
Economics 204

Lecture 4–Thursday, July 30, 2009

Section 2.4, Open and Closed Sets

Definition 1 Let (X, d) be a metric space. A set A ⊆ X is open if

∀x∈A∃ε>0Bε(x) ⊆ A

A set C ⊆ X is closed if X \ C is open.

Example: (a, b) is open in the metric space E1 (R with the usual Euclidean metric). Given x ∈ (a, b),

a < x < b. Let

ε = min{x − a, b− x} > 0

Then

y ∈ Bε(x) ⇒ y ∈ (x− ε, x + ε)

⊆ (x − (x − a), x + (b− x))

= (a, b)

so Bε(x) ⊆ (a, b), so (a, b) is open.

Notice that ε depends on x; in particular, ε gets smaller as x nears the boundary of the set.

Example: In E1, [a, b] is closed. R \ [a, b] = (−∞, a) ∪ (b,∞) is a union of two open sets, which must be

open . . . .

Example: In the metric space [0, 1], [0, 1] is open. With [0, 1] as the underlying metric space, Bε(0) = {x ∈

[0, 1] : |x − 0| < ε = [0, ε). Thus, openness and closedness depend on the underyling metric space as well

as on the set.

Example: Most sets are neither open nor closed. For example, in E1, [0, 1] ∪ (2, 3) is neither open nor

closed.

Example: An open set may consist of a single point. For example,
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if X = N and d(m, n) = |m − n|, then B1/2(1) = {m ∈ N : |m− 1| < 1/2} = {1}.

Example: In any metric space (X, d) both ∅ and X are open, and both ∅ and X are closed. To see that ∅

is open, note that the statement

∀x∈∅∃ε>0 Bε(x) ⊆ ∅

is vacuously true since there aren’t any x ∈ ∅. To see that X is open, note that since Bε(x) is by definition

{z ∈ X : d(z, x) < ε}, it is trivially contained in X. Since ∅ is open, X is closed; since X is open, ∅ is

closed.

Example: Open balls are open sets. Suppose y ∈ Bε(x). Then d(x, y) < ε. Let δ = ε − d(x, y) > 0. If

d(z, y) < δ, then

d(z, x) ≤ d(z, y) + d(y, x)

< δ + d(x, y)

= ε − d(x, y) + d(x, y)

= ε

so Bδ(y) ⊆ Bε(x), so Bε(x) is open.

Theorem 2 (4.2) Let (X, d) be a metric space. Then

1. ∅ and X are both open, and both closed.

2. The union of an arbitrary (finite, countable, or uncountable) collection of open sets is open.

3. The intersection of a finite collection of open sets is open.

Proof:

1. We have already done this.
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2. Suppose {Aλ}λ∈Λ is a collection of open sets.

x ∈ ⋃
λ∈Λ

Aλ ⇒ ∃λ0∈Λ x ∈ Aλ0

⇒ ∃ε>0 Bε(x) ⊆ Aλ0 ⊆
⋃
λ∈Λ

Aλ

so ∪λ∈ΛAλ is open.

3. Suppose A1, . . . , An ⊆ X are open sets. If x ∈ ∩n
i=1Ai, then

x ∈ A1, x ∈ A2, . . . , x ∈ An

so

∃ε1>0,...,εn>0 Bε1(x) ⊆ A1, . . . , Bεn(x) ⊆ An

Let

ε = min{ε1, . . . , εn} > 0

(Aside: this is where we need the fact that we are taking a finite union. The infimum of an infinite

set of positive numbers could be zero.)

Then

Bε(x) ⊆ Bε1(x) ⊆ A1, . . . , Bε(x) ⊆ Bεn(x) ⊆ An

so

Bε(x) ⊆
n⋂

i=1

Ai

which proves that ∩n
i=1Ai is open.

Definition 3 • intA: the interior of A, the largest open set contained in A (the union of all open sets

contained in A)

• Ā: the closure of A, the smallest closed set containing A (the intersection of all closed sets containing

A)
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• extA: the exterior of A, the largest open set contained in X \ A.

• ∂A: the boundary of A, (X \ A) ∩ Ā

Theorem 4 (4.13) A set A in a metric space (X, d) is closed if and only if

{xn} ⊂ A, {xn} → x ∈ X ⇒ x ∈ A

Proof: (This is different from the proof in de la Fuente: he puts the meat of the proof into Theorem 4.12)

Suppose A is closed. Then X \ A is open. Consider a convergent sequence {xn} → x ∈ X, with xn ∈ A

for all n. If x �∈ A, x ∈ X \A, so there is some ε > 0 such that Bε(x) ⊆ X \A. Since xn → x, there exists

N(ε) such that

n > N(ε) ⇒ xn ∈ Bε(x)

⇒ xn ∈ X \ A

⇒ xn �∈ A

contradiction. Therefore,

{xn} ⊂ A, {xn} → x ∈ X ⇒ x ∈ A

Conversely, suppose

{xn} ⊂ A, {xn} → x ∈ X ⇒ x ∈ A

We need to show that A is closed, i.e. X \A is open. Suppose not, so X \A is not open. Then there exists

x ∈ X \ A such that for every ε > 0,

Bε(x) �⊆ X \ A

so there exists y ∈ Bε(x) such that y �∈ X \ A, so y ∈ A so

Bε(x)
⋂

A �= ∅
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Construct a sequence {xn} as follows: for each n, choose xn ∈ B 1
n
(x) ∩ A. Given ε > 0, we can find N(ε)

such that N(ε) > 1
ε

by the Archimedean Property, so n > N(ε) ⇒ 1
n

< 1
N(ε)

< ε, so xn → x. Then

{xn} ⊆ A, {xn} → x, so x ∈ A, contradiction. Therefore, X \ A is open, so A is closed.

Section 2.5: Limits of Functions Read this on your own. Note that we may have limx→a f(x) = y even

though

• f is not defined at a; or

• f is defined at a but f(a) �= y.

The existence and value of the limit depends on values of f near a but not at a.

Section 2.6: Continuity in Metric Spaces

Definition 5 Let (X, d) and (Y, ρ) be metric spaces, f : X → Y . f is continuous at a point x0 ∈ X if

∀ε>0∃δ(x0,ε)>0 d(x, x0) < δ(x0, ε) ⇒ ρ(f(x), f(x0)) < ε

f is continuous if it is continuous at every element of its domain.

Note: δ depends on x0, ε. This is a straightforward generalization of the definition of continuity in R.

Continuity at x0 requires:

• f(x0) is defined; and

• either

– x0 is an isolated point of X, i.e. ∃ε>0Bε(x) = {x}; or

– limx→x0 f(x) exists and equals f(x0)

(We will go out of order.)

Define f−1(A) = {x ∈ X : f(x) ∈ A}
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Theorem 6 (6.14) Let (X, d) and (Y, ρ) be metric spaces, f : X → Y . Then f is continuous if and only

if

∀A⊆Y A open in Y ⇒ f−1(A) is open in X

Proof: (We give a direct proof; de la Fuente works via closed sets)

Suppose f is continuous. Given A ⊆ Y , A open, we must show that f−1(A) is open in X. Suppose

x0 ∈ f−1(A). Let y0 = f(x0) ∈ A. Since A is open, we can find ε > 0 such that Bε(y0) ⊆ A. Since f is

continuous, there exists δ > 0 such that

d(x, x0) < δ ⇒ ρ(f(x), f(x0)) < ε

⇒ f(x) ∈ Bε(y0)

⇒ f(x) ∈ A

⇒ x ∈ f−1(A)

so Bδ(x0) ⊆ f−1(A), so f−1(A) is open.

Conversely, suppose

∀A⊆Y A open in Y ⇒ f−1(A) is open in X

We need to show that f is continuous. Let x0 ∈ X, ε > 0. Let A = Bε(f(x0)). A is an open ball, hence

an open set, so f−1(A) is open in X. x0 ∈ f−1(A), so there exists δ > 0 such that Bδ(x0) ⊆ f−1(A).

d(x, x0) < δ ⇒ x ∈ Bδ(x0)

⇒ x ∈ f−1(A)

⇒ f(x) ∈ A

⇒ ρ(f(x), f(x0)) < ε

Thus, we have shown that f is continuous at x0; since x0 is an arbitrary point in X, f is continuous.
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Theorem 7 (Slightly weaker version of 6.10) Let (X, dX), (Y, dY ) and (Z, dZ) be metric spaces. If

f : X → Y and g : Y → Z are continuous, then g ◦ f : X → Z is continuous.

Proof: Suppose A ⊆ Z is open. Since g is continuous, g−1(A) is open in Y ; since f is continuous,

f−1(g−1(A)) is open in X.

We claim that

f−1(g−1(A)) = (g ◦ f)−1(A)

Observe

x ∈ f−1(g−1(A)) ⇔ f(x) ∈ g−1(A)

⇔ g(f(x)) ∈ A

⇔ (g ◦ f)(x) ∈ A

⇔ x ∈ (g ◦ f)−1(A)

which establishes the claim. This shows that (g ◦ f)−1(A) is open in X, so g ◦ f is continuous.

Definition 8 [Uniform Continuity] (Important) Suppose f : (X, d) → (Y, ρ). f is continuous means

∀x0∈X,ε>0∃δ(x0,ε)>0 d(x, x0) < δ(x0, ε) ⇒ ρ(f(x), f(x0)) < ε

f is uniformly continuous means

∀ε>0∃δ(ε)>0∀x0∈X d(x, x0) < δ(ε) ⇒ ρ(f(x), f(x0)) < ε

Example: Consider

f(x) =
1

x
, x ∈ (0, 1]
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f is continuous from Math 1A. We will show that f is not uniformly continuous. Fix ε > 0 and x0 ∈ (0, 1].

If x = x0

1+εx0
, then

1 + εx0 > 1

x =
x0

1 + εx0
< x0

1

x
− 1

x0
> 0

|f(x) − f(x0)| =
∣∣∣∣1x − 1

x0

∣∣∣∣

=
1

x
− 1

x0

=
1 + εx0

x0
− 1

x0

=
εx0

x0

= ε

Thus, δ(x0, ε) must be chosen small enough so that

∣∣∣∣ x0

1 + εx0
− x0

∣∣∣∣ ≥ δ(x0, ε)

δ(x0, ε) ≤ x0 − x0

1 + εx0

=
ε(x0)

2

1 + εx0

< ε(x0)
2

which converges to zero as x0 → 0, so there is no δ(ε) which will work for all x0 ∈ (0, 1].

Example: If f ′(x) is defined and uniformly bounded on an interval [a, b], then f(x) is uniformly continuous

on [a, b]. However,
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even a function with an unbounded derivative may be uniformly continuous. Consider

f(x) =
√

x, x ∈ [0, 1]

f is continuous from Math 1A. We will show that f is uniformly continuous. Given ε > 0, let δ = ε2.

Then given any x0 ∈ [0, 1], |x− x0| < δ implies by the Fundamental Theorem of Calculus

|f(x) − f(x0)| =

∣∣∣∣∣
∫ x

x0

1

2
√

t
dt

∣∣∣∣∣
≤

∫ |x−x0|

0

1

2
√

t
dt

=
√
|x − x0|

<
√

δ

=
√

ε2

= ε

Thus, f(x) is uniformly continuous on [0, 1], even though f ′(x) → ∞ as x → 0.

Definition 9 [Lipschitz Functions] Let X, Y be normed vector space, E ⊆ X. f : X → Y is Lipschitz on

E if

∃K>0∀x,z∈E ‖f(x) − f(z)||Y ≤ K‖x− z‖X

f is locally Lipschitz on E if

∀x0∈E∃ε>0 f is Lipschitz on Bε(x0) ∩ E

C1 ⇒ locally Lipschitz ⇒ continuous

Lipschitz ⇒ uniformly continuous
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Homeomorphisms:

Definition 10 Let (X, d) and (Y, ρ) be metric spaces. A function f : X → Y is called a homeomorphism

if it is one-to-one and continuous, and its inverse function is continuous on f(X).

(Aside: this is not the standard definition; most texts also require that the function be onto. See the

Corrections handout for a correction to Theorem 6.21)

Now suppose that f is a homeomorphism and U ⊂ X.

y ∈
(
f−1

)−1
(U) ⇔ f−1(y) ∈ U

⇔ y ∈ f(U)

U open in X ⇒
(
f−1

)−1
(U) is open in (f(X), ρ)

⇒ f(U) is open in (f(X), ρ)

This says that X and
(
f(X), ρ|f(X)

)
are identical in terms of properties that can be characterized solely in

terms of open sets; such properties are called “topological properties.”
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