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Sticky Notes
Chapter 3, Linear Algebra Section 3.1, Bases

Definition 1 Let X be a vector space over a field F'. A linear
combination of xq, ..., x, is a vector of the form

Yy = %104@-:13@- where a1, ...,q, € F

1=

«; is the coefficient of x; in the linear combination. If V' C X,
span V' denotes the set of all linear combinations of V.
Aset V C X is linearly dependent if there exist vy, ..., v, € V*x
and aq,...,qa, € F not all zero such that

n
> oU; — 0
1=1

A set V C X is linearly independent if it is not linearly depen-
dent.

Aset V C X spans X if spanV = X.

A Hamel basis (often just called a basis) of a vector space X is a
linearly independent set of vectors in X that spans X.

Exzample: {(1,0),(0,1)} is a basis for R
{(1,1), (=1,1)} is another basis for R*:

(ZE,y) — O‘<171)+6<_171)
r=a—/0

y =a+p
r+y = 2«


Anderson
Sticky Note
This corrects a serious typo.


Tr—+vy
o =

2
y—x =20
_ Y=
e
x+y Yy —x
(:L’,y) — T(lal)_'_T(_lal)

Since (z,y) is an arbitrary element of R {(1,1), (=1,1)} spans
R?. If (z,y) = (0,0),

0+0 0—0
T ==

so the coefficients are all zero, so {(1,1),(—1,1)} is linearly in-
dependent. Since it is linearly independent and spans R?, it is a
basis.

Example: {(1,0,0),(0,1,0)} is not a basis of R, because it does
not span.

Exzample: {(1,0),(0,1),(1,1)} is not a basis for R?.
so the set is not linearly independent.

Theorem 2 (1.2°, see Corrections handout) Let V' be a
Hamel basis for X. Then every vector x € X has a unique
representation as a linear combination (with all coefficients
nonzero) of a finite number of elements of V.

(Aside: the unique representation of 0 is 0 = v;¢p ;b;.)
Proof: Let x € X. Since V spans X, we can write

T = > Qg4Us
SES]
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where S is finite, a; € F, agy # 0, vy € V for s € 5.

sSuppose
T = 2 QUs= 2 63/03

seS s€S9

where Sy is finite, 8, € F', 85 # 0, and vs € V for s € 9.

Let S = 51U Sy, and define

a; =0 for s € 55\ 5
Bs =0 for s € S1\ .5

Then
0 =o—=x

= X QsUg > 63/03
S€01 SESH

= X QsUg > 63/03
ses ses

= > (as - 63)7}3
seS

Now

Since V' is linearly independent, we must have ay — 35 = 0, so

o, = O, forall s € S.

seES T a;#F0& 0,04 s€ .5

so 51 =5 and ay = @ for s € 57 = 55, so the representation is

unique.s

Theorem 3 Fvery vector space has a Hamel basis.

Proof: The proof uses the Axiom of Choice. Indeed, the theorem

is equivalent to the Axiom of Choice. =

Theorem 4 Any two Hamel bases of a vector space X are

numertcally equivalent.



Proof: The proot depends on the so-called Exchange Lemma,
whose idea we sketch. Suppose that V' = {v), : A € A} and
W = {w, : v € I'} are Hamel bases of X. Remove one vector
vy, from V' so that it no longer spans (if it did still span, then
vy, would be a linear combination of other elements of V', and
V' would not be linearly independent). If w. € span (V' \ {vy,})
for every v € I, then since W spans, V' \ {v),} would also span,
contradiction. Thus, we can choose vy € I' such that

Wy & span (V- \ {vxg})

Because w-, € span V', we can write
n
w, = ¥ ag,

where ay, the coeflicient of v, is not zero (if it were, then we
would have w., € span (V' \ {vy,})). Since o # 0, we can solve

for vy, as a linear combination of w~, and vy, ..., v),, s0
span ((V'\ {ua}) U {wy})
D spanV
= X
SO

(VA Qv }) U {wyg})

spans X. From the fact that w,, & span (V \ {v),}) one can

show that
(VA {ur ) U{wyg})

is linearly independent, so it is a basis of X. Repeat this process
to exchange every element of V' with an element of W (when V
is infinite, this is done by a process called transfinite induction).
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At the end, we obtain a bijection from V to W, so that V and W
are numerically equivalent.a

Definition 5 Let dim X (read “the dimension of X”) denote the
cardinal number of any basis of X.

Ezxample: The set of all m X n real-valued matrices is a vector
space over R. A basis is given by

{Ei;j:1<i<m,1<j<n}

where

lifk=7rand =
(Eij ) = 0 otherwise.
The dimension of the vector space of m X n matrices is mn.

Theorem 6 (1.4) Suppose dim X =n € N. If V C X and
(V| > n (recall |V| denotes the number of elements in the set
V'), then V is linearly dependent.

Theorem 7 (1.5%) Suppose dim X =n € N, V C X, |V| =
n.

o If V 1s linearly independent, then V spans X, so V 1is a
Hamel basis.

o I[f V spans X, then V is linearly independent, so V 1is a
Hamel basis.

Read the material on Affine Spaces on your own.

Section 3.2, Linear Transformations

Definition 8 Let X, Y be two vector spaces over the field F'. We
say 1T : X — Y is a linear transformation if

Vo, meXar.oer (0121 + aoxa) = anT' (1) + a1 (x2)

>



Let L(X,Y) denote the set of all linear transformations from X
to Y.

Theorem 9 L(X,Y) is a vector space over F.

Proof: The hard part is figuring out what you are being asked
to prove. Once you figure that out, this is completely trivial, al-
though writing out a complete proof that checks all the vector
space axioms is rather tedious. The key is to define scalar multi-
plication and vector addition, and show that a linear combination
of linear transformations is a linear transformation.

We define
(T} + BT5)(x) = aTi(x) + BTs(x)
We need to show that a1y + 515 € L(X,Y).

(T} + BT5)(yxy + dx2)
= aTi(yx1 + 0xa) + BT5(yx1 + 0x2)
= a(YTi(z1) + 0Th(x2)) + B (vIa(21) + 015(22))
= v (Ti(x1) + fTo(x1)) + 0 (aTi(22) + BT(22))
= vy (a1 + BT5) (x1) + 0 (Tt + BT3) (29)
so Ty + BT, € L(X,Y). The rest of the proof is too tedious to

reproduce here.s

Composition of Linear Transformations
Given R € L(X,Y)and S € L(Y,Z), SoR: X — Z. We will
show that So R € L(X, Z).

(S o R)(axy + Bxy) = S(R(axy + Bxs))
= S(aR(x1) + BR(x2))
= aS(R(z1)) + BS(R(x2))
= a(So R)(z1) + (5 o R)(x2)
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soSoRe L(X, Z).
Definition 10

ImT = T(X) (image of T)
kerT" = {x:T(x) =0} (kernel of T')
RankT = dim(ImT)

Theorem 11 (2.9, 2.7, 2.6) Let X be a finite-dimensional
vector space, T € L(X,Y). Then ImT and kerT are vector
subspaces of Y and X respectively, and

dim X = dim kerT" + Rank T

Theorem 12 (2.13) T € L(X,Y) is one-to-one if and only
if ker T'= {0}.

Proof: Suppose T is one-to-one. Suppose x € ker7. Then
T(x) = 0. But since T is linear, T'(0) = T(0-0) =0-T(0) = 0.
Since T is one-to-one, x = 0, so ker T' = {0}.

Conversely, suppose that ker T" = {0}. Suppose T'(xz1) = T'(x2).
Then

T(xy —x9) = T(x1) — T(x2)
=0
SO x1—Ty € kerT', sox1—x9 = 0, 1 = x9. Thus, T"is one-to-one.s

Definition 13T € L(X,Y) is invertible if there is a function
S 1Y — X such that



In other words S oT' = idx and T o S = idy, where id denotes
the identity map. Denote S by T—!. Note that T is invertible if
and only if it is one-to-one and onto. This is just the condition for
the existence of an inverse function. The linearity of the inverse
follows from the linearity of 1"

Theorem 14 (2.11) IfT € L(X,Y) is invertible, then T~ €
LY, X), i.e. T7! is linear.

Proof: Suppose a, 3 € F and v,w € Y. Since T is invertible,

0 TW) =v T lv) =1
vaw'eX T(’UJ/) w T‘l(w) —

Then

T (av + Bw)
= T (aT () + BT (W)
= T 1T (a0 + pu'))
= v’ + Bu’
= oT Hv) + BT 1 (w)
soTle LY, X).
Although the next theorem is in Section 3.3, it really belongs here:

Theorem 15 (3.2) Let X,Y be two vector spaces over the

same field F', and let V = {vy : X € A} be a basis for X. Then
a linear transformation T € L(X,Y) is completely determined
by its values on V', i.e.

1. Given any set of values {yy: A€ A} CY,

rer(xv)Vaer T(v)) = yx



2.If S,T € LIX,Y) and S(vy) = T(vy) for all A\ € A, then
S=T.

Proof:

1. If x € X, x has a unique representation of the form
I élozimi a; Z0t=1,...,n)
(Aside: for x = 0, we have n = 0.) Define
T(w) = £ ai,

Then T'(z) € Y. The verification that T is linear is left as an
exerclse.

2. Suppose S(vy) =T (vy) for all A € A. Given x € X,

S(x) = S(Z ozm)

n

— Zaz <

n

)
— Za@T( )\z)
= T(%lozzm)

1

soS="T.

Section 3.3, Isomorphisms



Definition 16 Two vector spaces X,Y over a field F' are iso-

morphic if there is an invertible (recall this means one-to-one and
onto) T € L(X,Y). T is called an isomorphism.

Isomorphic vector spaces are essentially indistinguishable as
vector spaces.

Theorem 17 (3.3) Two wvector spaces X,Y over the same
field are 1somorphic if and only if dim X = dimY’.

Proof: Suppose X,Y are isomorphic, via the isomorphism 7'
Let
U={uy): e}
be a basis of X, and let
V) = T(’LL)\), V = {U)\ A E /\}

Since 1" is one-to-one, U and V' are numerically equivalent. If
y € Y, then there exists x € X such that

y = T(x)
— T(.nlo‘kiu&)

— .221 a1 (u)\z)

1=

n
= 2. )y,
1

which shows that V' spans Y. To see that V is linearly indepen-
dent, note that if

0 = ,f:l Bivy,
= XG0T (ux;)
=T (gfl @'UAZ.)
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Since T is one-to-one, ker T' = {0}, so
,% Biuy, =0

Since U is a basis, we have 6 = --- = 3, = 0, so V is lin-
early independent. Thus, V' is a basis of Y'; since U and V' are
numerically equivalent, dim X = dimY .

Now suppose dim X = dim Y. Let

U={uy: e A}tand V ={v): X € A}

be bases of X and Y; note we can use the same index set A for
both because dim X = dim Y. By Theorem 3.2, there is a unique
T € L(X,Y) such that T'(uy) = vy for all A € A. If T'(z) = 0,
then

NENINGE

—

=

— ... =, = 0since V is a basis

SHNe
|
o

kerT'= {0}
I 1s one-to-one
Ity eY, write y = =i vy, Let
L= 531 Biuy,
Then
T(z) = T(ﬁ’fl @-UAZ.)
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= El GiT (uy,)

= f:l Bivy,
=Y

so 1" is onto, so 1" is an isomorphism and X, Y are isomorphic.a
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