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Differential Equations
Existence and Uniqueness of Solutions

Definition 1 A differential equation is an equation of the form

y′(t) = F (y(t), t)

where F : U → Rn where U is an open subset of Rn × R. An
initial value problem is a differential equation combined with an
initial condition

y(t0) = y0

with (y0, t0) ∈ U . A solution of the initial value problem is a
differentiable function y : (a, b) → Rn such that t0 ∈ (a, b),
y(t0) = y0 and, for all t ∈ (a, b), dy

dt
= F (y(t), t). The general

solution of the differential equation is the family of all solutions
for all initial values (y0, t0) ∈ U .

Theorem 2 Consider the initial value problem

y′(t) = F (y(t), t), y(t0) = y0 (1)

Let U be an open set in Rn × R containing (y0, t0).

• Suppose F : U → Rn is continuous. Then the initial value
problem has a solution.

• If, in addition, F is Lipschitz in y on U , i.e. there is a
constant K such that for all (y, t), (ŷ, t) ∈ U ,

|F (y, t) − F (ŷ, t)| ≤ K|y − ŷ|
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then there is an interval (a, b) containing t0 such that the
solution is unique on (a, b).

Proof: We consider only the case in which F is Lipschitz.
Since U is open, we may choose r > 0 such that

R = {(y, t) : |y − y0| ≤ r, |t − t0| ≤ r} ⊆ U

Since F is continuous, we may find M ∈ R ** such that |F (y, t)| ≤
M for all (y, t) ∈ R.

Given the Lipschitz condition, we may assume that

|F (y, t) − F (ŷ, t)| ≤ K|y − ŷ| for all (y, t), (ŷ, t) ∈ R

Let

δ = min

⎧⎪⎨
⎪⎩

1

2K
,

r

M

⎫⎪⎬
⎪⎭

We claim the initial value problem has a unique solution on (t0 −
δ, t0 + δ).

Let C be the space of continuous functions from [t0 − δ, t0 + δ]
to Rn, endowed with the sup norm

‖f‖∞ = sup{|f (t)| : t ∈ [t0 − δ, t0 + δ]}
Let

S = {z ∈ C : (z(s), s) ∈ R for all s ∈ [t0 − δ, t0 + δ]}
S is a closed subset of the complete metric space C, so S is a
complete metric space.

Consider the function I : S → C defined by

I(z)(t) = y0 +
∫ t
t0

F (z(s), s) ds

I(z) is defined and continuous because F is bounded and continu-
ous on R. Observe that if (z(s), s) ∈ R for all s ∈ [t0 − δ, t0 + δ],
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then

|I(z)(t) − y0| =
∣∣∣∣∣
∫ t
t0

F (z(s), s) ds
∣∣∣∣∣

≤ |t − t0|max{|F (y, s)| : (y, s) ∈ R}
≤ δM

≤ r

so (I(z)(t), t) ∈ R for all t ∈ [t0 − δ, t0 + δ]. Thus, I : S → S.
Given two functions x, z ∈ S and t ∈ [t0 − δ, t0 + δ],

|I(z)(t) − I(x)(t)| =
∣∣∣∣∣y0 +

∫ t
t0

F (z(s), s) ds − y0 −
∫ t
t0

F (x(s), s) ds
∣∣∣∣∣

=
∣∣∣∣∣
∫ t
t0

(F (z(s), s) − F (x(s), s)) ds
∣∣∣∣∣

≤ |t − t0| sup{|F (z(s), s) − F (x(s), s)| : s ∈ [t0 −
≤ δK sup{|z(s) − x(s)| : s ∈ [t0 − δ, t0 + δ]}
≤ ‖z − x‖∞

2

Therefore, ‖I(z) − I(x)‖∞ ≤ ‖z−x‖∞
2

, so I is a contraction. Since
S is a complete metric space, I has a unique fixed point y ∈ S.
Therefore, for all t ∈ [t0 − δ, t0 + δ], we have

y(t) = y0 +
∫ t
t0

F (y(s), s) ds

F is continuous, so the Fundamental Theorem of Calculus implies
that

y′(t) = F (y(t), t)

for all t ∈ (t0 − δ, t0 + δ). Since we also have

y(t0) = y0 +
∫ t0
t0

F (y(s), s) ds = y0

y (restricted to (t0 − δ, t0 + δ)) is a solution of the initial value
problem (1).
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On the other hand, suppose that ŷ is any solution of the ini-
tial value problem (1) on (t0 − δ, t0 + δ). It is easy to check that
(ŷ(s), s) ∈ R for all s ∈ (t0 − δ, t0 + δ), so we have |F (ŷ(s), s)| ≤
M ; this implies that ŷ has a extension to a continuous function
(still denoted ŷ) in S. Since ŷ is a solution of the initial value prob-
lem, the Fundamental Theorem of Calculus implies that I (ŷ) = ŷ.
Since y is the unique fixed point of I , ŷ = y.

Example 3 Consider the initial value problem

y′(t) = 1 + y2(t), y(0) = 0

Here, we have F (y, t) = 1 + y2 which is Lipschitz in y over sets
U = V × R, provided that V is bounded, but not over all of
R×R. The theorem tells us that the initial value problem has a
unique solution over some interval of times (a, b), with 0 ∈ (a, b).
We claim the unique solution is y(t) = tan t. To see this, note
that

y′(t) =
d

dt
tan t

=
d

dt

sin t

cos t

=
cos t cos t − sin t(− sin t)

cos2 t

=
cos2 t + sin2 t

cos2 t

= 1 +
sin2 t

cos2 t
= 1 + tan2 t

= 1 + (y(t))2

y(0) = tan 0
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= 0

Notice that y(t) is defined for t ∈ (−π
2 ,

π
2

)
, but

lim
t→−π

2
+
y(t) = −∞ and lim

t→π
2
− y(t) = ∞

Thus, the solution of the initial value problem cannot be extended
beyond the interval

(−π
2
, π

2

)
, because the solution “blows up” at

−π/2 and π/2.

Example 4 Consider the initial value problem

y′(t) = 2
√
|y|, y(0) = 0 (2)

The function F (y, t) = 2
√|y| is not locally Lipschitz in y at y = 0:

2
√
|y| − 2

√
0 = 2

√
|y|

=
2√|y||y|

=
2√|y||y − 0|

which is not a bounded multiple of |y − 0|. Given any α ≥ 0, let

yα(t) =

⎧⎪⎪⎨
⎪⎪⎩

0 if t ≤ α
(t − α)2 if t ≥ α

We claim that yα is a solution of the initial value problem (2) for
every α ≥ 0. For t < α, y′α(t) = 0 =

√|0| = 2
√|yα(t)|. For t > α,

y′α(t) = 2(t − α) = 2
√
(t − α)2 = 2

√|yα(t)|. For t = α,

lim
h→0+

yα(α + h) − yα(α)

h
= lim

h→0+

h2

h
= 0

lim
h→0−

yα(α + h) − yα(α)

h
= lim

h→0−
0

h
= 0
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so y′α(α) = 0 = 2
√|yα(α)|. Finally, yα(0) = 0, so yα is a solution

of the initial value problem (2), so we see the solution is decidedly
not unique!

Remark 5 The initial value problem of Equation (1) has a solu-
tion defined on the interval

(
inf

{
t : ∀s∈(t,t0] (y(s), s) ∈ U

}
, sup

{
t : ∀s∈[t0,t) (y(s), s) ∈ U

})

and it is unique on that interval provided that F is locally Lipschitz
on U , i.e. for every (y, t) ∈ U , there is an open set V with
(y, t) ∈ V ⊆ U such that F is Lipschitz on V .

Autonomous Differential Equations
In many situations of interest, the function F in the differential
equation does not depend on t.

Definition 6 An autonomous differential equation is a differ-
ential equation of the form

y′(t) = F (y(t))

where F : Rn → R depends on t only through the value of y(t).
A stationary point of an autonomous differential equation is a
point ys ∈ Rn such that F (ys) = 0

Study the qualitative properties of autonomous differential equa-
tions by looking for stationary points: The constant function

y(t) = ys

is a solution (unique assuming F is Lipschitz) of the initial value
problem

y′ = F (y), y(t0) = ys
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If F is C2, then Taylor’s Theorem implies that near a stationary
point ys,

F (ys + h) = F (ys) + DF (ys)h + O
(|h|2)

= DF (ys)h + O
(|h|2)

Thus, when we are sufficiently close to the stationary point, the
solutions of the differential equation are closely approximated by
the solutions of the linear differential equation

y′ = (y − ys)
′ = DF (ys)(y − ys)

Thus, we study solutions of linear differential equations, using
linear algebra.
Complex Exponentials
The exponential function ex (for x ∈ R or x ∈ C) is given by the
Taylor series

ex =
∞∑

k=0

xk

k!
For x, y ∈ C, we have

ex+y = exey

If x ∈ C, x = a + ib for a, b ∈ R, so

ex = ea+ib

= eaeib

= ea

⎛
⎜⎜⎝

∞∑
k=0

(ib)k

k!

⎞
⎟⎟⎠

= ea

⎛
⎜⎜⎝

∞∑
k=0

(ib)2k

(2k)!
+

∞∑
k=0

(ib)2k+1

(2k + 1)!

⎞
⎟⎟⎠
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= ea

⎛
⎜⎜⎝

∞∑
k=0

i2k
b2k

(2k)!
+ i

∞∑
k=0

i2k
b2k+1

(2k + 1)!

⎞
⎟⎟⎠

= ea

⎛
⎜⎜⎝

∞∑
k=0

(−1)k
b2k

(2k)!
+ i

∞∑
k=0

(−1)k
b2k+1

(2k + 1)!

⎞
⎟⎟⎠

= ea (cos b + i sin b)

Now suppose that t ∈ R, so

etx = eta+itb = eta(cos tb + i sin tb)

• If a < 0, then etx → 0 as t → ∞
• If a > 0, then |etx| → ∞ as t → ∞
• If a = 0, then |etx| = 1 for all t ∈ R

Linear Differential Equations with Constant Coeffi-
cients
Let M ∈ Rn×n. The linear differential equation

y′ = (y − ys)
′ = M (y − ys)

has a complete solution in closed form.
The matrix representation

M = DF (ys)

need not be symmetric, hence may not be diagonalizable.
If M is diagonalizable over C, the complete solution takes the
following simple form:

Theorem 7 Consider the linear differential equation

y′ = (y − ys)
′ = M (y − ys)

where M is a real n× n matrix. Suppose that M can be diag-
onalized over the complex field C. Let U be the standard basis
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of Rn and V = {v1, . . . , vn} be a basis of (complex) eigenvec-
tors corresponding to the eigenvalues λ1, . . . , λn ∈ C. Then
the solution of the initial value problem is given by

y(t) = ys+

(Mtx)U,V (id)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

eλ1(t−t0) 0 0 · · · 0

0 eλ2(t−t0) 0 · · · 0
... ... ... ...

0 0 0 · · · eλn(t−t0)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(Mtx)V,U (id)(y(t0) − ys)

(3)

and the general complex solution is obtained by allowing y(t0) to
vary over Cn; it has n complex degrees of freedom. The general
real solution is obtained by allowing y(t0) to vary over Rn; it
has n real degrees of freedom. Every real solution is a linear
combination of the real and imaginary parts of a complex solution.
In particular,

1. If the real part of each eigenvalue is less than zero, all solutions
converge to ys

2. If the real part of each eigenvalue is greater than zero, all
solutions diverge from ys and tend to infinity

3. If the real parts of some eigenvalues are less than zero and the
real parts of other eigenvalues are greater than zero, solutions
follow roughly hyperbolic paths

4. If the real parts of all eigenvalues are zero, all solutions follow
closed cycles around ys

Remark: If one or more of the eigenvalues are complex, each of
the three matrices in Equation (3) will contain complex entries,
but the product of the three matrices is real. Thus, if the initial
condition y0 is real, Equation (3) gives us a real solution; indeed,
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it gives us the unique solution of the initial value problem.
Remark: Given a fixed time t0, the general real solution is ob-
tained by varying the initial values of y(t0) over Rn, which provides
n real degrees of freedom. You might think that varying t0 pro-
vides one additional degree of freedom, but it doesn’t. Given any
solution satisfying the initial condition y(t0) = y0, the solution is
defined on some interval (t0 − δ, t0 + δ); given t1 ∈ (t0 − δ, t0 + δ),
let y1 = y(t1); then the solution with initial condition y(t1) = y1

is the same as the solution with initial condition y(t0) = y0. The
same holds true for the general complex solution.
Proof: Rewrite the differential equation in terms of a new vari-
able

z = (Mtx)V,U (id)y

the representation of the solution with respect to the basis V of
eigenvectors. Let zs = (Mtx)V,U (id)ys. Then we have

z − zs = (Mtx)V,U (id)(y − ys)

(z − zs)
′ = z′

= (Mtx)V,U (id)y′

= (Mtx)V,U (id)M (y − ys)

= (Mtx)V,U (id)M (Mtx)U,V (id)(z − zs)

= B(z − zs)

where

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ1 0 0 · · · 0
0 λ2 0 · · · 0
... ... ... ... ...
0 0 0 · · · λn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Thus, the ith component of (z(t) − zs) satisfies the differential
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equation
(z(t) − zs)

′
i = λi (z(t) − zs)i

so
(z(t) − zs)i = eλi(t−t0)(z(t0) − zs)i

so

z(t) − zs =

⎛
⎜⎜⎜⎜⎜⎜⎝

eλ1(t−t0) 0 0 · · · 0

0 eλ2(t−t0) 0 · · · 0
...

...
...

...

0 0 0 · · · eλn(t−t0)

⎞
⎟⎟⎟⎟⎟⎟⎠

(z(t0) − zs)

y(t) − ys

= (Mtx)U,V (id)(z(t)− zs)

= (Mtx)U,V (id)

⎛
⎜⎜⎜⎜⎜⎜⎝

eλ1(t−t0) 0 0 · · · 0

0 eλ2(t−t0) 0 · · · 0
...

...
...

...

0 0 0 · · · eλn(t−t0)

⎞
⎟⎟⎟⎟⎟⎟⎠

(z(t0) − zs)

= (Mtx)U,V (id)

⎛
⎜⎜⎜⎜⎜⎜⎝

eλ1(t−t0) 0 0 · · · 0

0 eλ2(t−t0) 0 · · · 0
...

...
...

...

0 0 0 · · · eλn(t−t0)

⎞
⎟⎟⎟⎟⎟⎟⎠

(Mtx)V,U(id)(y(t0) − ys)

The form of Real Solutions
We can determine the form of the real solutions once we know
the eigenvalues. In an important special case, we can solve for
the solution of the initial value problem without calculating the
diagonalization, as in Equation (3).

Theorem 8 Consider the differential equation

y′ = (y − ys)
′ = M (y − ys)

Suppose that the matrix M can be diagonalized over C. Let
the eigenvalues of M **with the correct multiplicity** be

a1 + ib1, a1 − ib1, . . . , am + ibm, am − ibm, am+1, . . . , an−m
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Then for each fixed i = 1, . . . , n, every real solution is of the
form

(y(t) − ys)i =
m∑

j=1
eaj(t−t0) (Cij cos bj(t − t0) + Dij sin bj(t − t0))

+
n−m∑

j=m+1
Cije

aj(t−t0)

The n2 parameters

{Cij : i = 1, . . . , n; j = 1, . . . , n − m} ∪ {Dij : i = 1, . . . , n; j = 1, . . . , m}
have n real degrees of freedom. The parameters are uniquely

determined from the n real initial conditions of an Initial
Value Problem.

Proof: Rewrite the expression for the solution y as

(y(t) − ys)i =
n∑

j=1
γije

λj(t−t0)

Recall that the non-real eigenvalues occur in conjugate pairs, so
suppose that

λj = a + ib, λk = a − ib

so the expression for (y(t) − ys) contains the pair of terms

γije
λj(t−t0) + γike

λk(t−t0)

= γije
a(t−t0) (cos b(t − t0) + i sin b(t − t0))

+γike
a(t−t0) (cos b(t − t0) − i sin b(t − t0))

= ea(t−t0) ((γij + γik) cos b(t − t0) + i (γij − γik) sin b(t − t0))

= ea(t−t0) (Cij cos b(t − t0) + Dij sin b(t − t0))

Since this must be real for all t, we must have

Cij = γij + γik ∈ R and Dij = i (γij − γik) ∈ R
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so γij and γik are complex conjugates; this can also be shown
directly from the matrix formula for y in terms of z.

Thus, if the eigenvalues λ1, . . . , λn are

a1 + ib1, a1 − ib1, a2 + ib2, a2 − ib2, . . . ,

am + ibm, am − ibm, am+1, . . . , an−m

every real solution will be of the form

(y(t) − ys)i =
m∑

j=1
eaj(t−t0) (Cij cos bj(t − t0) + Dij sin bj(t − t0))

+
n−m∑

j=m+1
Cije

aj(t−t0)

Since the differential equation satisfies a Lipschitz condition, the
Initial Value Problem has a unique solution determined by the n
real initial conditions. Thus, the general solution has exactly n
real degrees of freedom in the n2 coefficients.

Remark 9 The constraints among the coefficients Cij, Dij can be
complicated. One cannot just solve for the coefficients of y1 from
the initial conditions, then derive the coefficients for y2, . . . , yn.
For example, consider the differential equation

⎛
⎜⎜⎝
y1

y2

⎞
⎟⎟⎠
′
=

⎛
⎜⎜⎝

2 0
0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝
y1

y2

⎞
⎟⎟⎠

The eigenvalues are 2 and 1. If we set

y1(t) = C11e
2(t−t0) + C12e

t−t0

y2(t) = C21e
2(t−t0) + C22e

t−t0

we get

y1(t0) = C11 + C12

y2(t0) = C21 + C22
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which doesn’t have a unique solution. However, from the original
differential equation, we have

y1(t) = y1(t0)e
2(t−t0), y2(t) = y2(t0)e

t−t0

so
C11 = y1(t0) C12 = 0

C21 = 0 C22 = y2(t0)

One can find the solution to the Initial Value Problem by plugging
the n real initial conditions into Equation (3) in Theorem 7 above,
and the general solution by varying the initial conditions.

However, in the special case

ȳ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y
y′
...

y(n−1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

the coefficients

C11, . . . , C1(n−m), D11, . . . , D1m

in the general solution are arbitrary real numbers; once they are
set, the other coefficients are determined. Write

y(t) − ys =
m∑

j=1
eaj(t−t0) (Cj cos bj(t − t0) + Dj sin bj(t − t0))

+
n−m∑

j=m+1
Cje

aj(t−t0)

For the Initial Value Problem, compute the first n− 1 derivatives
of y at t0 and set them equal to the initial conditions. This yield n
linear equations in the n coefficients, which have a unique solution.
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Note also that

Cje
aj(t−t0) =

(
Cje

−ajt0
)
eajt

cos bj(t − t0) = cos (bjt − bjt0)

= cos bjt cos bjt0 + sin bjt sin bjt0
sin bj(t − t0) = sin (bjt − bjt0)

= − cos bjt sin bjt0 + sin bjt cos bjt0

so we can also write

y(t) − ys =
m∑

j=1
eajt (Cj cos bjt + Dj sin bjt)

+
n−m∑

j=m+1
Cje

ajt
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