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Chapter 3, Linear Algebra Section 3.1, Bases

Definition 1 Let X be a vector space over a field F . A linear
combination of x1, . . . , xn is a vector of the form

y =
n∑

i=1
αixi where α1, . . . , αn ∈ F

αi is the coefficient of xi in the linear combination. If V ⊆ X ,
span V denotes the set of all linear combinations of V .
A set V ⊆ X is linearly dependent if there exist v1, . . . , vn ∈ V ∗∗
and α1, . . . , αn ∈ F not all zero such that

n∑

i=1
αivi = 0

A set V ⊆ X is linearly independent if it is not linearly depen-
dent.
A set V ⊆ X spans X if span V = X .
A Hamel basis (often just called a basis) of a vector space X is a
linearly independent set of vectors in X that spans X .

Example: {(1, 0), (0, 1)} is a basis for R2.
{(1, 1), (−1, 1)} is another basis for R2:

(x, y) = α(1, 1) + β(−1, 1)

x = α − β

y = α + β

x + y = 2α
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α =
x + y

2
y − x = 2β

β =
y − x

2

(x, y) =
x + y

2
(1, 1) +

y − x

2
(−1, 1)

Since (x, y) is an arbitrary element of R2, {(1, 1), (−1, 1)} spans
R2. If (x, y) = (0, 0),

α =
0 + 0

2
= 0, β =

0 − 0

2
= 0

so the coefficients are all zero, so {(1, 1), (−1, 1)} is linearly in-
dependent. Since it is linearly independent and spans R2, it is a
basis.
Example: {(1, 0, 0), (0, 1, 0)} is not a basis of R3, because it does
not span.
Example: {(1, 0), (0, 1), (1, 1)} is not a basis for R2.

1(1, 0) + 1(0, 1) + (−1)(1, 1) = (0, 0)

so the set is not linearly independent.

Theorem 2 (1.2’, see Corrections handout) Let V be a
Hamel basis for X. Then every vector x ∈ X has a unique
representation as a linear combination (with all coefficients
nonzero) of a finite number of elements of V .

(Aside: the unique representation of 0 is 0 = ∑
i∈∅ αibi.)

Proof: Let x ∈ X . Since V spans X , we can write

x =
∑

s∈S1

αsvs
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where S1 is finite, αs ∈ F , αs �= 0, vs ∈ V for s ∈ S1. Now,
suppose

x =
∑

s∈S1

αsvs =
∑

s∈S2

βsvs

where S2 is finite, βs ∈ F , βs �= 0, and vs ∈ V for s ∈ S2.
Let S = S1 ∪ S2, and define

αs = 0 for s ∈ S2 \ S1

βs = 0 for s ∈ S1 \ S2

Then

0 = x − x

=
∑

s∈S1

αsvs − ∑

s∈S2

βsvs

=
∑

s∈S
αsvs − ∑

s∈S
βsvs

=
∑

s∈S
(αs − βs)vs

Since V is linearly independent, we must have αs − βs = 0, so
αs = βs, for all s ∈ S.

s ∈ S1 ⇔ αs �= 0 ⇔ βs �= 0 ⇔ s ∈ S2

so S1 = S2 and αs = βs for s ∈ S1 = S2, so the representation is
unique.

Theorem 3 Every vector space has a Hamel basis.

Proof: The proof uses the Axiom of Choice. Indeed, the theorem
is equivalent to the Axiom of Choice.

Theorem 4 Any two Hamel bases of a vector space X are
numerically equivalent.
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Proof: The proof depends on the so-called Exchange Lemma,
whose idea we sketch. Suppose that V = {vλ : λ ∈ Λ} and
W = {wγ : γ ∈ Γ} are Hamel bases of X . Remove one vector
vλ0 from V , so that it no longer spans (if it did still span, then
vλ0

would be a linear combination of other elements of V , and
V would not be linearly independent). If wγ ∈ span (V \ {vλ0

})
for every γ ∈ Γ, then since W spans, V \ {vλ0} would also span,
contradiction. Thus, we can choose γ0 ∈ Γ such that

wγ0
�∈ span (V \ {vλ0

})
Because wγ0 ∈ span V , we can write

wγ0
=

n∑

i=0
αivλi

where α0, the coefficient of vλ0, is not zero (if it were, then we
would have wγ0 ∈ span (V \ {vλ0})). Since α0 �= 0, we can solve
for vλ0

as a linear combination of wγ0
and vλ1

, . . . , vλn, so

span ((V \ {vλ0}) ∪ {wγ0})
⊇ span V

= X

so
((V \ {vλ0}) ∪ {wγ0})

spans X . From the fact that wγ0 �∈ span (V \ {vλ0}) one can
show that

((V \ {vλ0
}) ∪ {wγ0

})
is linearly independent, so it is a basis of X . Repeat this process
to exchange every element of V with an element of W (when V
is infinite, this is done by a process called transfinite induction).
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At the end, we obtain a bijection from V to W , so that V and W
are numerically equivalent.

Definition 5 Let dim X (read “the dimension of X”) denote the
cardinal number of any basis of X .

Example: The set of all m × n real-valued matrices is a vector
space over R. A basis is given by

{Eij : 1 ≤ i ≤ m, 1 ≤ j ≤ n}
where

(Eij)k� =

⎧⎪⎪⎨
⎪⎪⎩

1 if k = i and � = j
0 otherwise.

The dimension of the vector space of m × n matrices is mn.

Theorem 6 (1.4) Suppose dim X = n ∈ N. If V ⊆ X and
|V | > n (recall |V | denotes the number of elements in the set
V ), then V is linearly dependent.

Theorem 7 (1.5’) Suppose dim X = n ∈ N, V ⊆ X, |V | =
n.

• If V is linearly independent, then V spans X, so V is a
Hamel basis.

• If V spans X, then V is linearly independent, so V is a
Hamel basis.

Read the material on Affine Spaces on your own.

Section 3.2, Linear Transformations

Definition 8 Let X,Y be two vector spaces over the field F . We
say T : X → Y is a linear transformation if

∀x1,x2∈X,α1,α2∈F T (α1x1 + α2x2) = α1T (x1) + α2T (x2)
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Let L(X, Y ) denote the set of all linear transformations from X
to Y .

Theorem 9 L(X, Y ) is a vector space over F .

Proof: The hard part is figuring out what you are being asked
to prove. Once you figure that out, this is completely trivial, al-
though writing out a complete proof that checks all the vector
space axioms is rather tedious. The key is to define scalar multi-
plication and vector addition, and show that a linear combination
of linear transformations is a linear transformation.

We define

(αT1 + βT2)(x) = αT1(x) + βT2(x)

We need to show that αT1 + βT2 ∈ L(X, Y ).

(αT1 + βT2)(γx1 + δx2)

= αT1(γx1 + δx2) + βT2(γx1 + δx2)

= α (γT1(x1) + δT1(x2)) + β (γT2(x1) + δT2(x2))

= γ (αT1(x1) + βT2(x1)) + δ (αT1(x2) + βT2(x2))

= γ (αT1 + βT2) (x1) + δ (αT1 + βT2) (x2)

so αT1 + βT2 ∈ L(X, Y ). The rest of the proof is too tedious to
reproduce here.
Composition of Linear Transformations
Given R ∈ L(X, Y ) and S ∈ L(Y, Z), S ◦ R : X → Z. We will
show that S ◦ R ∈ L(X, Z).

(S ◦ R)(αx1 + βx2) = S(R(αx1 + βx2))

= S(αR(x1) + βR(x2))

= αS(R(x1)) + βS(R(x2))

= α(S ◦ R)(x1) + β(S ◦ R)(x2)
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so S ◦ R ∈ L(X, Z).

Definition 10

Im T = T (X) (image of T )

kerT = {x : T (x) = 0} (kernel of T )

Rank T = dim(Im T )

Theorem 11 (2.9, 2.7, 2.6) Let X be a finite-dimensional
vector space, T ∈ L(X, Y ). Then Im T and ker T are vector
subspaces of Y and X respectively, and

dim X = dim kerT + Rank T

Theorem 12 (2.13) T ∈ L(X, Y ) is one-to-one if and only
if kerT = {0}.
Proof: Suppose T is one-to-one. Suppose x ∈ ker T . Then
T (x) = 0. But since T is linear, T (0) = T (0 · 0) = 0 · T (0) = 0.
Since T is one-to-one, x = 0, so ker T = {0}.

Conversely, suppose that ker T = {0}. Suppose T (x1) = T (x2).
Then

T (x1 − x2) = T (x1) − T (x2)

= 0

so x1−x2 ∈ ker T , so x1−x2 = 0, x1 = x2. Thus, T is one-to-one.

Definition 13 T ∈ L(X, Y ) is invertible if there is a function
S : Y → X such that

∀x∈XS(T (x)) = x

∀y∈Y T (S(y)) = y
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In other words S ◦ T = idX and T ◦ S = idY , where id denotes
the identity map. Denote S by T−1. Note that T is invertible if
and only if it is one-to-one and onto. This is just the condition for
the existence of an inverse function. The linearity of the inverse
follows from the linearity of T :

Theorem 14 (2.11) If T ∈ L(X, Y ) is invertible, then T−1 ∈
L(Y, X), i.e. T−1 is linear.

Proof: Suppose α, β ∈ F and v,w ∈ Y . Since T is invertible,

∃!v′,w′∈X

⎧⎪⎪⎨
⎪⎪⎩

T (v′) = v T−1(v) = v′

T (w′) = w T−1(w) = w′

Then

T−1(αv + βw)

= T−1 (αT (v′) + βT (w′))
= T−1 (T (αv′ + βw′))
= αv′ + βw′

= αT−1(v) + βT−1(w)

so T−1 ∈ L(Y, X).
Although the next theorem is in Section 3.3, it really belongs here:

Theorem 15 (3.2) Let X, Y be two vector spaces over the
same field F , and let V = {vλ : λ ∈ Λ} be a basis for X. Then
a linear transformation T ∈ L(X, Y ) is completely determined
by its values on V , i.e.

1. Given any set of values {yλ : λ ∈ Λ} ⊆ Y ,

∃T∈L(X,Y )∀λ∈Λ T (vλ) = yλ
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2. If S, T ∈ L(X, Y ) and S(vλ) = T (vλ) for all λ ∈ Λ, then
S = T .

Proof:

1. If x ∈ X , x has a unique representation of the form

x =
n∑

i=1
αivλi

αi �= 0(i = 1, . . . , n)

(Aside: for x = 0, we have n = 0.) Define

T (x) =
n∑

i=1
αiyλi

Then T (x) ∈ Y . The verification that T is linear is left as an
exercise.

2. Suppose S(vλ) = T (vλ) for all λ ∈ Λ. Given x ∈ X ,

S(x) = S
⎛
⎜⎝

n∑

i=1
αivλi

⎞
⎟⎠

=
n∑

i=1
αiS (vλi

)

=
n∑

i=1
αiT (vλi

)

= T
⎛
⎜⎝

n∑

i=1
αivλi

⎞
⎟⎠

= T (x)

so S = T .

Section 3.3, Isomorphisms

9



Definition 16 Two vector spaces X, Y over a field F are iso-
morphic if there is an invertible (recall this means one-to-one and
onto) T ∈ L(X, Y ). T is called an isomorphism.

Isomorphic vector spaces are essentially indistinguishable as
vector spaces.

Theorem 17 (3.3) Two vector spaces X, Y over the same
field are isomorphic if and only if dim X = dim Y .

Proof: Suppose X,Y are isomorphic, via the isomorphism T .
Let

U = {uλ : λ ∈ Λ}
be a basis of X , and let

vλ = T (uλ), V = {vλ : λ ∈ Λ}
Since T is one-to-one, U and V are numerically equivalent. If
y ∈ Y , then there exists x ∈ X such that

y = T (x)

= T
⎛
⎜⎝

n∑

i=1
αλi

uλi

⎞
⎟⎠

=
n∑

i=1
αλi

T (uλi
)

=
n∑

i=1
αλi

vλi

which shows that V spans Y . To see that V is linearly indepen-
dent, note that if

0 =
m∑

i=1
βivλi

=
m∑

i=1
βiT (uλi

)

= T
⎛
⎜⎝

m∑

i=1
βiuλi

⎞
⎟⎠
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Since T is one-to-one, ker T = {0}, so
m∑

i=1
βiuλi

= 0

Since U is a basis, we have β1 = · · · = βm = 0, so V is lin-
early independent. Thus, V is a basis of Y ; since U and V are
numerically equivalent, dim X = dim Y .

Now suppose dim X = dim Y . Let

U = {uλ : λ ∈ Λ} and V = {vλ : λ ∈ Λ}
be bases of X and Y ; note we can use the same index set Λ for
both because dim X = dim Y . By Theorem 3.2, there is a unique
T ∈ L(X, Y ) such that T (uλ) = vλ for all λ ∈ Λ. If T (x) = 0,
then

0 = T (x)

= T
⎛
⎜⎝

n∑

i=1
αiuλi

⎞
⎟⎠

=
n∑

ı=1
αiT (uλi

)

=
n∑

ı=1
αivλi

⇒ α1 = · · · = αn = 0 since V is a basis

⇒ x = 0

⇒ ker T = {0}
⇒ T is one-to-one

If y ∈ Y , write y =
∑m

i=1 βivλi
Let

x =
m∑

i=1
βiuλi

Then

T (x) = T
⎛
⎜⎝

m∑

i=1
βiuλi

⎞
⎟⎠
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=
m∑

i=1
βiT (uλi)

=
m∑

i=1
βivλi

= y

so T is onto, so T is an isomorphism and X,Y are isomorphic.
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