Economics 204
Lecture 5—Friday, July 31, 2009
Section 2.6 (Continued)

Properties of Real Functions

Theorem 1 (6.23, Extreme Value Theorem) Let f be a continuous real-valued function on |a,b].

Then f assumes its minimum and mazimum on [a,b]. In particular, f is bounded above and below.

Proof: Let

M =sup{f(t) : t € [a,b]}

If M is finite, for each n, we may choose t, € [a,b] such that M > f(t,) > M — = (if we couldn’t make
such a choice, then M — % would be an upper bound and M would not be the supremum). If M is
infinite, choose ¢, such that f(¢,) > n. By the Bolzano-Weierstrass Theorem, {t,} contains a convergent
subsequence {t,, }, with

lim tnk =1y € [a, b]

k—o0

Since f is continuous,

fto) = lim f(t)

t—to

= lim f(t,,)

k—oo

so M 1is finite and

F(to) = M = sup{f(t) : t € [a, ]}

so f attains its maximum and is bounded above. The argument for the minimum is similar. m



Theorem 2 (6.24, Intermediate Value Theorem) Suppose f : [a,b] — R is continuous, and f(a) <

d < f(b). Then there exists ¢ € (a,b) such that f(c) = d.
Proof: We did a hands-on proof already. Now, we can simplify it a bit. Let
B={te€a,b]: f(t) <d}

a € B, so B # (). By the Supremum Property, sup B exists and is real so let ¢ = sup B. Since a € B,
¢>a. B Cla,bl, so c <b. Therefore, ¢ € [a,b]. We claim that f(c) = d.
Let
. 1
tn = mln{c—i— —,b} >c
n

Either t,, > ¢, in which case t,, ¢ B, or t,, = ¢, in which case t,, = b so f(t,) > d, so again t,, ¢ B; in either
case, f(t,) > d. Since f is continuous at ¢, f(c) = lim, o f(t,) > d (Theorem 3.5 in de la Fuente).

Since ¢ = sup B, we may find s,, € B such that

1
cC> S, > Cc— —
n

Since s, € B, f(s,) < d. Since f is continuous at ¢, f(c¢) = lim,—c f($n) < d (Theorem 3.5 in de la
Fuente).
Since d < f(c) < d, f(c) =d. Since f(a) < d and f(b) > d, a# c# b, so c € (a,b).m

Monotonic Functions:

Definition 3 A function f is monotonically increasing if

y>r= fly) = f(z)



Theorem 4 (6.27) Suppose f is monotonically increasing on (a,b). Then the one-sided limits

f(E7) = lim f(u)

u—tt

f@) = lim f(u)

u—t—

exist and are real numbers for all t € (a,b).

Proof: This is analogous to the proof that a bounded monotone sequence converges. m
(We say that f has a simple jump discontinuity at t if the one-sided limits f(t—) and f(t+) both exist.
The previous theorem says that monotonic functions have only simple jump discontinuities; note that

monotonicity implies that f(t—) < f(t) < f(t+).)

Theorem 5 (6.28) Suppose that f is monotonically increasing on (a,b). Then

D = {t: f is discontinuous at t}

is finite (possibly empty) or countable. (“A monotonic function is continuous almost everywhere.”)

Proof: If t € D, we have f(t7) < f(t*) (if the left- and right-hand limits agreed, then by monotonicity
they would have to equal f(t), so f would be continuous at t). So for every ¢t € D, since Q is dense, we

may choose
r(t) €Q, f(t7) <r(t) < f(t7)

This defines a function r : D — Q (for those who care about these things, we have used the Axiom of

Choice, which says that



Simele Jump

DS contiawitdies



if we can choose such a rational r for each ¢ € D, then we can can choose a function r : D — Q). Notice
that

s>t= f(s7)> f(tT)

SO

s>t s, te€D=r(s)>f(s7)> fth) >r(t)

so r(s) # r(t). Therefore, r is one-to-one, so it is a bijection from D to a subset of Q, so D is finite or
countable.m

Section 2.7: Complete Metric Spaces, Contraction Mapping Theorem

Roughly, a metric space is complete if “every sequence that ought to converge to a limit has a limit to
converge to.”

T, — T Means

Vesodn(e/2) n > N(e/2) = d(z,, 2) <

DO M

Observe that if n,m > N(g/2), then
d(zn, Tm) < d(xp,x) +d(z, 20) < % +-=c¢
This motivates the following definition:
Definition 6 A sequence {z,} in a metric space (X, d) is Cauchy if
Vesodne n,m > N(e) = d(zy, xm) <€
(A Cauchy sequence is trying really hard to converge, but there may not be anything for it to converge to.)

Theorem 7 (7.2) FEvery convergent sequence in a metric space is Cauchy.



Proof: We just did it.m

Ezample: Let X = (0, 1], d the Euclidean metric. Let x,, = % Then z, — 0 in E', so {z,} is Cauchy in
E'. But the Cauchy property depends only on the sequence and the metric d, not on the ambient metric
space. So {x,} is Cauchy in (X, d), but {x,} does not converge in (X, d) because the point it is trying to

converge to (0) is not an element of X.

Definition 8 A metric space (X, d) is complete if every Cauchy sequence {z,} C X converges to a limit

x € X. A Banach space is a normed space which is complete in the metric generated by its norm.

Ezample: Consider the earlier example of X = (0, 1], d the usual Euclidean metric. Since z,, = % is Cauchy
but does not converge, ((0, 1], d) is not complete.

Example: Q is not complete in the Euclidean metric. To see this, let

10" V2]

= T on

where as before, |y is the greatest integer less than or equal to y; z,, is just equal to the decimal expansion
of v/2 to n digits past the decimal point. Clearly, x,, is rational. |z, — /2| < 107", so z,, — /2 in E",
so {x,} is Cauchy in E', hence Cauchy in Q; since v2 ¢ Q, {z,} is not convergent in Q, so Q is not

complete.
Theorem 9 (7.10) R is complete with the usual metric (so E' is a Banach space).

Proof: Our proof is different from the one in de la Fuente. Suppose {z,} is a Cauchy sequence in R. Fix

e > 0.



Find N(e/2) such that

n,m > N(e/2) = |z, — T <%

Let

a, = sup{zg:k>n}

Bn = inf{xy:k>n}
Fix m > N(g/2). Then

Ek>m = k>N(5/2):>xk<xm+%

3

= &m:sup{xk:kzm}gxm—i—Q

Since o, < 00,

. . €
limsupz, = lim o, < oy < Ty + =
p n—00 2

since the sequence {a,} is decreasing. Similarly,

liminf z, > z,, —

DO ™

Therefore,

0 <limsupz, —liminfx, <e¢

n—oo n—00
Since ¢ is arbitrary,

limsup x, = liminfz,, € R

so lim,,—, T, exists and is real, so {x,} is convergent. m
Theorem 10 (7.11) E™ is complete for every n € N.

Proof: See de la Fuente. m

Theorem 11 (7.9) Suppose (X, d) is a complete metric space, Y C X. Then (Y,d) = (Y,d|y) is complete

if and only if Y is a closed subset of X.



Proof: Suppose (Y, d) is complete. We need to show that Y is closed. Consider a sequence {y,,} C Y such
that y, —(x,a) © € X. Then {y,} is Cauchy in X, hence Cauchy in Y’; since Y is complete, y, —(v,q) ¥ for
some y € Y. Therefore, y, — (x4 y; by uniqueness of limits, y =z, so x € Y, so Y is closed.

Conversely, suppose Y is closed. We need to show that Y is complete. Let {y,} be a Cauchy sequence
in Y. Then {y,} is Cauchy in X, hence convergent, so y, —(x,a)  for some x € X. Since Y is closed,

T €Y,80 Yy —(v,q) T €Y, s0Y is complete. m

Theorem 12 (7.12) Given X C R", let C(X) be the set of bounded continuous functions from X to R
with
1flleo = sup{[f(2)| : z € X}

Then C(X) is a Banach space.

Contractions

Definition 13 Let (X, d) be a nonempty complete metric space. An operator is a function 7' : X — X.

An operator T is a contraction of modulus § if 7 < 1 and

Veyex d(T(x), T(y)) < fd(z,y)
(A contraction shrinks distances by a uniform factor 5 < 1.)
Theorem 14 FEvery contraction is uniformly continuous.

Proof: Let 6 = % [ ]
A fized point of an operator T is

x* € X such that T'(z*) = «*



Theorem 15 (7.16, Contraction Mapping Theorem) Let (X, d) be a nonempty complete metric space,

T: X — X a contraction with modulus 3 < 1. Then

1. T has a unique fized point x*.

2. For every xo € X, the sequence defined by

r, = T(l’o)
To = T(l’l)
Tnt1 = T(z,)

converges to x*.

Note that the Theorem gives us an algorithm to find the fixed point of a contraction.

Proof: The proof comes in several parts:

e There can be at most one fixed point.

e The sequence {x,} defined in Part 2 of the statement of the theorem is Cauchy

— We first show that the distance between the points z,, and x,+; becomes very small as n — oc.

— We then show that the distance between z,, and x,, is bounded above by a geometric series,

which shows that the sequence is Cauchy.

e Since the sequence {z,} is Cauchy, it converges to a limit x*.

e Because T' is continuous, z* is a fixed point.



First, we show that there is at most one fixed point. Suppose T'(z*) = z* and T'(y*) = y*. Then

so d(z*,y*) =0 and z* = y*.
Now, we show that the sequence {z,} is Cauchy, and hence converges to a limit . Choose any zy € X

and define z,, as described in part 2. Let o = d(x1, o). Then

d(znir, wn) = d(T(2n), T(2n-1))
S Bd(xmxn—l)

S B2d(xn—17 xn—2)

< ["d(xq, x0)

Given € > 0, by the Archimedean Property, choose N(g) > 1°g5_1°g1:g”2°g(1_’6 ). Then since 3 < 1, log 3 < 0
and

&/BN(E) _ elog(aglzjés))

1-p

—  V(e)logf+loga—log(1-p)
< elog e—log a+log(1—p3)+log a—log(1—7)

— elog €

(Note we follow the mathematics convention and denote the



natural logarithm by log.) Then if n > m > N(¢),

Ad(Tn, Tm)
S d(l'n, xn—l) + d(xn—la xn—2) + -+ d(xm—l—la xm)
< B"lra+ a4+ M

n—1
= « Z Iox
{=m

o0
< «@ Zﬁg
l=m

af™

= 3 E sum of a geometric series)
apNeE

1-p

< €

Therefore, {z,} is Cauchy. Since (X, d) is complete, x,, — x* for some z* € X.

Finally, we show that z* is a fixed point.

T(x*) = T ( lim xn>

n—oo

= lim T'(x,) since Tlis continuous

n—oo
= lim z
N0 n+1

= x*

so x* is a fixed point. m

Theorem 16 (7.18’, Continuous Dependence on Parameters) Let (X, d) and (X, p) be two metric

spaces, T : X x Q — X. LetT, : X — X be defined by

To(x) =T (z,w)

10



Suppose (X, d) is complete, T is continuous in w, § <1 and

Voea Ty is a contraction of modulus (3

Then the fixed point function x* : Q2 — X defined by

15 continuous.

See the comments in the Corrections handout. De la Fuente’s Theorem 7.18 only requires that each map
T, be a contraction of modulus G, < 1. However, his proof assumes that there is a single 3 < 1 such that
each T, is a contraction of modulus . I do not know whether de la Fuente’s Theorem 7.18 is correct as

stated.
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