
Economics 204

Lecture 7–Tuesday, August 4, 2009

Note: In this set of lecture notes, Ā refers to the closure of A. Section 2.9, Connected Sets

Definition 1 Two sets A,B in a metric space are separated if

Ā ∩B = A ∩ B̄ = ∅

A set in a metric space is connected if it cannot be written as the union of two nonempty separated sets.

Example: [0, 1) and [1, 2] are disjoint but not separated:

[0, 1) ∩ [1, 2] = [0, 1] ∩ [1, 2] = {1} �= ∅

[0, 1) and (1, 2] are separated:

[0, 1) ∩ (1, 2] = [0, 1] ∩ (1, 2] = ∅

[0, 1) ∩ (1, 2] = [0, 1) ∩ [1, 2] = ∅

Note that d([0, 1), (1, 2]) = 0 even though the sets are separated. Note that separation does not require

that Ā ∩ B̄ = ∅.

[0, 1) ∪ (1, 2]

is not connected.

Theorem 2 (9.2) A set S of real numbers is connected if and only if it is an interval, i.e. given x, y ∈ S

and z ∈ (x, y), then z ∈ S.

Proof: First, we show that S connected implies that S is an interval. We do this by proving the contra-

positive: if S is not an interval, it is not connected. If S is not an interval, find

x, y ∈ S, x < z < y, z �∈ S
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Let

A = S ∩ (−∞, z), B = S ∩ (z,∞)

Then

Ā ∩B ⊆ (−∞, z) ∩ (z,∞) = (−∞, z] ∩ (z,∞) = ∅

A ∩ B̄ ⊆ (−∞, z) ∩ (z,∞) = (−∞, z) ∩ [z,∞) = ∅

A ∪B = (S ∩ (−∞, z)) ∪ (S ∩ (z,∞))

= S \ {z}

= S

x ∈ A, so A �= ∅

y ∈ B, so B �= ∅

so S is not connected. We have shown that if S is not an interval, then S is not connected; therefore, if S

is connected, then S is an interval.

Now, we need to show that if S is an interval, it is connected. This is much like the proof of the

Intermediate Value Theorem. See de la Fuente for the details.

Theorem 3 (9.3) Let X be a metric space, f : X → Y continuous. If C is a connected subset of X, then

f(C) is connected.

Proof: This is problem 5(b) on Problem Set 3. The idea is in the diagram. Prove the contrapositive: if

f(C) is not connected, then C is not connected.

Corollary 4 (Intermediate Value Theorem) If f : [a, b] → R is continuous, and f(a) < d < f(b),

then there exists c ∈ (a, b) such that f(c) = d.
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Proof: This is our third, and slickest, proof of the Intermediate Value Theorem. It is short because a

substantial part of the proof was incorporated into the proof that C ⊆ R is connected if and only if C

is an interval, and the proof that if C is connected, then f(C) is connected. Here’s the proof: [a, b] is

an interval, so [a, b] is connected, so f([a, b]) is connected, so f([a, b]) is an interval. f(a) ∈ f([a, b]), and

f(b) ∈ f([a, b]), and d ∈ [f(a), f(b)]; since f([a, b]) is an interval, d ∈ f([a, b]), i.e. there exists c ∈ [a, b]

such that f(c) = d. Since f(a) < d < f(b), c �= a, c �= b, so c ∈ (a, b).

Read on your own the material on arcwise-connectedness. Please note the discussion in the Corrections

handout.

Section 2.10: Read this on your own.

Section 2.11: Continuity of Correspondences in En

Definition 5 A correspondence Ψ : X → Y is a function from X to 2Y .

Remark 6 See Item 1 on the Corrections handout. De la Fuente’s gives two inequivalent definitions of

a correspondence on page 23. The first agrees with the definition we just gave, while the second requires

that for all x ∈ X, Ψ(x) �= ∅. In asserting the equivalence of the two definitions, he seems to believe,

erroneously, that ∅ �∈ 2Y . In the literature, you will find the term correspondence defined in both ways,

so you should check what any given author means by the term. In these lectures, we do not impose the

requirement that Ψ(x) �= ∅, since it will be convenient in Lecture 11 to consider a correspondence such

that Ψ(x) = ∅ for some values of x. If Ψ(x) �= ∅ for all x, we will say that Ψ is “nonempty-valued.”

We want to talk about continuity of correspondences in a way analogous to continuity of functions. One

way a function may be
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discontinuous at a point x0 is that it “jumps upward at the limit:”

∃xn→x0f(x0) > lim supf(xn)

It could also “jump downward at the limit:”

∃xn→x0f(x0) < lim inf f(xn)

In either case, it doesn’t matter whether the sequence xn approaches x0 from the left or the right (or both).

What should it mean for a set to “jump down” at the limit x0? It should mean the set suddenly gets

smaller, i.e. it “implodes in the limit;” in other words there is a sequence xn → x0 and points yn ∈ Ψ(xn)

that are far from every point of Ψ(x0). The set “jumps up” should mean that that the set suddenly gets

bigger, i.e. it “explodes in the limit;” in other words, there is a point y in Ψ(x0) and a sequence xn → x

such that y is far from every point of Ψ(xn).

Remark 7 Caution: De la Fuente uses the term “explode” and “implode,” but not “at the limit.” For

him, a set explodes if it suddenly gets bigger, which agrees with our use; however, instead of looking at

whether the set explodes at the limit x0, he looks instead at whether the set explodes as you move slightly

away from the limit x0, which is equivalent to imploding at the limit. Our approach follows the more

conventional use in the literature, while de la Fuente’s use is the opposite.

Remark 8 De la Fuente defines correspondences only with domain equalling a Euclidean space. In fact,

we need correspondence defined on subsets of Euclidean space, so we need to modify his definition.
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Definition 9 Let X ⊆ En, Y ⊆ Em. Suppose Ψ : X → Y is a correspondence.

• Ψ is upper hemicontinuous (uhc) at x0 ∈ X if, for every open set V ⊇ Ψ(x0), there is an open set U

with x0 ∈ U such that

Ψ(x) ⊆ V for every x ∈ U ∩X

This says Ψ doesn’t “implode in the limit” at x0;

• Ψ is lower hemicontinuous (lhc) at x0 ∈ X if, for every open set V such that Ψ(x0) ∩ V �= ∅, there

is an open set U with x0 ∈ U such that

Ψ(x) ∩ V �= ∅ for every x ∈ U ∩X

This says Ψ doesn’t “explode in the limit” at x0;

• Ψ is continuous at x0 ∈ X if it is both uhc and lhc at x0.

• Ψ is closed (has closed graph) if its graph

{(x, y) : y ∈ Ψ(x)} is a closed subset of X × Em

Note that the definition of lower hemicontinuity does not just replace Ψ(x0) ⊆ V in the definition of upper

hemicontinuity with V ⊆ Ψ(x0); indeed, we will be very interested in correspondences in which Ψ(x) has

empty interior, so there will often be no open sets V such that V ⊆ Ψ(x0). Unfortunately, correspondences

that arise in Economics are rarely continuous. The two most important concepts are upper hemicontinuity

and closed graph; we will focus on these. See the drawings on the previous page.

Example: Consider the correspondence

Ψ(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{
1
x

}
if x ∈ (0, 1]

{0} if x = 0
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Ψ(0) = {0}. Let V = (−0.1, 0.1). Then Ψ(0) ⊂ V , but no matter how close x is to 0,

Ψ(x) =
{

1

x

}
�⊆ V

so Ψ is not uhc at 0. However, note that Ψ has closed graph.

Example: Consider the correspondence

Ψ(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{
1
x

}
if x ∈ (0, 1]

R+ if x = 0

Ψ(0) = [0,∞), so any V ⊇ Ψ(0) contains Ψ(x) for all x. Thus, Ψ is uhc, and has closed graph.

Theorem 10 Let X ⊆ En, Y ⊆ Em, f : X → Y a function. Let Ψ(x) = {f(x)} for all x ∈ X. Then

Ψ(x) is uhc if and only if f is continuous.

Proof: Suppose Ψ is uhc. We consider the metric spaces (X, d) and (Y, d), where d is the Euclidean

metric. Fix V open in Y . Then

f−1(V ) = {x ∈ X : f(x) ∈ V }

= {x ∈ X : Ψ(x) ⊆ V }

Thus, f is continuous if and only if f−1(V ) is open in X for each open V in Y , if and only if {x ∈ X :

Ψ(x) ⊆ V } is open in X for each open V in Y , if and only if Ψ is uhc (as an exercise, think through why

this last equivalence holds).

Definition 11 Suppose X ⊆ Em, Y ⊆ En. A correspondence Ψ : X → Y is called closed-valued if Ψ(x)

is a closed subset of En for all x; Ψ is called compact-valued if Ψ(x) is compact for all x.
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The definition of upper hemicontinuity doesn’t handle very well correspondences which are not closed-

valued; it is not hard to construct examples of pairs of correspondences which look equally well-behaved

(or ill-behaved) in which one of the correspondences is uhc and the other is not. However, for closed-valued

correspondences, things are much better.

Theorem 12 (Not in de la Fuente) Suppose X ⊆ En and Y ⊆ Em, and Ψ : X → Y is a correspn-

dence.

• If Ψ is closed-valued and uhc, then Ψ has closed graph.

• If Y is compact and Ψ has closed graph, then Ψ is uhc.

Proof: Suppose Ψ is closed-valued and uhc. If Ψ does not have closed graph, we can find a sequence

(xn, yn) → (x0, y0), where (xn, yn) lies in the graph of Ψ (so yn ∈ Ψ(xn)) but (x0, y0) does not lie in the

graph of Ψ (so y0 �∈ Ψ(x0)). Since Ψ is closed-valued, Ψ(x0) is closed; since y0 �∈ Ψ(x0), there is some ε > 0

such that Ψ(x0) ∩B2ε(y0) = ∅, so Ψ(x0) ⊆ En \Bε[y0]. Let V = En \Bε[y0]; since V is the complement of

a closed set, V is open, and it contains Ψ(x0). Since Ψ is uhc, there is an open set U with x0 ∈ U such

that x ∈ U ∩X ⇒ ψ(x) ⊆ V . Since (xn, yn) → (x0, y0), xn ∈ U for n sufficiently large, so yn ∈ Ψ(xn) ⊆ V ,

so |yn − y0| ≥ ε, which shows that yn �→ y0, so (xn, yn) �→ (x0, y0), a contradiction that shows that Ψ is

closed-graph.

Now, suppose Y is compact and Ψ has closed graph. Since Ψ is closed-graph, it is closed-valued. Given

x0 ∈ X, let V be any open set such that V ⊇ Ψ(x0). We need to show there exists an open set U with

x0 ∈ U such that x ∈ U ∩X ⇒ Ψ(x) ⊆ V . If not, we can find a sequence xn → x0 and yn ∈ Ψ(xn) such

that yn �∈ V . Since Y is compact, we can find a convergent subsequence
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ynk
→ y′. Then (xnk

, ynk
) → (x0, y

′); since Ψ has closed graph, y′ ∈ Ψ(x0), so y′ ∈ V . Since V is open,

ynk
∈ V for k sufficiently large, a contradiction. Thus, Ψ is uhc.

Theorem 13 (11.2) Suppose X ⊆ En and Y ⊆ Em. A compact-valued correspondence Ψ : X → Y is

uhc at x0 ∈ X if and only if, for every sequence xn → x0, {xn} ⊆ X, and every sequence {yn} such that

yn ∈ Ψ(xn), there is a convergent subsequence {ynk
} such that lim ynk

∈ Ψ(x0).

Proof: See de la Fuente.

Remark 14 I don’t find the preceding sequential characterization of uhc to be very useful or intuitive, so

I recommend that you bite the bullet and master the open set definition. However, the following sequential

characterization of lhc is intuitive; it says that for any y0 ∈ Ψ(x0) and any x sufficiently close to x0, we

may find y ∈ Ψ(x) such that y is close to y0.

Theorem 15 (11.3) A correspondence Ψ : X → Y is lhc at x0 ∈ X if and only if, for every sequence

xn → x0, {xn} ⊆ X, and every y0 ∈ Ψ(x0), there exists a companion sequence yn with yn ∈ Ψ(xn) such

that yn → y0.

Proof: See de la Fuente.
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