
Economics 204

Lecture 15–Friday, August 14, 2009

Second Order Linear Differential Equations

Consider the second order differential equation y′′ = cy + by′ with b, c ∈ R.

Rewrite this as a first order linear differential equation in two variables:

ȳ(t) =

⎛
⎜⎜⎜⎝

y(t)

y′(t)

⎞
⎟⎟⎟⎠

ȳ′(t) =

⎛
⎜⎜⎜⎝

y′(t)

y′′(t)

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

0 1

c b

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

y(t)

y′(t)

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

0 1

c b

⎞
⎟⎟⎟⎠ ȳ

The eigenvalues are b±√
b2+4c
2

, the roots of the equation λ2 − bλ − c = 0. The qualitative behavior of the

solutions can be explicitly described from the coefficients b and c, by determining whether the eigenvalues

are real or complex, and whether the real parts are negative, zero, or positive; see Section 6 of the

Differential Equations Handout.

Example 1 Consider the second order linear differential equation

y′′ = 2y + y′

• As above, let

ȳ =

⎛
⎜⎜⎜⎝

y

y′

⎞
⎟⎟⎟⎠
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so the equation becomes

ȳ′ =

⎛
⎜⎜⎜⎝

0 1

2 1

⎞
⎟⎟⎟⎠ ȳ

• Eigenvalues are roots of the characteristic polynomial

λ2 − λ − 2 = 0

Eigenvalues and corresponding eigenvectors are given by

λ1 = 2 v1 = (1, 2)

λ2 = −1 v2 = (1,−1)

• From this information alone, we know the qualitative properties of the solutions are as given in the

phase plane diagram:

– Solutions are roughly hyperbolic in shape with asymptotes along the eigenvectors. Along the

eigenvector v1, the solutions flow off to infinity; along the eigenvector v2, the solutions converge

to zero.

– Solutions flow in directions consistent with flows along asymptotes

– On the y-axis, we have y′ = 0, which means that everywhere on the y-axis (except at the

stationary point 0), the solution must have a vertical tangent.

– On the y′-axis, we have y = 0, so we have

y′′ = 2y + y′ = y′

Thus, above the y-axis, y′′ = y′ > 0, so y′ is increasing along the direction of the solution; below

the y-axis, y′′ = y′ < 0, so y′ is decreasing along the direction of the solution.
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– Along the line y′ = −2y, y′′ = 2y − 2y = 0, so y′ achieves a minimum or maximum where it

crosses that line.

• General solution is given by⎛
⎜⎜⎜⎝

y(t)

y′(t)

⎞
⎟⎟⎟⎠ = MtxU,V (id)

⎛
⎜⎜⎜⎝

e2(t−t0) 0

0 e−(t−t0)

⎞
⎟⎟⎟⎠MtxV,U(id)

⎛
⎜⎜⎜⎝

y(t0)

y′(t0)

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

1 1

2 −1

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

e2(t−t0) 0

0 e−(t−t0)

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

1/3 1/3

2/3 −1/3

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

y(t0)

y′(t0)

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

1 1

2 −1

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

e2(t−t0)

3
e2(t−t0)

3

2e−(t−t0)

3
− e−(t−t0)

3

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

y(t0)

y′(t0)

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

e2(t−t0)+2e−(t−t0)

3
e2(t−t0)−e−(t−t0)

3

2e2(t−t0)−2e−(t−t0)

3
2e2(t−t0)+e−(t−t0)

3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

y(t0)

y′(t0)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

y(t0)+y′(t0)
3

e2(t−t0) + 2y(t0)−y′(t0)
3

e−(t−t0)

2y(t0)+2y′(t0)
3

e2(t−t0) + −2y(t0)+y′(t0)
3

e−(t−t0)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

• General solution has two real degrees of freedom; a specific solution is determined by specifying initial

conditions y(t0) and y′(t0).

• Because we have

ȳ =

⎛
⎜⎜⎜⎝

y

y′

⎞
⎟⎟⎟⎠

it is easier to find the general solution by setting

y(t) = C1e
2(t−t0) + C2e

−(t−t0)

Then

y(t0) = C1 + C2

3



y′(t) = 2C1e
2(t−t0) − C2e

−(t−t0)

y′(t0) = 2C1 − C2

C1 =
y(t0) + y′(t0)

3

C2 =
2y(t0) − y′(t0)

3

y(t) =
y(t0) + y′(t0)

3
e2(t−t0) +

2y(t0) − y′(t0)
3

e−(t−t0)

Inhomogeneous Linear Differential Equations

with Nonconstant Coefficients

Consider inhomogeneous linear differential equation

y′ = M(t)y + H(t) (1)

• M is continuous function from t to set of n × n matrices;

• H is continuous function from t to Rn.

Close relationship between solutions of the inhomogeneous linear differential equation (1) and the asso-

ciated homogeneous linear differential equation

y′ = M(t)y (2)

Theorem 2 The general solution of the inhomogeneous linear differential equation (1) is

yh + yp

where yh is the general solution of the homogeneous linear differential equation (2) and yp is any particular

solution of the inhomogeneous linear differential equation (1).

Proof:
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• Fix any particular solution yp of inhomogeneous equation (1).

– Suppose yh is any solution of the corresponding homogeneous equation (2).

– Let yi(t) = yh(t) + yp(t).

y′
i(t) = y′

h(t) + y′
p(t)

= M(t)yh(t) + M(t)yp(t) + H(t)

= M(t)(yh(t) + yp(t)) + H(t)

= M(t)yi(t) + H(t)

so yi is solution of inhomogeneous equation (1).

• Conversely, suppose yi is any solution of inhomogenous equation (1).

– Let yh(t) = yi(t)− yp(t).

y′
h(t) = y′

p(t)− y′
i(t)

= M(t)yi(t) + H(t) − M(t)yp(t)− H(t)

= M(t)(yi(t)− yp(t))

= M(t)yh(t)

so yh is solution of homogeneous equation (2) and yi = y + h + yp.

To find general solution of inhomogeneous equation:

• Find general solution of homogeneous equation;

• Find a particular solution of inhomogeneous equation;

• Add these to get general solution of inhomogeneous equation
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Theorem 3 Consider the inhomogeneous linear differential equation (1). A particular solution of the

inhomogeneous linear differential equation (1), satisfying the initial condition yp(t0) = y0, is given by

yp(t) = e
∫ t

t0
M (r)dr

y0 +
∫ t

t0
e
∫ t

s
M (r)drH(s) ds (3)

Proof:

yp(t) = e
∫ t

t0
M (r)dr

y0 +
∫ t

t0
e
∫ t

s
M (r)drH(s) ds

= e
∫ t

t0
M (r)dr

y0 +
∫ t

t0
e
∫ t

t0
M (r)dr

e
−
∫ s

t0
M (r)dr

H(s) ds

= e
∫ t

t0
M (r)dr

(
y0 +

∫ t

t0
e
−
∫ s

t0
M (r)dr

H(s) ds
)

y′
p(t) = M(t)e

∫ t

t0
M (r)dr

(
y0 +

∫ t

t0
e
−
∫ s

t0
M (r)dr

H(s) ds
)

+e
∫ t

t0
M (r)dr

(
e
−
∫ t

t0
M (r)dr

H(t)
)

= M(t)yp(t) + H(t)

yp(t0) = e
∫ t0

t0
M (r)dr

y0 +
∫ t0

t0
e
∫ t0

s
M (r)drH(s) ds

= y0

Corollary 4 Consider the inhomogeneous linear differential equation (1), and suppose that M(t) is a

constant matrix M , independent of t. A particular solution of the inhomogeneous linear differential equation

(1), satisfying the initial condition yp(t0) = y0, is given by

yp(t) = e(t−t0)My0 +
∫ t

t0
e(t−s)MH(s) ds (4)

Proof: Substitute M(t) = M in equation (3).

Example 5

Consider the inhomogeneous linear differential equation

⎛
⎜⎜⎜⎝

y1

y2

⎞
⎟⎟⎟⎠

′

=

⎛
⎜⎜⎜⎝

1 0

0 −1

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

y1

y2

⎞
⎟⎟⎟⎠+

⎛
⎜⎜⎜⎝

sin t

cos t

⎞
⎟⎟⎟⎠
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By Corollary 4, a particular solution is given by

yp(t) = e(t−t0)My0 +
∫ t

t0
e(t−s)MH(s) ds

=

⎛
⎜⎜⎜⎝

et 0

0 e−t

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

1

1

⎞
⎟⎟⎟⎠+

∫ t

0

⎛
⎜⎜⎜⎝

e(t−s) 0

0 e−(t−s)

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

sin s

cos s

⎞
⎟⎟⎟⎠ ds

=

⎛
⎜⎜⎜⎝

et

e−t

⎞
⎟⎟⎟⎠ +

∫ t

0

⎛
⎜⎜⎜⎝

et−s sin s

es−t cos s

⎞
⎟⎟⎟⎠ ds

=

⎛
⎜⎜⎜⎝

et
(
1 +

∫ t
0 e−s sin s ds

)

e−t
(
1 +

∫ t
0 es cos s ds

)
⎞
⎟⎟⎟⎠

∫ t

0
e−s sin s ds = −e−s sin s

∣∣∣t
0
−
∫ t

0
−e−s cos s ds

= −e−t sin t + e0 sin 0 +
∫ t

0
e−s cos s ds

= −e−t sin t + −e−s cos s
∣∣∣t
0
−
∫ t

0
−e−s(− sin s) ds

= −e−t sin t + −e−t cos t + e0 cos 0 −
∫ t

0
e−s sin s ds

= −e−t(sin t + cos t) + 1 −
∫ t

0
e−s sin s ds

2
∫ t

0
e−s sin s ds = −e−t(sin t + cos t) + 1

∫ t

0
e−s sin s ds =

−e−t(sin t + cos t) + 1

2∫ t

0
es cos s ds = es cos s|t0 −

∫ t

0
es(− sin s) ds

= et cos t− e0 cos 0 +
∫ t

0
es sin s ds

= et cos t− 1 + es sin s|t0 −
∫ t

0
es cos s ds

= et cos t− 1 + et sin t + e0 sin 0 −
∫ t

0
es cos s ds

= et(sin t + cos t) − 1 −
∫ t

0
es cos s ds

2
∫ t

0
es cos s ds = et(sin t + cos t) − 1

∫ t

0
es cos s ds =

et(sin t + cos t) − 1

2
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yp(t) =

⎛
⎜⎜⎜⎝

et
(
1 +

∫ t
0 e−s sin s ds

)

e−t
(
1 +

∫ t
0 es cos s ds

)
⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

et
(
1 + −e−t(sin t+cos t)+1

2

)

e−t
(
1 + et(sin t+cos t)−1

2

)
⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

et
(

3−e−t(sin t+cos t)
2

)

e−t
(

1+et(sin t+cos t)
2

)
⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

3et−sin t−cos t)
2

e−t+sin t+cos t
2

⎞
⎟⎟⎟⎠

Thus, the general solution of the original inhomogeneous equation is given by

⎛
⎜⎜⎜⎝

y1

y2

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

C1e
t

C2e
−t

⎞
⎟⎟⎟⎠+

⎛
⎜⎜⎜⎝

3et−sin t−cos t
2

e−t+sin t+cos t
2

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

D1e
t − sin t+cos t

2

D2e
−t + sin t+cos t

2

⎞
⎟⎟⎟⎠

where D1 and D2 are arbitrary real constants.

Nonlinear Differential Equations–Linearization

• Nonlinear differential equations very difficult to solve in closed form.

• Specific techniques solve special classes of equations

• Numerical methods compute numerical solutions of any ordinary differential equation.
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• Linearization provides qualitative information about the solutions of nonlinear autonomous equa-

tions.

• Idea is to find stationary points of the equation, then study solutions of linearized equation near the

stationary points.

• Gives a reasonably reliable guide to behavior of solutions of original nonlinear equation.

Example 6 (Pendulum)

• Equation of motion of a frictionless pendulum is a nonlinear autonomous differential equation

y′′ = −α2 sin y, α > 0

Here, y is the angle between the pendulum and a vertical line. The fact that the motion follows this

differential equation is obtained by resolving the downward force of gravity into two components,

one tangent to the curve the pendulum follows and one which is parallel to the pendulum; the latter

component is canceled by the pendulum rod.

• Has much in common with all cyclical processes, including processes such as business cycles.

• Equation very difficult to solve exactly because of nonlinearity.

• Define

ȳ(t) =

⎛
⎜⎜⎜⎝

y(t)

y′(t)

⎞
⎟⎟⎟⎠

so differential equation becomes

ȳ′(t) =

⎛
⎜⎜⎜⎝

y2(t)

−α2 sin y1(t)

⎞
⎟⎟⎟⎠
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Let

F (ȳ) =

⎛
⎜⎜⎜⎝

y2(t)

−α2 sin y1(t)

⎞
⎟⎟⎟⎠

• Solve for stationary points: points ȳ such that F (ȳ) = 0:

F (ȳ) = 0 ⇒

⎛
⎜⎜⎜⎝

y2(t)

−α2 sin y1(t)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

0

0

⎞
⎟⎟⎟⎠

⇒ sin y1 = 0 and y2 = 0

⇒ y1 = nπ and y2 = 0

so set of stationary points is

{(nπ, 0) : n ∈ Z}

• Linearize equation around each of the stationary points: Take first order Taylor polynomial for F :

F (nπ + h, 0 + k) + o(|h| + |k|)

= F (nπ, 0) +

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂F1

∂y1

∂F1

∂y2

∂F2

∂y1

∂F2

∂y2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

h

k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

0

0

⎞
⎟⎟⎟⎠+

⎛
⎜⎜⎜⎝

0 1

−α2 cos nπ 0

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

h

k

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

0 1

(−1)n+1α2 0

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

h

k

⎞
⎟⎟⎟⎠

• For n even, eigenvalues are

λ2 + α2 = 0

λ1 = iα, λ2 = −iα

Close to (nπ, 0) for n even, the solutions spiral around the stationary point. For y2 = y′
1 > 0, y1 is

increasing, so the solutions move in a clockwise direction.
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• For n odd, the eigenvalues and eigenvectors are

λ2 − α2 = 0

λ1 = α, λ2 = −α

v1 = (1, α), v2 = (1,−α)

Close to (nπ, 0) for n odd, the solutions are roughly hyperbolic in shape; along v2, they converge to

the stationary point, while along v1, they diverge from the stationary point. The solutions of the

linearized equation tend to infinity along v1. The stationary point (nπ, 0) with n odd corresponds to

the pendulum pointing vertically upwards.

• From this information alone, we know the qualitative properties of the solutions are as given in the

phase plane diagram on the next page:

– On the y-axis, we have y′ = 0, which means that everywhere on the y-axis (except at the

stationary points), the solution must have a vertical tangent.

– For y = nπ, we have

y′′ = −α2 sin y = 0

so the derivative of y′ is zero, so the tangent to the curve is horizontal.

• If the initial value of |y2| is sufficiently large, the solutions no follow longer closed curves; this

corresponds to the pendulum going “over the top” rather than oscillating back and forth.

Nonlinear Differential Equations–Stability

Linearization provides information about qualitative properties of solutions of nonlinear differential equa-

tions near the stationary points.
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Suppose ys is a stationary point:

• If eigenvalues of linearized equation at ys all have strictly negative real parts, there exists ε > 0 such

that, if |y(0) − ys| < ε, then limt→∞ y(t) = ys; all solutions of the original nonlinear equation which

start sufficiently close to the stationary point ys converge to ys.

• If eigenvalues of linearized equation at ys all have strictly positive real parts, no solution of original

nonlinear equation converge to ys.

• If eigenvalues of linearized equation at ys all have real part zero, then solutions of linearized equation

are closed curves around ys. This tells us little about the solutions of nonlinear equation. They may

– follow closed curves around ys

– converge to ys

– converge to a limit closed curve around ys

– diverge from ys

– converge to ys along certain directions and diverge from ys along other directions.

Determining Behavior of Solutions when Eigenvalues have Real Part Zero

Example 7 Consider the initial value problem

⎛
⎜⎜⎜⎝

y′
1(t)

y′
2(t)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

−9y2(t) + 4y3
1(t) + 4y1(t)y

2
2(t)

4y1(t) + 9y2
1(t)y2(t) + 9y3

2(t)

⎞
⎟⎟⎟⎠ , y1(0) = 3, y2(0) = 0 (5)
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ys =

⎛
⎜⎜⎜⎝

0

0

⎞
⎟⎟⎟⎠ is a stationary point. Linearization around ys is

y′(t) =

⎛
⎜⎜⎜⎝

0 −9

4 0

⎞
⎟⎟⎟⎠ y

Characteristic equation is λ2 + 36 = 0, so matrix has distinct eigenvalues λ1 = 6i and λ2 = −6i; since

both have real part zero, we know the solutions of the linearized differential equation follows closed curves

around zero. Eigenvectors are v1 =

⎛
⎜⎜⎜⎝

3i/2

1

⎞
⎟⎟⎟⎠ and v2 =

⎛
⎜⎜⎜⎝

−3i/2

1

⎞
⎟⎟⎟⎠, so change of basis matrices are

MtxU,V (id) =

⎛
⎜⎜⎜⎝

3i/2 −3i/2

1 1

⎞
⎟⎟⎟⎠ and MtxV,U(id) =

⎛
⎜⎜⎜⎝

−i/3 1/2

i/3 1/2

⎞
⎟⎟⎟⎠

Then the solution of the linearized initial value problem is

y =

⎛
⎜⎜⎜⎝

3i/2 −3i/2

1 1

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

e6ti 0

0 e−6ti

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

−i/3 1/2

i/3 1/2

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

3

0

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

3i/2 −3i/2

1 1

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

−ie6ti/3 e6ti/2

ie−6ti/3 e−6ti/2

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

3

0

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

(e6ti + e−6ti)/2 (e6ti − e−6ti)3i/4

(e−6ti − e6ti)i/3 (e6ti + e−6ti)/2

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

3

0

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

cos 6t −3(sin 6t)/2

2(sin 6t)/3 cos 6t

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

3

0

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

3 cos 6t

2 sin 6t

⎞
⎟⎟⎟⎠

since

e6ti + e−6ti = cos 6t + i sin 6t + cos(−6t) + i sin(−6t)
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= cos 6t + i sin 6t + cos 6t − i sin 6t

= 2cos 6t

e6ti − e−6ti = cos 6t + i sin 6t − cos(−6t)− i sin(−6t)

= cos 6t + i sin 6t − cos 6t + i sin 6t

= 2i sin 6t

Notice that

y2
1(t)

9
+

y2
2(t)

4
=

9 cos2 6t

9
+

4 sin2 6t

4

= cos2 6t + sin2 6t

= 1

so the solution of the linearized initial value problem is a closed curve running counterclockwise around

the ellipse with principal axes along the y1 and y2 axes, of length 3 and 2 respectively.

Let

G(y) =
y2

1

9
+

y2
2

4

and compute dG(y(t))
dt

:

dG(y(t))

dt
=

(
∂G
∂y1

∂G
∂y2

)⎛⎜⎜⎜⎝
y′

1(t)

y′
2(t)

⎞
⎟⎟⎟⎠

=

(
2y1(t)

9
y2(t)

2

)⎛⎜⎜⎜⎝
−9y2(t) + 4y3

1(t) + 4y1(t)y
2
2(t)

4y1(t) + 9y2
1(t)y2(t) + 9y3

2(t)

⎞
⎟⎟⎟⎠

= −2y1(t)y2(t) + 8y4
1(t)/9 + 8y2

1(t)y
2
2(t)/9

+2y1(t)y2(t) + 9y2
1(t)y

2
2(t)/2 + 9y4

2(t)/2

= 8y4
1(t)/9 + 97y2

1(t)y
2
2(t)/18 + 9y4

2(t)/2

> 0
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• y′(t) is tangent to the solution at every t, and y′(t) always points outside the level curve of G through

y(t), as in green arrows in the diagram.

• Solution of initial value problem (5) spirals outward, always moving to higher level curves of G.

• For G(y) ≥ 1 (i.e., outside the ellipse which the solution of the linearized initial value problem

follows), easy to see that

8y4
1(t)/9 + 97y2

1(t)y
2
2(t)/18 + 9y4

2(t)/2 >
8

9

(
y2

1(t) + y2
2(t)

)2

so dG(y(t))
dt

is uniformly bounded away from zero, so G(y(t)) = G(y(0))+
∫ t
0

dG(y(s))
ds

ds → ∞ as t → ∞.

• Linear terms become dwarfed by the higher order terms, which will determine whether the solution

continues to spiral as it heads off into the distance.

Consider instead the initial value problem

⎛
⎜⎜⎜⎝

y′
1(t)

y′
2(t)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

−9y2(t) − 4y3
1(t) − 4y1(t)y

2
2(t)

4y1(t)− 9y2
1(t)y2(t)− 9y3

2(t)

⎞
⎟⎟⎟⎠ , y1(0) = 3, y2(0) = 0 (6)

The linearized initial value problem has not changed. As before, compute

dG(y(t))

dt
=

(
∂G
∂y1

∂G
∂y2

)⎛⎜⎜⎜⎝
y′

1(t)

y′
2(t)

⎞
⎟⎟⎟⎠

=

(
2y1(t)

9
y2(t)

2

)⎛⎜⎜⎜⎝
−9y2(t) − 4y3

1(t) − 4y1(t)y
2
2(t)

4y1(t)− 9y2
1(t)y2(t)− 9y2

2(t)

⎞
⎟⎟⎟⎠

= −2y1(t)y2(t) − 8y4
1(t)/9 − 8y2

1(t)y
2
2(t)/9

+2y1(t)y2(t)− 9y2
1(t)y

2
2(t)/2 − 9y4

2(t)/2

= −8y4
1(t)/9 − 97y2

1(t)y
2
2(t)/18 − 9y4

2(t)/2

< 0
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• y′(t) is tangent to the solution at every t, and y′(t) always points inside the level curve of G through

y(t), as in the blue arrows.

• Solution of initial value problem (6) spirals inward, always moving to lower level curves of G.

• Claim: y(t) →

⎛
⎜⎜⎜⎝

0

0

⎞
⎟⎟⎟⎠ as t → ∞.

– Note dG(y(t))
dt

< 0 except at origin, so for all C > 0,

α = inf

{
dG(y(t))

dt
: C ≤ G(y(t)) ≤ G(y(0))

}
< 0

since {y : C ≤ G(y) ≤ G(y(0))} is compact.

– If G(y(t)) ≥ C for all t,

G(y(t)) = G(y(0)) +
∫ t

0

dG(y(s))

ds
ds

≤ G(y(0)) + αt

→ −∞ as t → ∞

contradiction.

– Thus, G(y(t)) → 0 and solution of initial value problem (6) converges to stationary point

⎛
⎜⎜⎜⎝

0

0

⎞
⎟⎟⎟⎠

as t → ∞.

In initial value problems (5) and (6), we were lucky to some extent.

• We took G to be function whose level sets are the solutions of the linearized differential equation,

and found tangent to the solution always pointed outside the level curve in (5) and always pointed

inside the level curve in (6).
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• Not hard to construct examples in which tangent points outward at some points and inward at others,

so the value G(y(t)) is not monotonic.

– May be able to show by calculation that G(y(t)) → ∞, so the solution disappears off into the

distance

– May be able to show by calculation that G(y(t)) → 0, so the solution converges to the stationary

point.

– Alternative method is to choose a different function G, whose level sets are not solutions of

linearized equation, but for which one can prove that dG(y(t))
dt

is always positive or always negative;

this is called Liapunov’s Second Method.
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