Economics 204
Lecture 6-Monday, August 3, 2009
Revised 8/4/09, Revisions indicated by ** and
Sticky Notes
Section 2.8, Compactness

Definition 1 A collection of sets
U={U,: e A}

in a metric space (X, d) is an open cover of A if U), is open for all

A€ A and
UaenUy 2 A

(A may be finite, countably infinite, or uncountable.)
A set A in a metric space is compact if every open cover of A
contains a finite subcover of A. In other words, if {Uy : A € A} is
an open cover of A, there exist n € N and A\,---, A, € A such
that

AQU)\lLJ“-UU)\n

It 1s important to understand what this definition does not say.
In particular, it does not say “A has a finite open cover;” note
that every set is contained in X, and X s open, so every set
has a cover consisting of exactly one open set. Like the -0
definition of continuity, in which you are given an arbitrary
e > 0 and are challenged to specify an appropriate 0, here you
are gwen an arbitrary open cover and challenged to specify a
finite subcover of the given open cover.

Example: (0,1] is not compact in E'. To see this, let

L{:{Um:<;,2):m€N}
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Then
UmenUn = (0,2) D (0, 1]
Given any finite subset {Upy,, ..., Uy, } of U, let

m = max{my, ..., My}

Then .
U U = Uy = ( 2) 3 (0,1]
m

so (0, 1] is not compact.

Note that this argument does not work for |0, 1]. Given an open
cover {U) : A € A}, there must be some A\ € A such that 0 € U,
and therefore Uy D [0,¢) for some ¢ > 0, and a finite number
of the U,,’s we used to cover (0, 1] would cover the interval (g, 1].
This is not a proof that [0, 1] is compact, since we need to show
that every open cover has a finite subcover, but it is suggestive,
and we will soon see that [0, 1] is indeed compact.

Ezample: |0, 00) is closed but not compact. To see that [0, 00) is
not compact, let

U={U, =(-1,m): m e N}
Given any finite subset

{Unis- 3 Un,}
of U, let
m = max{my, ..., My}
Then
Up, U---UU,, =(—1,m) 2 |0,0)

Theorem 2 (8.14) Every closed subset A of a compact met-
ric space (X, d) is compact.



Proof: If you can get past the abstraction (admittedly, a serious
hurdle), this is easy. Let {Uy : A € A} be an open cover of A. In
order to use the compactness of X, we need to produce an open
cover of X. There are two ways to do this:

U, = UyU (X \ A)
N = AU Uy =X\ 4

We choose the first path, and let
Uy =U,U(X\ A)
Since A is closed, X \ A is open; since U), is open, so is Uj.

reX = reA VaezeX\A
= (erz €U\, CUY) V (Vyer x € UY)

Therefore, X C UyepUs, so {Uy : A € A} is an open cover of X.
Since X is compact,

Iidwed X C Uy U--- Uy

S0
a€A =>acX
= a € U, for some ¢
= CLEU)\Z.U<X\A)
= CLEU)\Z.
S0

AQU)\lLJ“-UU)\n
so A is compact. =

Theorem 3 (8.15) If A is a compact subset of the metric
space (X, d), then A is closed.
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Proof: Suppose A is not closed. Then X'\ A is not open, so we can
find a point x € X \ A such that, for every e > 0, AN B.(x) # 0,
and hence AN B.[x] # (). For n € N, let

Un = X\ Byjyl]
Each U, is open, and
UnenU, = X \{z} D A
since © € A. Therefore, {U, : n € N} is an open cover for A.

Since A is compact, there is a finite subcover {U,,, ..., U,, }. Let
n = max{ny,...,n}. Then
k
Uy, 2 U;_1 Uy,
DA

But AN Bylx] # 0,50 AZ X\ Byylx] = U, a contradiction
which proves that A is closed.s

Definition 4 A set A in a metric space (X, d) is sequentially
compact if every sequence of elements of A contains a convergent
subsequence whose limit lies in A.

Theorem 5 (8.5,8.11) A set A in a metric space (X, d) is
compact if and only if it s sequentially compact.

Proof: Suppose A is compact. We will show that A is sequen-
tially compact. If not, we can find a sequence {x,} of elements of
A such that no subsequence converges to any element of A. Recall
that a is a cluster point of the sequence {z,} means that

Vowo{n : x, € B.(x)} is infinite
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and this is equivalent to the statement that there is a subsequence
{xy, } converging to a. Thus, no element #GPe A can be a cluster
point for {z,}, and hence

VacaIe,~0{n 1 x, € B, (a)} is finite (1)
Then
{B.,(a):a€ A}
is an open cover of A (if A is uncountable, it will be an uncountable
open cover). Since A is compact, there is a finite subcover

{Bea1 (a1), ... aBeam<am)}
Then
N = {n:z,e A}
C {n L Xy, € (Bgal (a)U---U Bgam(am»}
= {n:x, € B, (a1)fU---U{n:xz, € B, (am)}
so N is contained in a finite union of sets, each of which is finite
by Equation (1). Thus, N must be finite, a contradiction which

proves that A is sequentially compact.
For the converse, see de la Fuente.s

Definition 6 A set A in a metric space (X, d) is totally bounded
if, for every € > 0,

Elxl,...,xneA A g U?:lBaE(:EZ')

(This is the standard definition; de la Fuente’s definition is equiv-
alent to this. See the comments in the Corrections handout.)
Ezample: Take A = [0,1] with the Euclidean metric. Given
e>0, letn > % Then we may take

1 2 n—1
1= Ty = ..., Tp-1—
n n n

>
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Ezample: Consider X = |0, 1] with the discrete metric

life#y

dz,y) = 0iftxr=y

X 1is not totally bounded. To see this, take € = % Then for any
x, B.(x) = {x}, so given any finite set x1, ..., x,,

Uiy Be(i) = {z1, ... xn ) 2 [0, 1]
However, X is bounded because X = B(0).

Remark 7 Fix ¢ and consider the open cover
U.- ={B.(a) :a € A}

If A is compact, then every open cover of A has a finite subcover;

in particular, {. must have a finite subcover, but this just says
that A is totally bounded.

Theorem 8 (8.16) Let A be a subset of a metric space (X, d).
Then A 1s compact if and only if it 1s complete and totally
bounded.

Proof: >I<>kl%:]re is a sketch of the proof; see de la Fuente for details.
Compact implies totally bounded (Remark 7). If {x,,} is a Cauchy
sequence in A, then since A is compact, it is sequentially compact
and the sequence has a convergent subsequence x, — a € A.
[t is not hard to see that, since the original sequence is Cauchy,
x, — a, so A is complete. Conversely, suppose A is complete
and totally bounded. Let {x,} be a sequence in A. Because A
is totally bounded, we can extract a Cauchy subsequence {zy, };
because A is complete, x,, — a for some a € A, but this shows
that A is sequentially compact and hence compact. =
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Corollary 9 Let A be a subset of a complete metric space
(X,d). Then A is compact if and only if it is closed and
totally bounded.

Theorem 10 (8.19, Heine-Borel) If A C E!, then A is
compact if and only if A is closed and bounded.

Proof: Let A be a closed, bounded subset of R. Then A C |a, b]
for some interval |a, b]. Let {z,} be a seqence of elements of |a, b|.
By the Bolzano-Weierstrass Theorem, {x,} contains a convergent
subsequence with limit z € R. Since [a, ] is closed, = € |a, b].
Thus, we have shown that [a,b] is sequentially compact, hence
compact. A is a closed subset of |a, b, hence A is compact.

Conversely, if A is compact, A is closed. The argument that
showed that |0, 00) is not compact is easily adapted to show that
compact sets are bounded.s

Theorem 11 (8.20, Heine-Borel) If A C E", then A is
compact if and only if A is closed and bounded.

Proof: Sce de la Fuente.s

Theorem 12 (8.21) Let (X,d) and (Y, p) be metric spaces.
If f : X — Y s continuous and C' 15 a compact subset of
(X,d), then f(C) is compact in (Y, p).

Proof: There is a proof in de la Fuente. In Problem 5(a) of
Problem Set 3, you are asked to give a proof using directly the
open cover definition of compactness. =

Corollary 13 (8.22, Extreme Value Theorem) Let C' be
a compact set in a metric space (X, d), and suppose f : C —
R s continuous. Then f is bounded on C and attains its
minimum and maximum on C.
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Proof: f(C) is compact by Theorem 8.21, hence closed and
bounded. Let M = sup f(C); M < oo. Then there exists
Ym € f(C) such that

1
M—-—<y,<M
m

so M is a limit point of f(C'). Since f(C') is closed, M € f(C),
i.e. there exists ¢ € C such that f(c) = M = sup f(C), so f

attains its maximum at c¢. The proof for the minimum is similar.a

Theorem 14 (8.24) Let (X,d) and (Y, p) be metric spaces,
C' a compact subset of X, and f : C' — Y continuous. Then
f is uniformly continuous on C.

Proof: Fix e > 0. We ignore X and consider f as defined on the
metric space (C, d). Given ¢ € C| find d(c) > 0 such that

r e C) dlx,c) <20(c) = p(f(z), flc)) < °

2
Let
Ue = Bse)(c)
Then
{U.:ceC}
is an open cover of C'. Since C'is compact, there is a finite subcover
{Ues- -, Us,
Let

0 = min{d(cy),...,0(cy)}

Given z,y € C with d(z,y) < 4, note that x € U,, for some
ie{l,....,n}, sod(z,c) <)

dly,c¢;) < d(y,x)+ d(x, ;)
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) + (5(0@)
d(c;) + 0(c)
2(5((3@')

I IA A

SO

p(f(x), f(y) < p(f(), flei) + p(flei), fy))

el €
2 2
E

A A

which proves that f is uniformly continuous.s



