f has a local maximum

or a saddle at x

λ1 = · · · = λn = 0 gives no information.

Proof: The idea is that the error term tells us that the local behavior is dominated by the quadratic

terms. From our study of quadratic forms, we know the behavior of the quadratic terms is determined by

the signs of the eigenvalues. If λi = 0 for some i, then we know that the quadratic form arising from the

second partial derivatives is identically zero in the direction vi, and the higher derivatives will determine

the behavior of the function f in the direction vi. For example, if f(x) = x3, then f ′(0) = 0, f ′′(0) = 0,

but we know that f has a saddle at x = 0; however, if f(x) = x4, then again f ′(0) = 0 and f ′′(0) = 0 but

f has a local (and global) minimum at x = 0.
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